1
|
Yan T, Shan H, Wang Z, Zou S, Chen Z, Yu W, Du Q, Dong X. Temporal change of serum xanthine oxidase levels and its relation to clinical outcome of severe traumatic brain injury: a prospective cohort study. Neurosurg Rev 2023; 46:320. [PMID: 38038775 DOI: 10.1007/s10143-023-02233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
Xanthine oxidase (XO) may be involved in the induction of oxidative stress and inflammation. We measured serum XO levels at multiple days to determine whether it is associated with the severity and prognosis of severe traumatic brain injury (sTBI). In this prospective cohort study, we quantified serum XO levels in 112 sTBI patients and 112 controls. Serum XO levels of patients were measured at admission and at days 1, 3, 5, 7, and 10 after sTBI. Extended Glasgow outcome scale scores of 1-4 at post-trauma 180 days were defined as a poor prognosis. Multivariate analysis was employed to determine the relationship between poor prognosis and serum XO levels at multiple days. Serum XO levels were significantly increased at admission among patients, afterwards elevated gradually, peaked at day 3, and then diminished gradually until day 10, and were substantially higher during 10 days in patients than in controls. Serum XO levels at 6 different days were all correlated with admission Rotterdam computed tomography (CT) scores and Glasgow coma scale (GCS) scores. Serum XO levels at 6 different days were all substantially higher in patients with poor prognosis than in those with good prognosis. Serum XO levels at days 7 and 10, but not at days 1, 3, and 5, had significantly lower area under receiver operating characteristic (AUC) than those at admission. Serum XO levels at admission and at days 1 and 3, but not at day 5, were independently associated with 180-day poor prognosis. Prognostic prediction model containing GCS scores, Rotterdam CT scores, and serum XO levels at admission (or at days 1 and 3) showed substantially higher AUC than GCS scores and Rotterdam CT scores alone. The models were visually described using nomograms, which were comparatively stable under calibration curve and were relatively of clinical benefit under decision curve. Elevated serum XO levels during early period of sTBI are more closely associated with trauma severity and clinical adverse outcomes, assuming that serum XO may serve as a potential prognostic biomarker in sTBI.
Collapse
Affiliation(s)
- Tian Yan
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Hao Shan
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Zefan Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Shengdong Zou
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Ziyin Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Wenhua Yu
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Zhejiang Province, 310006, Hangzhou, China
| | - Quan Du
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Zhejiang Province, 310006, Hangzhou, China.
| | - Xiaoqiao Dong
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Zhejiang Province, 310006, Hangzhou, China.
| |
Collapse
|
2
|
Ikram M, Park HY, Ali T, Kim MO. Melatonin as a Potential Regulator of Oxidative Stress, and Neuroinflammation: Mechanisms and Implications for the Management of Brain Injury-Induced Neurodegeneration. J Inflamm Res 2021; 14:6251-6264. [PMID: 34866924 PMCID: PMC8637421 DOI: 10.2147/jir.s334423] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
This review covers the preclinical and clinical literature supporting the role of melatonin in the management of brain injury-induced oxidative stress, neuroinflammation, and neurodegeneration, and reviews the past and current therapeutic strategies. Traumatic brain injury (TBI) is a neurodegenerative condition, unpredictably and potentially progressing into chronic neurodegeneration, with permanent cognitive, neurologic, and motor dysfunction, having no standard therapies. Due to its complex and multi-faceted nature, the TBI has highly heterogeneous pathophysiology, characterized by the highest mortality and disability worldwide. Mounting evidence suggests that the TBI induces oxidative and nitrosative stress, which is involved in the progression of chronic and acute neurodegenerative diseases. Defenses against such conditions are mostly dependent on the usage of antioxidant compounds, the majority of whom are ingested as nutraceuticals or as dietary supplements. A large amount of literature is available regarding the efficacy of antioxidant compounds to counteract the TBI-associated damage in animal and cellular models of the TBI and several clinical studies. Collectively, the studies have suggested that TBI induces oxidative stress, by suppressing the endogenous antioxidant system, such as nuclear factor erythroid 2–related factor-2 (Nrf-2) increasing the lipid peroxidation and elevation of oxidative damage. Moreover, elevated oxidative stress may induce neuroinflammation by activating the microglial cells, releasing and activating the inflammatory cytokines and inflammatory mediators, and energy dyshomeostasis. Thus, melatonin has shown regulatory effects against the TBI-induced autophagic dysfunction, regulation of mitogen-activated protein kinases, such as ERK, activation of the NLRP-3 inflammasome, and release of the inflammatory cytokines. The collective findings strongly suggest that melatonin may regulate TBI-induced neurodegeneration, although further studies should be conducted to better facilitate future therapeutic windows.
