1
|
Saqallah FG, Abbas MA, Wahab HA. Recent advances in natural products as potential inhibitors of dengue virus with a special emphasis on NS2b/NS3 protease. PHYTOCHEMISTRY 2022; 202:113362. [PMID: 35948138 DOI: 10.1016/j.phytochem.2022.113362] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/18/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Dengue virus (DENV) is an arbovirus widespread through tropical and subtropical areas. It is transmitted to humans through Aedes mosquitoes. Infections with DENV can lead to a series of complications, including dengue fever, dengue haemorrhagic fever, or dengue shock syndrome, which might manifest through secondary infections because of a vulnerable immune system. To date, only one tetravalent DENV vaccine is approved to be administered to children whom have been previously DENV-infected and between 9 and 16 years of age. One of the key targets in discovering DENV antiviral agents is the NS2b/NS3 protease. This protease is a crucial enzyme complex for the proteolytic and cleavage activities of the translated polyprotein during DENV life cycle. Several studies were conducted to discover potential antivirals from natural sources or synthetic compounds and peptides. In this review, we describe the recent studies from the past five years dealing with isolated natural products as potential inhibitors of DENV with a greater focus on inhibiting the NS2b/NS3 protease. This review describes recent discoveries in anti-DENV potential of isolated phytochemicals belonging to different groups including fatty acids, glucosides, terpenes and terpenoids, flavonoids, phenolics, chalcones, acetamides, and peptides. Curcumin, quercetin, and myricetin were found to act as non-competitive inhibitors for the NS2b/NS3 protease enzyme. In some studies, the molecular targets of some of these compounds are yet to be identified using in-silico and in-vitro approaches. So far, none of the isolated natural products was tested clinically for the management of DENV infections. The discussed studies demonstrate that natural products are a rich source of potential anti-DENV compounds. However, not all of these compounds were studied for their kinetic molecular mechanism and type of inhibition. In-silico studies provided an ample number of phytochemical hits to be tested experimentally as DENV protease inhibitors. In conclusion, derivatives of these natural products can be designed and synthesised, which could enhance their specificity and efficacy towards the protease. Other sources of natural products, such as fungi, bacterial toxins, marine organisms, and animals, should also be explored towards discovering more potential and effective DENV NS2b/NS3 protease inhibitors.
Collapse
Affiliation(s)
- Fadi G Saqallah
- Pharmaceutical Design and Simulation (PhDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Manal A Abbas
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328, Amman, Jordan; Pharmacological and Diagnostic Research Lab, Al-Ahliyya Amman University, 19328, Amman, Jordan.
| | - Habibah A Wahab
- Pharmaceutical Design and Simulation (PhDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
2
|
Abdelhameed RFA, Ibrahim AK, Elfaky MA, Habib ES, Mahamed MI, Mehanna ET, Darwish KM, Khodeer DM, Ahmed SA, Elhady SS. Antioxidant and Anti-Inflammatory Activity of Cynanchum acutum L. Isolated Flavonoids Using Experimentally Induced Type 2 Diabetes Mellitus: Biological and In Silico Investigation for NF-κB Pathway/miR-146a Expression Modulation. Antioxidants (Basel) 2021; 10:antiox10111713. [PMID: 34829584 PMCID: PMC8615122 DOI: 10.3390/antiox10111713] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Cynanchum acutum L. is a climbing vine that belongs to the family Apocynaceae. Using different chromatographic techniques, seven compounds were isolated from the methanolic extract of the plant. The isolated compounds include six flavonoid compounds identified as rutin (1), quercetin-3-O-neohesperidoside (2), quercetin-3-O-β-galactoside (3), isoquercitrin (4), quercetin (5), and kaempferol 3-O-β-glucoside (6), in addition to a coumarin, scopoletin (7). The structures of the compounds were elucidated based on 1D NMR spectroscopy and high-resolution mass spectrometry (HR-MS), and by comparison with data reported in the literature. The first five compounds were selected for in vivo investigation of their anti-inflammatory and antioxidant properties in a rat model of type 2 diabetes. All tested compounds significantly reduced oxidative stress and increased erythrocyte lysate levels of antioxidant enzymes, along with the amelioration of the serum levels of inflammatory markers. Upregulation of miR-146a expression and downregulation of nuclear factor kappa B (NF-κB) expression were detected in the liver and adipose tissue of rats treated with the isolated flavonoids. Results from the biological investigation and those from the validated molecular modeling approach on two biological targets of the NF-κB pathway managed to highlight the superior anti-inflammatory activity of quercetin-3-O-galactoside (3) and quercetin (5), as compared to other bioactive metabolites.
