1
|
Fekrvand S, Abolhassani H, Esfahani ZH, Fard NNG, Amiri M, Salehi H, Almasi-Hashiani A, Saeedi-Boroujeni A, Fathi N, Mohtashami M, Razavi A, Heidari A, Azizi G, Khanmohammadi S, Ahangarzadeh M, Saleki K, Hassanpour G, Rezaei N, Yazdani R. Cancer Trends in Inborn Errors of Immunity: A Systematic Review and Meta-Analysis. J Clin Immunol 2024; 45:34. [PMID: 39466473 DOI: 10.1007/s10875-024-01810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Patients with inborn errors of immunity (IEI) are susceptible to developing cancer due to defects in the immune system. The prevalence of cancer is higher in IEI patients compared to the immunocompetent population and cancers are considered as an important and common cause of death in IEI patients. OBJECTIVES To systematically review demographic, genetic and cancer-related data of IEI patients with a history of malignancy. Moreover, we performed a meta-analysis aiming to determine the frequency of cancer in patients with different types of IEI. METHODS We conducted electronic searches on Embase, Web of Science, PubMed, and Scopus (until September 2023) introducing terms related to IEI and cancer. Studies with human subjects with confirmed IEI who had developed at least one malignancy during their lifetime were included. RESULTS A total number of 4607 IEI patients with a cancer history were included in the present study. Common variable immunodeficiency (CVID) had the highest number of reported cases (1284 cases), mainly due to a higher relative proportion of patients with predominantly antibody deficiencies (PAD) and their increased life expectancy contributing to the higher detection and reporting of cancers among these patients. The most common malignancy was hematologic/blood cancers (3026 cases, mainly diffuse large B cell lymphoma). A total number of 1173 cases (55.6%) succumbed to cancer, with the highest rate of bone marrow failure (64.9%). Among the patients with monogenic defects in IEI-associated genes, the majority of cases had ATM deficiency (926 cases), but the highest cancer frequency rate belonged to NBS1 deficiency (50.5%). 1928 cases out of total 4607 eligible cases had detailed data to allow further statistical analysis that revealed BRCA2 deficiency had the earliest cancer development (~ 38 months), lowest cure frequency, and highest fatality rate (85%), while ATM deficiency had the lowest cure frequency and highest fatality rate (72%) among total cases reviewed with exclusion of Fanconi anemia. CONCLUSION The overall reported cancer frequency in the cases reviewed with and without exclusion of Fanconi anemia was 11.1% (95% confidence interval: 9.8-12.5%) and 12.0% (95% confidence interval: 10.6-13.5%), respectively. Our study revealed that the incidence of cancer is significantly dependent on the molecular and pathway defects in IEI patients, and individualized early screening and appropriate treatment, might improve the prognosis of these patients.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Huddinge, Sweden
| | - Zahra Hamidi Esfahani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahboube Amiri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Helia Salehi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Ali Saeedi-Boroujeni
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Mohtashami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Arash Heidari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Milad Ahangarzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of E-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of MedicalSciences (SBMU), Tehran, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
2
|
Materne E, Zhou B, DiGiacomo D, Farmer JR, Fuleihan R, Sullivan KE, Cunningham-Rundles C, Ballas ZK, Suez D, Barmettler S. Renal complications in patients with predominantly antibody deficiency in the United States Immune Deficiency Network (USIDNET). J Allergy Clin Immunol 2024; 154:237-242.e1. [PMID: 38555979 DOI: 10.1016/j.jaci.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/03/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Prior studies have reported that renal insufficiency occurs in a small percentage of patients with predominantly antibody deficiency (PAD) and in about 2% of patients with common variable immunodeficiency. OBJECTIVE The goal of our study was to understand and evaluate the prevalence and type of renal complications in patients with PAD in the United States Immunodeficiency Network (USIDNET) cohort. We hypothesized that there is an association between certain renal complications and severity of immunophenotype in patients with PAD. METHODS We performed a query of patients with PAD from the USIDNET cohort with renal complications. Patients with documented renal disease such as chronic kidney disease (CKD), nephrolithiasis, nephritis, and renal failure syndrome were included. We compared immunophenotype, flow cytometry findings, and immunoglobulin levels of patients with PAD accompanied by renal complications with those of the total USIDNET cohort of patients with PAD. RESULTS We determined that 140 of 2071 patients with PAD (6.8%) had renal complications. Of these 140 patients, 50 (35.7%) had CKD, 46 (32.9%) had nephrolithiasis, 18 (12.9 %) had nephritis, and 50 (35.7%) had other renal complications. Compared with the total USIDNET cohort of patients with PAD, patients with CKD had lower absolute lymphocyte counts, CD3+ T-cell counts, CD4+ T-cell counts, CD19+ B-cell counts, CD20+ B-cell counts, and CD27+IgD- B-cell counts (P < .05 for all). Patients with nephritis had lower absolute lymphocyte counts, CD19+ B-cell counts, CD27+ B-cell counts, and IgE levels (P < .05 for all) than patients with PAD without renal disease. CONCLUSIONS We determined that 6.8% of the USIDNET cohort of patients with PAD had a documented renal complication. Compared with the overall cohort of patients with PAD, those patients with nephritis and CKD had a more severe immunophenotype.