Collapse
Affiliation(s)
- Muhammad Ikram
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun Young Park
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, 6202 AZ, the Netherlands.,School for Mental Health and Neuroscience (MHeNS), Maastricht Medical Center, Maastricht, 6229 ER, the Netherlands
| | - Tahir Ali
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Alz-Dementia Korea Co., Jinju, 52828, Republic of Korea
| |
Collapse
|
3
|
Xu FL, Cheng Y, Yan W. Up-regulation of autophagy and apoptosis of cochlear hair cells in mouse models for deafness. Arch Med Sci 2021; 17:535-541. [PMID: 33747288 PMCID: PMC7959062 DOI: 10.5114/aoms.2018.75348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Hearing loss is one of the most common sensory disorders. Recent findings have shown that the apoptotic program and autophagy are related to hearing loss. The aim of the study was to explore the effects of noise and cisplatin exposure on apoptosis and autophagy in the hair cells of the cochleae. MATERIAL AND METHODS C57BL/6 mice were randomly divided into 3 groups (n = 10 for each): the control group, the noise model group and the cisplatin model group. Auditory brainstem response (ABR) measurements were used to detect the hearing thresholds. TUNEL assay was used to evaluate cell apoptosis. Western blot and immunofluorescence were performed to examine the apoptosis- and autophagy-related proteins. RESULTS The mice exhibited substantial hearing loss after noise and cisplatin exposure. Additionally, more TUNEL positive cells were observed in the mice after noise and cisplatin exposure compared with the control group. Moreover, the protein expression levels of Beclin-1, LC3-II, Bax and cleaved caspase-3 were significantly increased, while the expression of Bcl-2 was notably decreased in the cochlea after noise (p = 0.0278, 0.0075, 0.0142, 0.0158, 0.0131 respectively) and cisplatin (p = 0.0220, 0.0075, 0.0024, 0.0161, 0.0452 respectively) exposure compared with the control group. Besides, the ratio of LC3-II/LC3-I was substantially higher in the mice treated by cisplatin (p = 0.0046) and noise (p = 0.0220) compared with the control group. CONCLUSIONS Our findings demonstrated for the first time that noise and cisplatin exposure promoted apoptosis and autophagy in the hair cells of the cochleae. This study provides new insights into the mechanisms of noise- or cisplatin-induced hearing loss.
Collapse
Affiliation(s)
- Fei-Long Xu
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Yanjie Cheng
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Wenya Yan
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Henan, China
| |
Collapse
|
4
|
Saki G, Eidi A, Mortazavi P, Panahi N, Vahdati A. Effect of β-asarone in normal and β-amyloid-induced Alzheimeric rats. Arch Med Sci 2020; 16:699-706. [PMID: 32399120 PMCID: PMC7212238 DOI: 10.5114/aoms.2020.94659] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/28/2017] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION β-Asarone is a major component of Acorus tatarinowii Schott. It has pharmacological effects that include antihyperlipidemic, anti-inflammatory, and antioxidant activity. In the present study, the effect of β-asarone on neurodegeneration induced by intrahippocampal administration of β-amyloid was investigated in adult male Wistar rats. MATERIAL AND METHODS The rats were randomly divided into 9 groups: normal control, sham-operated control, β-asarone (12.5, 25, and 50 mg/kg intragastrically, daily) alone, Alzheimeric control rats (β-amyloid, intrahippocampal), β-asarone (12.5, 25, and 50 mg/kg intragastrically, daily) together with β-amyloid, and treatment was performed accordingly. Animals were injected with β-amyloid bilaterally. Animals received β-asarone daily using an intragastric tube for 50 days, starting from 30 days before administration of the β-amyloid. The rats were sacrificed and parameters of oxidative stress, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activity were measured in hippocampus homogenate. Histopathological changes were examined by Bielschowsky staining. RESULTS Our results showed that administration of β-asarone (25 and 50 mg/kg) significantly increased the levels of antioxidant enzymes, including SOD (1.09 ±0.02, 1.21 ±0.02, p < 0.001, respectively) and GPX (58.94 ±0.78, 68.92 ±3.64, p < 0.001, respectively) in comparison with Alzheimeric control rats (SOD and GPX level for Alzheimeric control group: 0.44 ±0.01, 35.09 ±1.15, respectively). Histopathological examination showed that β-asarone decreased cell loss in the cerebral cortex and hippocampus in Alzheimeric rats. CONCLUSIONS These results indicate that β-asarone is effective in providing protection against oxidative stress and neuronal damage induced by β-amyloid.