Collapse
Affiliation(s)
- Reda F. A. Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.I.M.); (S.A.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
| | - Amany K. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.I.M.); (S.A.A.)
- Correspondence: (A.K.I.); (E.T.M.)
| | - Mahmoud A. Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.E.); (S.S.E.)
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eman S. Habib
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.I.M.); (S.A.A.)
| | - Mayada I. Mahamed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.I.M.); (S.A.A.)
| | - Eman T. Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (A.K.I.); (E.T.M.)
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Dina M. Khodeer
- Department of Pharmacology, and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Safwat A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.I.M.); (S.A.A.)
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.E.); (S.S.E.)
| |
Collapse
|
3
|
Gomaa AA, Mohamed HS, Abd-Ellatief RB, Gomaa MA. Boswellic acids/Boswellia serrata extract as a potential COVID-19 therapeutic agent in the elderly. Inflammopharmacology 2021; 29:1033-1048. [PMID: 34224069 PMCID: PMC8256410 DOI: 10.1007/s10787-021-00841-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/20/2021] [Indexed: 12/14/2022]
Abstract
The most severe cases of COVID-19, and the highest rates of death, are among the elderly. There is an urgent need to search for an agent to treat the disease and control its progression. Boswellia serrata is traditionally used to treat chronic inflammatory diseases of the lung. This review aims to highlight currently published research that has shown evidence of potential therapeutic effects of boswellic acids (BA) and B. serrata extract against COVID-19 and associated conditions. We reviewed the published information up to March 2021. Studies were collected through a search of online electronic databases (academic libraries such as PubMed, Scopus, Web of Science, and Egyptian Knowledge Bank). Several recent studies reported that BAs and B. serrata extract are safe agents and have multiple beneficial activities in treating similar symptoms experienced by patients with COVID-19. Because of the low oral bioavailability and improvement of buccal/oral cavity hygiene, traditional use by chewing B. serrata gum may be more beneficial than oral use. It is the cheapest option for a lot of poorer people. The promising effect of B. serrata and BA can be attributed to its antioxidant, anti-inflammatory, immunomodulatory, cardioprotective, anti-platelet aggregation, antibacterial, antifungal, and broad antiviral activity. B. serrata and BA act by multiple mechanisms. The most common mechanism may be through direct interaction with IκB kinases and inhibiting nuclear factor-κB-regulated gene expression. However, the most recent mechanism proposed that BA not only inhibited the formation of classical 5-lipoxygenase products but also produced anti-inflammatory LOX-isoform-selective modulators. In conclusion a small to moderate dose B. serrata extract may be useful in the enhancing adaptive immune response in mild to moderate symptoms of COVID-19. However, large doses of BA may be beneficial in suppressing uncontrolled activation of the innate immune response. More clinical results are required to determine with certainty whether there is sufficient evidence of the benefits against COVID-19.
Collapse
Affiliation(s)
- Adel A Gomaa
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Hamdy S Mohamed
- Department of Internal Medicine, Faculty of Medicine, Sohage University, Sohâg, Egypt
| | | | - Mohamed A Gomaa
- Department of Plastic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
4
|
Tohamy HG, El-Kazaz SE, Alotaibi SS, Ibrahiem HS, Shukry M, Dawood MAO. Ameliorative Effects of Boswellic Acid on Fipronil-Induced Toxicity: Antioxidant State, Apoptotic Markers, and Testicular Steroidogenic Expression in Male Rats. Animals (Basel) 2021; 11:1302. [PMID: 33946602 PMCID: PMC8147226 DOI: 10.3390/ani11051302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/28/2022] Open
Abstract
The study investigated the ability of boswellic acid (BA) to alleviate the testicular and oxidative injury FPN insecticide intoxication in the male rat model. Rats were randomly assigned to six equivalent groups (six rats each) as the following: control rats orally administered with 2 mL physiological saline/kg of body weight (bwt); boswellic acid (BA1) rats orally administered 250 mg BA/kg bwt; boswellic acid (BA2) rats orally administered 500 mg BA/kg bwt; fipronil (FPN) rats orally administered 20 mg FPN/kg bwt; (FPN + BA1) rats orally administered 20 mg FPN/kg bwt plus 250 mg BA/kg bwt, and (FPN + BA2) rats orally administered 20 mg FPN/kg bwt plus 500 mg BA/kg bwt. After 60 days, semen viability percentage and live spermatozoa percentage were decreased, and a considerably increased abnormality of the sperm cells in FPN-administered rats improved substantially with the co-administration of BA. BA had refinement of the histological architecture of testes and sexual glands. Quantitative analysis recorded a noticeable decline in the nuclear cell-proliferating antigen (PCNA) percentage area. FPN triggered cell damage, which was suggested by elevated malondialdehyde and interleukin 6, tumor necrosis factors alpha, and decreased glutathione level. Proapoptotic factor overexpression is mediated by FPN administration, while it decreased the antiapoptotic protein expression. Similarly, BA has shown significant upregulation in steroidogenic and fertility-related gene expression concerning the FPN group. Pathophysiological damages induced by FPN could be alleviated by BA's antioxidant ability and antiapoptotic factor alongside the upregulation of steroidogenic and fertility-related genes and regimented the detrimental effects of FPN on antioxidant and pro-inflammatory biomarkers.