Collapse
Affiliation(s)
- Emma Materne
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass.
| | - Baijun Zhou
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Mass
| | - Daniel DiGiacomo
- Hackensack Meridian Health, Jersey Shore University Medical Center, Neptune, NJ
| | - Jocelyn R Farmer
- Clinical Immunodeficiency Program, Division of Allergy and Inflammation, Beth Israel Lahey Health, Burlington, Mass
| | - Ramsay Fuleihan
- Division of Pediatric Allergy, Immunology and Rheumatology, Columbia University, New York, NY
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, Children's Hospital of Pennsylvania, Philadelphia, Pa
| | | | - Zuhair K Ballas
- Division of Internal Medicine, Immunology, University of Iowa, Iowa City, Iowa
| | | | - Sara Barmettler
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| |
Collapse
|
3
|
Huang Z, Sun K, Luo Z, Zhang J, Zhou H, Yin H, Liang Z, You J. Spleen-targeted delivery systems and strategies for spleen-related diseases. J Control Release 2024; 370:773-797. [PMID: 38734313 DOI: 10.1016/j.jconrel.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/25/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
The spleen, body's largest secondary lymphoid organ, is also a vital hematopoietic and immunological organ. It is regarded as one of the most significant organs in humans. As more researchers recognize the functions of the spleen, clinical methods for treating splenic diseases and spleen-targeted drug delivery systems to improve the efficacy of spleen-related therapies have gradually developed. Many modification strategies (size, charge, ligand, protein corona) and hitchhiking strategies (erythrocytes, neutrophils) of nanoparticles (NPs) have shown a significant increase in spleen targeting efficiency. However, most of the targeted drug therapy strategies for the spleen are to enhance or inhibit the immune function of the spleen to achieve therapeutic effects, and there are few studies on spleen-related diseases. In this review, we not only provide a detailed summary of the design rules for spleen-targeted drug delivery systems in recent years, but also introduce common spleen diseases (splenic tumors, splenic injuries, and splenomegaly) with the hopes of generating more ideas for future spleen research.
Collapse
Affiliation(s)
- Ziyao Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Kedong Sun
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Hang Yin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Zhile Liang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 LongMian road, NanJing, JiangSu 211198, PR China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, PR China.
| |
Collapse
|
4
|
Rayzan E, Mirbeyk M, Pezeshki PS, Mohammadpour M, Yaghmaie B, Hassani SA, Sharifzadeh M, Tahernia L, Rezaei N. Whole-exome sequencing to identify undiagnosed primary immunodeficiency disorders in children with community-acquired sepsis, admitted in the pediatric intensive care unit. Pediatr Allergy Immunol 2023; 34:e14066. [PMID: 38146112 DOI: 10.1111/pai.14066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Whole-exome sequencing (WES) provides a powerful diagnostic tool for identifying primary immunodeficiency diseases (PIDs). This study explores the utility of this approach in uncovering previously undiagnosed PIDs in children with community-acquired sepsis (CAS), with a medical history of recurrent infections or a family history of PIDs. METHODS We performed WES on DNA samples extracted from the blood of the 34 enrolled patients, followed by bioinformatic analysis for variant calling, annotation, and prioritization. We also performed a segregation analysis in available family members to confirm the inheritance patterns and assessed the potential impact of the identified variants on protein function. RESULTS From 34 patients enrolled in the study, 29 patients (85%) with previously undiagnosed genetic diseases, including 28 patients with PIDs and one patient with interstitial lung and liver disease, were identified. We identified two patients with severe combined immunodeficiency (SCID), patients with combined immunodeficiency (CID), six patients with combined immunodeficiency with syndromic features (CID-SF), four patients with defects in intrinsic and innate immunity, four patients with congenital defects of phagocyte function (CPDF), and six patients with the disease of immune dysregulation. Autoinflammatory disorders and predominantly antibody deficiency were diagnosed in one patient each. CONCLUSION Our findings demonstrate the potential of WES in identifying undiagnosed PIDs in children with CAS. Implementing WES in the clinical evaluation of CAS patients with a warning sign for PIDs can aid in their timely diagnosis and potentially lead to improved patient care.