Collapse
Affiliation(s)
- Golshid Saki
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran
- Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pejman Mortazavi
- Department of Pathology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Negar Panahi
- Department of Basic Sciences, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akbar Vahdati
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran
- Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
5
|
Machado CA, Silva ACSE, de Miranda AS, Cordeiro TME, Ferreira RN, de Souza LC, Teixeira AL, de Miranda AS. Immune-Based Therapies for Traumatic Brain Injury: Insights from Pre-Clinical Studies. Curr Med Chem 2019; 27:5374-5402. [PMID: 31291871 DOI: 10.2174/0929867326666190710173234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/24/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022]
Abstract
Traumatic Brain Injury (TBI) is a major public health problem. It is the leading cause of death and disability, especially among children and young adults. The neurobiology basis underlying TBI pathophysiology remains to be fully revealed. Over the past years, emerging evidence has supported the hypothesis that TBI is an inflammatory based condition, paving the way for the development of potential therapeutic targets. There is no treatment capable to prevent or minimize TBIassociated outcomes. Therefore, the search for effective therapies is a priority goal. In this context, animal models have become valuable tools to study molecular and cellular mechanisms involved in TBI pathogenesis as well as novel treatments. Herein, we discuss therapeutic strategies to treat TBI focused on immunomodulatory and/or anti-inflammatory approaches in the pre-clinical setting.
Collapse
Affiliation(s)
- Caroline Amaral Machado
- Laboratorio de Neurobiologia, Departamento de Morfologia, Instituto de Ciencias Biologicas, UFMG, Brazil
| | - Ana Cristina Simões E Silva
- Laboratorio Interdisciplinar de Investigacao Medica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Amanda Silva de Miranda
- Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thiago Macedo E Cordeiro
- Laboratorio Interdisciplinar de Investigacao Medica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Rodrigo Novaes Ferreira
- Laboratorio de Neurobiologia, Departamento de Morfologia, Instituto de Ciencias Biologicas, UFMG, Brazil
| | - Leonardo Cruz de Souza
- Laboratorio Interdisciplinar de Investigacao Medica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, United States
| | - Aline Silva de Miranda
- Laboratorio Interdisciplinar de Investigacao Medica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| |
Collapse
|
6
|
Kamisli S, Basaran C, Batcioglu K, Oztanir MN, Gul M, Satilmis B, Uyumlu AB, Kayhan B, Genc M. Neuroprotective effects of the new Na channel blocker rs100642 in global ischemic brain injury. Arch Med Sci 2019; 15:467-474. [PMID: 30899300 PMCID: PMC6425206 DOI: 10.5114/aoms.2017.72550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/18/2017] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION RS100642, a mexiletine analogue, is a novel sodium channel blocker with neuroprotective and antioxidant activities. The protectivity of RS100642, which has been shown against focal cerebral ischemia, was investigated in global cerebral ischemia in this study. MATERIAL AND METHODS Global cerebral ischemia was induced for five minutes in adult male Wistar Albino rats via the 4-vessel occlusion method. Intravenous administration of 1 mg/kg RS100642 following reperfusion for 30 min (RS100642 group) was compared with a sham treatment group (ischemia group) and nonischemized group (control) histologically based on morphology and caspase-3 immunohistochemistry, and biochemically based both on measurement of oxidative stress including malondialdehyde (MDA) levels, superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) activities and on assessment of apoptosis including caspase-3 and -8 activities and tumor necrosis factor α (TNF-α) levels at the end of 6 h. RESULTS While the RS100642 group had significantly lower MDA levels and higher SOD activities than the sham treatment group (p < 0.05), GPx and CAT activities of the RS100642 and sham treatment groups were similar (p > 0.05) and significantly lower than those of the controls (p < 0.05). Necrosis and caspase-3 activity and immunoreactivity in the RS100642 group were significantly lower than those in the sham treatment group (p < 0.05), while there was no significant difference between groups regarding caspase-8 and TNF-α (p > 0.05). CONCLUSIONS Na+ channel blockade by RS100642 has remarkable neuroprotective effects following global brain ischemia/reperfusion damage. Further research is required to determine the optimum dose and time of administration.