Collapse
Affiliation(s)
- Hossam G. Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Sara E. El-Kazaz
- Animals and Poultry Behavior and Management, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Hawary S. Ibrahiem
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mahmoud A. O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
5
|
Mendes TC, dos Reis Lívero FA, de Souza P, Gebara KS, Junior AG. Cellular and Molecular Mechanisms of Antithrombogenic Plants: A Narrative Review. Curr Pharm Des 2020; 26:176-190. [DOI: 10.2174/1381612825666191216125135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/02/2019] [Indexed: 02/08/2023]
Abstract
Heart attack, stroke, and deep vein thrombosis are among the conditions that alter blood coagulation
and are modulated by antithrombogenic drugs. Natural products are an important source of antithrombogenic
agents and have been considered remarkable alternatives with greater efficacy and usually with fewer side effects.
However, the efficacy and toxicity of many of these plants that are used in traditional medicine must be scientifically
tested. Despite a large number of published articles that report that plants or plant-derived components may
act as antithrombogenic agents, few studies have investigated the mechanism of action of medicinal plants. This
review presents the current knowledge about the major cellular and molecular mechanisms of antithrombogenic
plants and their main components. Many well-established mechanisms (e.g., platelet aggregation, coagulation
factors, and thrombolysis) are related to the antithrombogenic activity of many natural products. However, the
central pathways that are responsible for their activity remain unclear. Further studies are needed to clarify the
central role of each of these pathways in the pleiotropic response to these agents.
Collapse
Affiliation(s)
- Tatiane C. Mendes
- Laboratory of Preclinical Research of Natural Products, Graduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, PR, Brazil
| | - Francislaine Aparecida dos Reis Lívero
- Laboratory of Preclinical Research of Natural Products, Graduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, PR, Brazil
| | - Priscila de Souza
- Graduate Program in Pharmaceutical Sciences, Nucleus of Chemical- Pharmaceutical Investigations (NIQFAR), University of Vale do Itajaí, Itajaí, SC, Brazil
| | - Karimi S. Gebara
- Laboratory of Electrophysiology and Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratory of Electrophysiology and Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
6
|
Memariani Z, Moeini R, Hamedi SS, Gorji N, Mozaffarpur SA. Medicinal plants with antithrombotic property in Persian medicine: a mechanistic review. J Thromb Thrombolysis 2018; 45:158-179. [PMID: 29124622 DOI: 10.1007/s11239-017-1580-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thrombosis is one of the major causes of morbidity and mortality in a wide range of vessels diseases. Due to the high prevalence of thromboembolic disorders investigations are being carried out on new antithrombotic agents with limited adverse side effects in which herbal medicines are considered as alternative remedies. Persian medicine (PM) as a traditional medicine has a good potential for pharmacotherapy based on its own principles and development of drugs via investigating PM literature. In PM manuscripts there are some concepts that express the management of blood clots and antithrombotic properties. This study reviewed the pharmacological effects of medicinal plants mentioned in PM literature for blood clot management in light of current knowledge. Plants mentioned in PM for management of blood clot belong to 12 families in which Apiaceae, Lamiaceae and Compositae were the most repeated ones. Among the proposed plants Allium sativum, Rosmarinus officinalis, Boswellia serrata, Sesamum indicum, Matricaria chamomilla and Carthamus tinctorius have been the most researched plants in modern antithrombotic studies while for some plants such as Helichrysum stoechas, Dracocephalum kotschi, Carum carvi, Bunium persicum and Lagoecia cuminoides no evidence could be found. One of the interesting notes in clot management in PM texts was introducing the target organ for some of the recommended herbs like Carum carvi and Bunium persicum for dissolving blood clot in stomach and Commiphora mukul for thrombosed hemorrhoid. It seems review of PM recommendations can help to design future researches for antithrombotic drugs discovering with more effectiveness and safety.