Collapse
Affiliation(s)
- Elham Rayzan
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Boston, Massachusetts, USA
| | - Mona Mirbeyk
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parmida Sadat Pezeshki
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Masoud Mohammadpour
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Yaghmaie
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Abbas Hassani
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Meisam Sharifzadeh
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Tahernia
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
5
|
de Toledo Piza CFS, Aranda CS, Solé D, Jolles S, Condino-Neto A. Screening for Antibody Deficiencies in Adults by Serum Electrophoresis and Calculated Globin. J Clin Immunol 2023; 43:1873-1880. [PMID: 37505322 DOI: 10.1007/s10875-023-01536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023]
Abstract
PURPOSE This study aimed to investigate the correlation between calculated globulin (CG, total protein level minus albumin level) and the gamma globulin fraction (Gamma), obtained from serum protein electrophoresis with serum IgG levels in adults (≥ 18 years). METHODS Using linear regression models, analyses of CG and Gamma levels correlation with IgG levels in adults were performed. Receiver-operator curves were created to determine cutoff values and the respective sensitivity and specificity measures. RESULTS A total of 886 samples were analyzed. CG and Gamma were positively and statistically correlated with IgG levels (r2 = 0.4628 for CG, and = 0.7941 for Gamma, p < 0.0001 for both analyses). For the detection of hypogammaglobulinemia, i.e., IgG level below the reference value (6 g/L), a CG cutoff value of 24 g/L showed a sensitivity of 86.2% (95% CI 69.4-94.5) and a specificity of 92% (90.0-93.6). A Gamma cutoff value of 7.15 g/L yielded a sensitivity of 100% (88.3-100) and a specificity of 96.8 (95.3-97.8). CONCLUSION Both CG and Gamma levels determined by protein electrophoresis analysis may be used to screen for antibody deficiencies in adults, enabling earlier diagnosis of antibody deficiencies in a routine clinical setting.
Collapse
Affiliation(s)
| | - Carolina Sanchez Aranda
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Dirceu Solé
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, Wales, UK
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Haberstroh H, Hirsch A, Goldacker S, Zessack N, Warnatz K, Grimbacher B, Salzer U. A Toolkit for Monitoring Immunoglobulin G Levels from Dried Blood Spots of Patients with Primary Immunodeficiencies. J Clin Immunol 2023:10.1007/s10875-023-01464-0. [PMID: 36941491 PMCID: PMC10027597 DOI: 10.1007/s10875-023-01464-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE This study assessed whether measuring immunoglobulin G (IgG) from dried blood spots (DBSs) using nephelometry is a suitable remote monitoring method for patients with primary immunodeficiencies (PID). METHODS Patients receiving immunoglobulin replacement therapy for PID were included in this non-interventional single-arm study (DRKS-ID: DRKS00020522) conducted in Germany from December 4, 2019, to December 22, 2020. Three blood samples, two capillary DBSs (one mail-transferred and the other direct-transferred to the laboratory), and one intravenous were collected from each patient. IgG levels were determined using nephelometry. IgG levels were summarized descriptively, and significant differences were assessed using Wilcoxon matched-pairs signed-rank tests. Correlation and agreement between IgG levels were assessed using Spearman correlation and Bland-Altman analyses, respectively. RESULTS Among 135 included patients, IgG levels measured from DBS samples were lower than those measured in serum (p < 0.0001). There was no significant difference between IgG levels in direct- and mail-transferred DBS samples. There was a high degree of correlation between IgG levels in serum samples and DBS samples (r = 0.94-0.95). Although there was a bias for higher levels of IgG in serum than in DBS samples, most samples were within the 95% interval of agreement. There was a high degree of correlation between IgG levels measured in direct- and mail-transferred DBS samples (r = 0.96) with no bias based on the shipment process and most samples within the 95% interval of agreement. CONCLUSION Monitoring IgG levels from DBS samples is a suitable alternative to the standard method, and results are not substantially affected by mailing DBS cards.