Collapse
Affiliation(s)
- Suat Kamisli
- Division of Neurology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Cenk Basaran
- Division of Neurology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Kadir Batcioglu
- Division of Biochemistry, Faculty of Medicine, İnönü University, Malatya, Turkey
| | | | - Mehmet Gul
- Division of Histology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Basri Satilmis
- Division of Biochemistry, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Ayse Burcin Uyumlu
- Division of Biochemistry, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Basak Kayhan
- Division of Medicinal Biology and Genetics, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Metin Genc
- Division of Public Health, Faculty of Medicine, İnönü University, Malatya, Turkey
| |
Collapse
|
7
|
Zhang Q, Zhang XF. Hyperoside decreases the apoptosis and autophagy rates of osteoblast MC3T3‑E1 cells by regulating TNF‑like weak inducer of apoptosis and the p38mitogen activated protein kinase pathway. Mol Med Rep 2018; 19:41-50. [PMID: 30387825 PMCID: PMC6297762 DOI: 10.3892/mmr.2018.9622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 04/06/2018] [Indexed: 12/20/2022] Open
Abstract
Wear particles generated between the interface of joints and artificial joint replacements are one of the primary causes of aseptic loosening. The aim of the present study was to investigate the influence of titanium (Ti) particles on the apoptosis and autophagy of osteoblasts, and probe into the potential use of hyperoside (Hy) as a protector for osteoblasts in Ti particle-induced injury. MC3T3-E1 cells were divided into control, Ti, Hy-1+Ti and Hy-2+Ti groups. Cell viability was detected using a Cell Counting Kit-8 assay. Apoptosis and autophagy rates were determined using flow cytometry. Expression levels of apoptosis-associated genes, including caspase-3, apoptosis regulator BAX, apoptosis regulator Bcl-2 and cellular tumor antigen p53, in addition to autophagy-associated genes, including Beclin1 and microtubule-associated protein light chain 3 conversion LC3-II/I, were measured using reverse transcription-quantitative polymerase chain reaction and western blotting. Activation of the tumor necrosis factor ligand superfamily member 12 (TWEAK)-mitogen activated protein kinase 11 (p38) mitogen activated protein kinase (MAPK) pathway was observed by western blotting. The present study demonstrated that pretreatment with Hy was able to increase cell viability and proliferation, and decrease apoptosis and autophagy to protect MC3T3-E1 cells against Ti particle-induced damage. Activation of the TWEAK-p38 pathway contributed to the repair processes of treatment with Hy. The present results suggested that Hy protected osteoblasts against Ti particle-induced damage by regulating the TWEAK-p38 pathway, which suggested the potential of Hy as a protective agent for bones.
