1
|
Nazir S, Kim KH, Kim L, Seo SE, Bae PK, An JE, Kwon OS. Discrimination of the H1N1 and H5N2 Variants of Influenza A Virus Using an Isomeric Sialic Acid-Conjugated Graphene Field-Effect Transistor. Anal Chem 2023; 95:5532-5541. [PMID: 36947869 DOI: 10.1021/acs.analchem.2c04273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
There has been a continuous effort to fabricate a fast, sensitive, and inexpensive system for influenza virus detection to meet the demand for effective screening in point-of-care testing. Herein, we report a sialic acid (SA)-conjugated graphene field-effect transistor (SA-GFET) sensor designed using α2,3-linked sialic acid (3'-SA) and α2,6-linked sialic acid (6'-SA) for the detection and discrimination of the hemagglutinin (HA) protein of the H5N2 and H1N1 viruses. 3'-SA and 6'-SA specific for H5 and H1 influenza were used in the SA-GFET to capture the HA protein of the influenza virus. The net charge of the captured viral sample led to a change in the electrical current of the SA-GFET platform, which could be correlated to the concentration of the viral sample. This SA-GFET platform exhibited a highly sensitive response in the range of 101-106 pfu mL-1, with a limit of detection (LOD) of 101 pfu mL-1 in buffer solution and a response time of approximately 10 s. The selectivity of the SA-GFET platform for the H1N1 and H5N2 influenza viruses was verified by testing analogous respiratory viruses, i.e., influenza B and the spike protein of SARS-CoV-2 and MERS-CoV, on the SA-GFET. Overall, the results demonstrate that the developed dual-channel SA-GFET platform can potentially serve as a highly efficient and sensitive sensing platform for the rapid detection of infectious diseases.
Collapse
Affiliation(s)
- Sophia Nazir
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biotechnology, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyung Ho Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Lina Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sung Eun Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Pan Kee Bae
- BioNano Health Guard Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jai Eun An
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Oh Seok Kwon
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biotechnology, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Pereira LA, Lapinscki BA, Debur MC, Santos JS, Petterle RR, Nogueira MB, Vidal LRR, De Almeida SM, Raboni SM. Standardization of a high-performance RT-qPCR for viral load absolute quantification of influenza A. J Virol Methods 2021; 301:114439. [PMID: 34942203 DOI: 10.1016/j.jviromet.2021.114439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/26/2022]
Abstract
Influenza is an acute viral infectious respiratory disease worldwide, presenting in different clinical forms, from influenza-like illness (ILI) to severe acute respiratory infection (SARI). Although real-time quantitative polymerase chain reaction (qPCR) is already an important tool for both diagnosis and treatment monitoring of several viral infections, the correlation between the clinical aspects and the viral load of influenza is still unclear. This lack of clarity is primarily due to the low accuracy and reproducibility of the methodologies developed to quantify the influenza virus. Thus, this study aimed to develop and standardize a universal absolute quantification for influenza A by reverse transcription-quantitative PCR (RT-qPCR), using a plasmid DNA. The assay showed efficiency (Eff%) 98.6, determination coefficient (R2) 0.998, linear range 10^1 to 10^10, limit of detection (LOD) 6.77, limit of quantification (LOQ) 20.52 copies/reaction. No inter and intra assay variability was shown, and neither was the matrix effect observed. Serial measurements of clinical samples collected at a 72h interval showed no change in viral load. By contrast, immunocompetent patients have a significantly lower viral load than immunosuppressed ones. Absolute quantification in clinical samples showed some predictors associated with increased viral load: (H1N1)pdm09 (0.045); women (p = 0.049) and asthmatics (p = 0.035). The high efficiency, precision, and previous performance in clinical samples suggest the assay can be used as an accurate universal viral load quantification of influenza A. Its applicability in predicting severity and response to antivirals needs to be evaluated.
Collapse
Affiliation(s)
- L A Pereira
- Graduate Program in Internal Medicine and Health Science, Universidade Federal, do Paraná, Curitiba, Brazil
| | - B A Lapinscki
- Graduate Program in Internal Medicine and Health Science, Universidade Federal, do Paraná, Curitiba, Brazil
| | - M C Debur
- Public Health Laboratory, Curitiba, Brazil
| | - J S Santos
- Virology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Brazil
| | - R R Petterle
- Sector of Health Sciences, Medical School, Universidade Federal do Paraná, Curitiba, Brazil
| | - M B Nogueira
- Virology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Brazil
| | - L R R Vidal
- Virology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Brazil
| | - S M De Almeida
- Virology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Brazil
| | - S M Raboni
- Virology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Brazil; Infectious Diseases Division, Hospital de Clínicas, Universidade Federal do Paraná, Brazil.