Collapse
Affiliation(s)
- Hanna Haberstroh
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- DZIF - German Center for Infection Research, Satellite Center, Freiburg, Germany
| | - Aleksandra Hirsch
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sigune Goldacker
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- DZIF - German Center for Infection Research, Satellite Center, Freiburg, Germany.
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany.
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.
| | - Ulrich Salzer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Autoimmune and autoinflammatory manifestations in inborn errors of immunity. Curr Opin Allergy Clin Immunol 2022; 22:343-351. [PMID: 36165421 DOI: 10.1097/aci.0000000000000860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Autoimmune and inflammatory complications have been shown to arise in all age groups and across the spectrum of inborn errors of immunity (IEI). This review aims to highlight recent ground-breaking research and its impact on our understanding of IEI. RECENT FINDINGS Three registry-based studies of unprecedented size revealed the high prevalence of autoimmune, inflammatory and malignant complications in IEI. Two novel IEI were discovered: an autoinflammatory relopathy, cleavage-resistant RIPK1-induced autoinflammatory syndrome, as well as an inheritable phenocopy of PD-1 blockade-associated complication (as seen in cancer therapy) manifesting with multiorgan autoimmunity and Mycobacterium tuberculosis infection. A study examining patients with partial RAG deficiency pinpointed the specific defects leading to the failure of central and peripheral tolerance resulting in wide-ranging autoimmunity. A novel variant of Immunodeficiency Polyendocrinopathy Enteropathy X-linked syndrome was described, associated with preferential expression of a FOXP3 isoform lacking exon 2, linking exon-specific functions and the phenotypes corresponding to their absence. Lastly, we touch on recent findings pertaining actinopathies, the prototypical IEI with autoimmune, inflammatory and atopic complications. SUMMARY Dysregulated immunity has been associated with IEI since their discovery. Recently, large concerted efforts have shown how common these complications actually are while providing insight into normal and dysregulated molecular mechanisms, as well as describing novel diseases.
Collapse
|
8
|
Vlachiotis S, Abolhassani H. Transcriptional regulation of B cell class-switch recombination: the role in development of noninfectious complications. Expert Rev Clin Immunol 2022; 18:1145-1154. [DOI: 10.1080/1744666x.2022.2123795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Stelios Vlachiotis
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Abd Elsameea M, Abd-Elkader M, Fahmy EM, Abdelkreem E, ElTaher MA. Inborn Errors of Immunity among Egyptian Children with Recurrent Acute Otitis Media. J PEDIAT INF DIS-GER 2022. [DOI: 10.1055/s-0042-1748761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Abstract
Objective Our objective was to investigate the relative frequency and pattern of inborn errors of immunity (IEIs) among Egyptian children with recurrent acute otitis media (rAOM).
Methods This was a cross-sectional study that included children from the age of 6 months to 16 years with rAOM. Those with structural, functional, and environmental risk factors were excluded. Enrolled children underwent thorough clinical, otorhinolaryngological, and immunological evaluation, including hematological counting, quantitative immunoglobulins assay, lymphocytic flow cytometric immunophenotyping, CH50, and phagocytic function tests.
Results The study included 69 children with rAOM (44 boys and 25 girls; median age 30 months). IEIs were identified in 14 children, including transient hypogammaglobulinemia (three cases), selective IgA deficiency (three cases), agammaglobulinemia (two cases), common variable immunodeficiency (two cases), and one case for each of congenital neutropenia, Chediak–Higashi syndrome, hyper IgM syndrome, and Griscelli syndrome. Parental consanguinity and history of unexplained/infection-related siblings' deaths were significantly associated with IEIs (p = 0.018 and 0.003, respectively). AOM and related complications were more frequent among IEI cases (p = 0.018 and 0.032, respectively). IEI cases had lower levels of hemoglobin (10.7 ± 2.80 vs. 12.3 ± 1.64 g/dL; p = 0.002), IgG (203 [78–1,370] vs. 708 [42.3–1,509] mg/dL; p = 0.000), and IgA (24.3 [3–310] vs. 80 [15.6–305] mg/dL; p = 0.009) compared with non-IEI cases.
Conclusion The current study identified IEIs in one-fifth of children with rAOM, most of which were predominately antibody deficiencies. An immunological workup for rAOM is particularly important in the presence of certain indicators for IEIs, provided that other more common risk factors are excluded.