Collapse
Affiliation(s)
- Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran.,School of Traditional Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Reihaneh Moeini
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran.,School of Traditional Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Shokooh Sadat Hamedi
- School of Traditional Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Narjes Gorji
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran. .,School of Traditional Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran.
| | - Seyyed Ali Mozaffarpur
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran.,School of Traditional Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| |
Collapse
|
7
|
Tawfik MK, El-Kherbetawy MK, Makary S. Cardioprotective and Anti-Aggregatory Effects of Levosimendan on Isoproterenol-Induced Myocardial Injury in High-Fat-Fed Rats Involves Modulation of PI3K/Akt/mTOR Signaling Pathway and Inhibition of Apoptosis. J Cardiovasc Pharmacol Ther 2018; 23:456-471. [DOI: 10.1177/1074248418763957] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperlipidemia and hypercoagulability states are linked with the increased risks of myocardial infarction (MI). Levosimendan has vasorelaxant and anti-aggregatory properties. The present study evaluated the anti-aggregatory and cardioprotective effects of levosimendan versus cilostazol in high-fat diet (HFD)-fed rats subjected to isoproterenol-induced MI. Rats were assigned to normal, HFD, HFD + isoproterenol, HFD + isoproterenol + cilostazol, and HFD + isoproterenol + levosimendan. The present study investigated the anti-aggregatory effect of both levosimendan and cilostazol and revealed that both drugs attenuated the severity of platelet aggregation. Moreover, both levosimendan and cilostazol revealed effectiveness in attenuating the severity of HFD/isoproterenol-induced myocardial injury as revealed by electrocardiogram signs, apoptotic markers, and histopathological score via counteracting the oxidative stress burden, increments in the expression of inflammatory mediators, and modulating nuclear factor kappa-B (NF-κB) and phosphatidylinositide 3-kinases (PI3K)/protein kinase B (Akt)/ mechanistic target of rapamycin (mTOR) pathway. It was obvious that levosimendan offered more cardioprotective properties than cilostazol. The study showed the relations between hyperlipedemia, hyperaggregability state, and myocardial injury with the modulation of NF-κB and PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Mona K. Tawfik
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | | | - Samy Makary
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
8
|
Protective Effect of Boswellic Acids against Doxorubicin-Induced Hepatotoxicity: Impact on Nrf2/HO-1 Defense Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018. [PMID: 29541348 PMCID: PMC5818967 DOI: 10.1155/2018/8296451] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The current study aimed to investigate the potential protective role of boswellic acids (BAs) against doxorubicin- (DOX-) induced hepatotoxicity. Also, the possible mechanisms underlying this protection; antioxidant, as well as the modulatory effect on the Nrf2 transcription factor/hem oxygenase-1 (Nrf2/HO-1) pathway in liver tissues, was investigated. Animals were allocated to five groups: group 1: the saline control, group 2: the DOX group, animals received DOX (6 mg/kg, i.p.) weekly for a period of three weeks, and groups 3–5: animals received DOX (6 mg/kg, i.p.) weekly and received protective doses of BAs (125, 250, and 500 mg/kg/day). Treatment with BAs significantly improved the altered liver enzyme activities and oxidative stress markers. This was coupled with significant improvement in liver histopathological features. BAs increased the Nrf2 and HO-1 expression, which provided protection against DOX-induced oxidative insult. The present results demonstrated that BAs appear to scavenge ROS and inhibit lipid peroxidation and DNA damage of DOX-induced hepatotoxicity. The antioxidant efficacy of BAs might arise from its modulation of the Nrf2/HO-1 pathway and thereby protected liver from DOX-induced oxidative injury.
Collapse
|