Collapse
Affiliation(s)
- Qing Zhang
- Division of Hand and Foot Surgery, Department of Orthopedics, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Xiao-Feng Zhang
- Department of Central Pharmacy, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| |
Collapse
|
8
|
Qiao YQ, Jiang PF, Gao YZ. Lutein prevents osteoarthritis through Nrf2 activation and downregulation of inflammation. Arch Med Sci 2018; 14:617-624. [PMID: 29765450 PMCID: PMC5949909 DOI: 10.5114/aoms.2016.59871] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/11/2016] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION Osteoarthritis is an inflammatory disorder associated with oxidative stress and apoptosis leading to cartilage destruction and impairment of cartilage formation. In the present study, we studied the protective effect of lutein against monosodium iodoacetate (MIA)-induced osteoarthritis in primary chondrocyte cells. MATERIAL AND METHODS Oxidative stress was determined through testing antioxidant status, reactive oxygen species levels and lipid peroxide content. Also, Nrf2 expression and its downstream target genes HO-1 and NQO-1 were determined. Inflammation was analyzed through NF-κB, COX-2 and pro-inflammatory cytokines (IL-6, TNF-α, IL-1β). In addition, the effects of MIA and lutein on mitochondrial membrane potential and caspase-3 levels were analyzed. RESULTS The results showed that lutein treatment significantly increased the cell viability of chondrocytes and offered significant cytoprotection by enhancing the antioxidant defense mechanisms and reducing oxidative stress (reactive oxygen species and lipid peroxidation). Lutein treatment showed anti-inflammatory effects by downregulating inflammatory proteins (NF-κB, COX-2) and pro-inflammatory cytokines (IL-6, TNF-α, IL-1β). Lutein reduced MIA-induced apoptosis through maintaining mitochondrial membrane potential and downregulating caspase-3 activity. CONCLUSIONS The present study shows significant cytoprotection offered by lutein against MIA-induced oxidative stress, inflammation and apoptosis by the modulatory effect of NF-κB and Nrf2 activation.
Collapse
Affiliation(s)
- Yan-Qin Qiao
- First Department of Orthopedics, Xinxiang Central Hospital, Xinxiang, Henan, China
| | - Pan-Feng Jiang
- First Department of Orthopedics, Xinxiang Central Hospital, Xinxiang, Henan, China
| | - Yan-Zheng Gao
- Department of Orthopedics, Henan Provincial People's Hospital, Henan, China
| |
Collapse
|
9
|
Bulboacă AE, Bolboacă SD, Bulboacă AC, Prodan CI. Association between low thyroid-stimulating hormone, posterior cortical atrophy and nitro-oxidative stress in elderly patients with cognitive dysfunction. Arch Med Sci 2017; 13:1160-1167. [PMID: 28883858 PMCID: PMC5575209 DOI: 10.5114/aoms.2016.60129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/22/2016] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Cortical atrophy is known to be a valuable sign of cognitive decline. The purpose of this study was to assess the association between low thyroid-stimulating hormone (TSH), posterior cortical atrophy (Koedam score - KS) and nitro-oxidative stress in elderly patients. MATERIAL AND METHODS A study (SG) and a control group (CG), each subdivided by gender, were investigated. Subjects older than 59 years with low serum TSH level and with mild cognitive impairment were included in the SG. The CG was formed by subjects free of significant cortical atrophy and free or thyroid dysfunction. Demographic and clinical characteristics of the patients (Mini Mental State Examination, MMSE), Koedam score on cranial magnetic resonance imaging, and blood parameters (TSH, FT4, and nitric oxide - NOx) were assessed. RESULTS Subjects in the study group had fewer years of education above the 8th grade compared with the control group (p < 0.0001). A significantly higher percentage of subjects in the study group had a Koedam score of 2 or 3 compared with controls, who had in the majority of cases a Koedam score of zero (p < 0.02). Significantly higher NOx levels were observed when study groups of both genders were compared with corresponding controls (p < 0.001). No significant differences were observed with regard to FT4 (p > 0.70). Nitric oxide was found to be significantly associated with TSH (p < 0.03) and KS (p < 0.002) when the whole study group was considered as well as when just the non-smoker study group was investigated. CONCLUSIONS Our study revealed an association between subclinical thyroid hypofunction, nitro-oxidative stress, and posterior cortical atrophy as an early stage of global atrophy.