Collapse
Affiliation(s)
- Mohammed Abd Elsameea
- Department of Otorhinolaryngology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Mohammed Abd-Elkader
- Department of Otorhinolaryngology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Eman M. Fahmy
- Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Elsayed Abdelkreem
- Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Mostafa A. ElTaher
- Department of Otorhinolaryngology, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
10
|
Petley E, Yule A, Alexander S, Ojha S, Whitehouse WP. The natural history of ataxia-telangiectasia (A-T): A systematic review. PLoS One 2022; 17:e0264177. [PMID: 35290391 PMCID: PMC9049793 DOI: 10.1371/journal.pone.0264177] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 02/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ataxia-telangiectasia is an autosomal recessive, multi-system, and life-shortening disease caused by mutations in the ataxia-telangiectasia mutated gene. Although widely reported, there are no studies that give a comprehensive picture of this intriguing condition. OBJECTIVES Understand the natural history of ataxia-telangiectasia (A-T), as reported in scientific literature. SEARCH METHODS 107 search terms were identified and divided into 17 searches. Each search was performed in PubMed, Ovid SP (MEDLINE) 1946-present, OVID EMBASE 1980 -present, Web of Science core collection, Elsevier Scopus, and Cochrane Library. SELECTION CRITERIA All human studies that report any aspect of A-T. DATA COLLECTION AND ANALYSIS Search results were de-duplicated, data extracted (including author, publication year, country of origin, study design, population, participant characteristics, and clinical features). Quality of case-control and cohort studies was assessed by the Newcastle-Ottawa tool. Findings are reported descriptively and where possible data collated to report median (interquartile range, range) of outcomes of interest. MAIN RESULTS 1314 cases reported 2134 presenting symptoms. The most common presenting symptom was abnormal gait (1160 cases; 188 studies) followed by recurrent infections in classical ataxia-telangiectasia and movement disorders in variant ataxia-telangiectasia. 687 cases reported 752 causes of death among which malignancy was the most frequently reported cause. Median (IQR, range) age of death (n = 294) was 14 years 0 months (10 years 0 months to 23 years 3 months, 1 year 3 months to 76 years 0 months). CONCLUSIONS This review demonstrates the multi-system involvement in A-T, confirms that neurological symptoms are the most frequent presenting features in classical A-T but variants have diverse manifestations. We found that most individuals with A-T have life limited to teenage or early adulthood. Predominance of case reports, and case series demonstrate the lack of robust evidence to determine the natural history of A-T. We recommend population-based studies to fill this evidence gap.
Collapse
Affiliation(s)
- Emily Petley
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
| | - Alexander Yule
- United Lincolnshire Hospitals NHS Trust, Lincoln, United
Kingdom
| | - Shaun Alexander
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
| | - Shalini Ojha
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
- Children’s Hospital, University Hospitals of Derby and Burton, NHS
Foundation Trust, Derby, United Kingdom
| | - William P. Whitehouse
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
- Nottingham Children’s Hospital, Nottingham University Hospital NHS Trust,
Nottingham, United Kingdom
| |
Collapse
|
11
|
Jończyk-Potoczna K, Potoczny J, Szczawińska-Popłonyk A. Imaging in children with ataxia-telangiectasia-The radiologist's approach. Front Pediatr 2022; 10:988645. [PMID: 36186632 PMCID: PMC9523007 DOI: 10.3389/fped.2022.988645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is a syndromic inborn error of immunity (IEI) characterized by genomic instability, defective reparation of the DNA double-strand breaks, and hypersensitivity to ionizing radiation disturbing cellular homeostasis. The role of imaging diagnostics and the conscious choice of safe and advantageous imaging technique, as well as its correct interpretation, are crucial in the diagnostic process and monitoring of children with A-T. This study aimed at defining the role of a radiologist in the early diagnosis of A-T, as well as in detecting and tracking disease complications associated with infections, inflammation, lymphoproliferation, organ-specific immunopathology, and malignancy. Based on our single-center experience, retrospective analysis of investigations using ionizing radiation-free techniques, ultrasound (US), and Magnetic Resonance Imaging (MRI), was performed on regularly followed-up 11 pediatric A-T patients, 6 girls and 5 boys, aged from 2 to 18 years, with the longest period of observation coming to over 13 years. Our attention was especially drawn to the abnormalities that were observed in the US and MRI examinations of the lungs, abdominal cavity, and lymph nodes. The abdominal US showed no abnormalities in organ dimensions or echostructure in 4 out of 11 children studied, yet in the other 7, during follow-up examinations, hepato- and/or splenomegaly, mesenteric, visceral, and paraaortic lymphadenopathy were observable. In 2 patients, focal changes in the liver and spleen were shown, and in one patient progressive abdominal lymphadenopathy corresponded with the diagnosis of non-Hodgkin lymphoma (NHL). The lung US revealed multiple subpleural consolidations and B line artifacts related to the interstitial-alveolar syndrome in 5 patients, accompanied by pleural effusion in one of them. The MRI investigation of the lung enabled the detection of lymphatic nodal masses in the mediastinum, with concomitant airway lesions characteristic of bronchiectasis and focal parenchymal consolidations in one A-T patient with chronic respiratory failure. This patient also manifested organomegaly and granulomatous liver disease in abdominal MRI examination. Our study shows that the use of modern US capabilities and MRI is safe and efficient, thereby serving as a recommended advantageous imaging diagnostic tool in monitoring children with IEI and DNA instability syndromes.