| |
Collapse
|
3
|
Drobnik J, Pobrotyn P, Witczak IT, Antczak A, Susło R. Influenza as an important factor causing increased risk of patients' deaths, excessive morbidity and prolonged hospital stays. Arch Med Sci 2021; 19:941-951. [PMID: 37560729 PMCID: PMC10408030 DOI: 10.5114/aoms/138145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 05/24/2021] [Indexed: 08/11/2023] Open
Abstract
INTRODUCTION Influenza infection is associated with potential serious complications, increased hospitalization rates and a higher risk of death. MATERIAL AND METHODS A retrospective comparative analysis of selected indicators of hospitalization at the University Hospital in Wroclaw was conducted on patients with confirmed influenza infection and a control group during the 2018-2019 influenza season. The threshold for statistical significance of differences between the groups was set at p < 0.05. RESULTS The types of influenza viruses confirmed in the hospital patients were remarkably similar to those occurring in the general population in Poland. The largest numbers of influenza cases were observed at the departments related to internal medicine where patients with cardiac, lung and renal diseases were hospitalized. The risk of death among the patients with confirmed influenza infection was significantly higher than among the other patients. The highest risk of death was observed among the patients with confirmed influenza infection at the departments related to internal medicine. Considering patients from the entire hospital, the mean length of hospital stay for those with confirmed influenza was 2.13-fold longer than for those in the control group. Comparisons of the median, minimum and maximum lengths of hospitalization between the patients with confirmed influenza infection and the control group reveal even more distinct differences. CONCLUSIONS Significant differences in the selected indicators of hospitalization were observed between the patients with confirmed influenza infection and the control group; they are associated with serious social costs, such as prolonged hospital stay and a higher risk of death during hospitalization in Poland.
Collapse
Affiliation(s)
- Jarosław Drobnik
- Epidemiology and Health Education Division, Population Health Department, Health Sciences Faculty, Wrocław Medical University, Wroclaw, Poland
| | - Piotr Pobrotyn
- Management, University Clinical Hospital, Wroclaw, Poland
| | - Izabela T. Witczak
- Public Health Division, Population Health Department, Health Sciences Faculty, Wrocław Medical University, Wroclaw, Poland
| | - Adam Antczak
- Department of General and Oncological Pulmonology, Medical University of Lodz, Lodz, Poland
| | - Robert Susło
- Epidemiology and Health Education Division, Population Health Department, Health Sciences Faculty, Wrocław Medical University, Wroclaw, Poland
| |
Collapse
|
4
|
Reta DH, Tessema TS, Ashenef AS, Desta AF, Labisso WL, Gizaw ST, Abay SM, Melka DS, Reta FA. Molecular and Immunological Diagnostic Techniques of Medical Viruses. Int J Microbiol 2020; 2020:8832728. [PMID: 32908530 PMCID: PMC7474384 DOI: 10.1155/2020/8832728] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/24/2020] [Accepted: 08/15/2020] [Indexed: 01/12/2023] Open
Abstract
Viral infections are causing serious problems in human population worldwide. The recent outbreak of coronavirus disease 2019 caused by SARS-CoV-2 is a perfect example how viral infection could pose a great threat to global public health and economic sectors. Therefore, the first step in combating viral pathogens is to get a timely and accurate diagnosis. Early and accurate detection of the viral presence in patient sample is crucial for appropriate treatment, control, and prevention of epidemics. Here, we summarize some of the molecular and immunological diagnostic approaches available for the detection of viral infections of humans. Molecular diagnostic techniques provide rapid viral detection in patient sample. They are also relatively inexpensive and highly sensitive and specific diagnostic methods. Immunological-based techniques have been extensively utilized for the detection and epidemiological studies of human viral infections. They can detect antiviral antibodies or viral antigens in clinical samples. There are several commercially available molecular and immunological diagnostic kits that facilitate the use of these methods in the majority of clinical laboratories worldwide. In developing countries including Ethiopia where most of viral infections are endemic, exposure to improved or new methods is highly limited as these methods are very costly to use and also require technical skills. Since researchers and clinicians in all corners of the globe are working hard, it is hoped that in the near future, they will develop good quality tests that can be accessible in low-income countries.
Collapse
Affiliation(s)
- Daniel Hussien Reta
- School of Veterinary Medicine, Wollo University, Dessie, Ethiopia
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | - Adey Feleke Desta
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wajana Lako Labisso
- Department of Pathology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Tebeje Gizaw
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Mequanente Abay
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Seifu Melka
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Fisseha Alemu Reta
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Biology, College of Natural and Computational Sciences, Jigjiga University, Jigjiga, Ethiopia
| |
Collapse
|
5
|
Sporadic occurrence of H9N2 avian influenza infections in human in Anhui province, eastern China: A notable problem. Microb Pathog 2019; 140:103940. [PMID: 31863839 DOI: 10.1016/j.micpath.2019.103940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 11/23/2022]
Abstract
H9N2 viruses can cause great economic losses to the domestic poultry industry when co-infected with other influenza viruses or pathogens. . To better understand the molecular characteristics of H9N2 avian influenza viruses (AIVs) and analyze the genetic evolutionary relationship, we isolated three H9N2 subtypes AIVs from nasopharyngeal swab specimens from the three cases reported in Anhui province since 2015, and systematically reviewed the genome-wide data of 21 poultry--isolated H9N2 viruses during 1998-2017. The six internal genes of three human-isolated viruses and recent poultry-isolated viruses (since 2014) in Anhui province presented high gene homologies with HPAI H7N9, even including H10N8 and H5N6. The three human-isolated H9N2 AIVs and poultry-isolated viruses (since 2008) in Anhui province were highly similar, and classified into genotype S. Seven N-linked potential glycosylation sites in the HA protein were detected in the three human-isolated viruses, which also appeared in poultry-isolated H9N2 AIVs. None of the human-isolated H9N2 AIVs had the I368V mutation in PB1 protein, but all the poultry-isolated H9N2 viruses in 2017 carried this mutation. Multidisciplinary, cross-regional and cross-sectoral approaches are warranted to address complex public health challenges and achieve the goal of 'one health'.
Collapse
|