Collapse
Affiliation(s)
- Adriana E. Bulboacă
- Department of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sorana D. Bolboacă
- Department of Medical Informatics and Biostatistics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Angelo C. Bulboacă
- Department of Neurology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Călin I. Prodan
- Department of Neurology, The University of Oklahoma Health Sciences Center & VA Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
10
|
Ding Y, Gao BB, Zhou L, Ye XH, Li H, Lai L, Huang JY. Clinical implications of plasma Nogo-A levels in patients with coronary heart disease. Arch Med Sci 2017; 13:771-777. [PMID: 28721144 PMCID: PMC5510510 DOI: 10.5114/aoms.2016.58713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/28/2015] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Nogo-A is an important neurite growth-regulatory protein in the adult and developing nervous system. Recently, increasing evidence has shown that Nogo-A plays important roles in cardiac development and may act as a potential indicator for heart failure. In addition, increased oxidative stress has been found in individuals with cardiovascular diseases. However, not much is known regarding the expression levels of Nogo-A and reactive oxygen species (ROS) in patients with coronary heart disease (CHD). Therefore, we sought to investigate the relationship between Nogo-A, ROS levels and CHD. MATERIAL AND METHODS The plasma Nogo-A and ROS concentrations of 122 acute coronary syndrome (ACS), 101 unstable angina pectoris (UAP), and 21 acute myocardial infarction (AMI) patients and 56 healthy controls were measured by enzyme-linked immunosorbent assay (ELISA). We further generated a receiver operating characteristic (ROC) curve to assess the diagnostic accuracy of Nogo-A and ROS in CHD. RESULTS The Nogo-A and ROS levels were significantly higher in patients with CHD than those in healthy controls. In addition, multivariate logistic regression analysis revealed that the level of Nogo-A (odds ratio (OR) = 1.624, 95% confidence interval: 1.125-2.293, p = 0.009) is a risk factor for prediction of CHD. Nogo-A has diagnostic value, with an optimal threshold of 5.466 ng/ml for maximized diagnostic performance (59% sensitivity and 78.6% specificity, area under curve, p < 0.05). However, ROS concentration is not a risk factor for prediction of CHD (OR = 0.999, 95% confidence interval: 0.997-1.001, p = 0.320). CONCLUSIONS Increased plasma Nogo-A level may be associated with CHD.
Collapse
Affiliation(s)
- Yu Ding
- Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Bei-Bei Gao
- Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Liang Zhou
- Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Xian-Hua Ye
- Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Hong Li
- Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Lei Lai
- Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Jin-Yu Huang
- Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| |
Collapse
|
11
|
Lippi G, Bovo C, Buonocore R, Mitaritonno M, Cervellin G. Red blood cell distribution width in patients with limb, chest and head trauma. Arch Med Sci 2017; 13:606-611. [PMID: 28507576 PMCID: PMC5420636 DOI: 10.5114/aoms.2017.67282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/18/2016] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION This study investigated the values of red blood cell distribution width (RDW), an emerging and independent predictor of morbidity and mortality, in patients with limb, chest and head trauma. MATERIAL AND METHODS The study sample consisted of all patients who attended the emergency department (ED) of the University Hospital of Parma for limb, chest and head traumas requiring admission to hospital wards during the year 2014. The controls consisted of outpatients living in the same geographical area and undergoing routine laboratory testing for health check-up. RESULTS The final study sample consisted of 290 patients with limb (n = 97), chest (n = 49) or head (n = 144) trauma and 967 outpatients. Significantly increased RDW values at admission were observed in all trauma patients compared with controls. Although the frequency of increased RDW (> 14.6%) was higher in all trauma patients than in controls, a subanalysis revealed that increased RDW values were significantly more frequent in patients with head trauma than in controls, but not in those with limb or chest trauma. In multivariate analysis, a significant association was found between head trauma and hemoglobin (p < 0.001) or RDW (p = 0.005). Head trauma patients had a ~3-fold higher likelihood of increased RDW values than controls. The negative and positive predictive values of increased RDW for predicting the presence of head trauma were 0.90 (95% CI: 0.88-0.92) and 0.24 (95% CI: 0.19-0.30). CONCLUSIONS The results of this study highlight that RDW is increased in patients admitted to the ED with head trauma.
Collapse
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Chiara Bovo
- University Hospital of Verona, Verona, Italy
| | - Ruggero Buonocore
- Laboratory of Clinical Chemistry and Hematology, Academic Hospital of Parma, Parma, Italy
| | | | | |
Collapse
|