Collapse
Affiliation(s)
- Katarzyna Jończyk-Potoczna
- Department of Pediatric Radiology, Institute of Pediatrics, Pozna University of Medical Sciences, Poznań, Poland
| | - Jakub Potoczny
- Department of Radiology, Greater Poland Cancer Center, Poznań, Poland
| | - Aleksandra Szczawińska-Popłonyk
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
12
|
Blom M, Bredius RGM, van der Burg M. Future Perspectives of Newborn Screening for Inborn Errors of Immunity. Int J Neonatal Screen 2021; 7:ijns7040074. [PMID: 34842618 PMCID: PMC8628921 DOI: 10.3390/ijns7040074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Newborn screening (NBS) programs continue to expand due to innovations in both test methods and treatment options. Since the introduction of the T-cell receptor excision circle (TREC) assay 15 years ago, many countries have adopted screening for severe combined immunodeficiency (SCID) in their NBS program. SCID became the first inborn error of immunity (IEI) in population-based screening and at the same time the TREC assay became the first high-throughput DNA-based test in NBS laboratories. In addition to SCID, there are many other IEI that could benefit from early diagnosis and intervention by preventing severe infections, immune dysregulation, and autoimmunity, if a suitable NBS test was available. Advances in technologies such as KREC analysis, epigenetic immune cell counting, protein profiling, and genomic techniques such as next-generation sequencing (NGS) and whole-genome sequencing (WGS) could allow early detection of various IEI shortly after birth. In the next years, the role of these technical advances as well as ethical, social, and legal implications, logistics and cost will have to be carefully examined before different IEI can be considered as suitable candidates for inclusion in NBS programs.
Collapse
Affiliation(s)
- Maartje Blom
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Correspondence:
| | - Robbert G. M. Bredius
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Mirjam van der Burg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| |
Collapse
|
13
|
Piza CFSDT, Aranda CS, Solé D, Jolles S, Condino-Neto A. Serum Protein Electrophoresis May Be Used as a Screening Tool for Antibody Deficiency in Children and Adolescents. Front Immunol 2021; 12:712637. [PMID: 34497609 PMCID: PMC8419225 DOI: 10.3389/fimmu.2021.712637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
Background Patients with antibody deficiency may experience exceptionally long diagnostic delays, increasing the risk of life-threatening infections, end-organ damage, mortality, and health costs. Objective This study aimed to analyze serum protein electrophoresis and verify the correlation between calculated globulin (CG, total protein minus albumin levels) or electrophoretically determined serum gamma globulin fraction (Gamma) with IgG levels in children and adolescents under 18 years old (yo). Methods We analyzed serum protein electrophoresis (GC or Gamma) and IgG levels from 1215 children and adolescents under 18 yo, classified into 5 age groups. We verified the correlation between CG or Gamma with serum IgG levels. Results Serum IgG levels varied according to age groups (from 4.3 ± 2.3 g/l in children under 6 months old to 11.4 ± 3.2 g/l in adolescents in the 10-<18 yo group). CG sensitivity and specificity to detect IgG below the reference range for all patients were 93.1% and 81.8%, respectively, and varied according to age group. Gamma sensitivity and specificity for all patients were 100% and 87.8%, respectively, and varied according to age group as well. We found serum IgG levels below the age reference level in 29 patients (2.4% of the cases) using CG or Gamma levels. Conclusion Both CG and Gamma levels may be of utility as a screening tool for earlier diagnosis of antibody deficiency in children and adolescents under 18 yo.
Collapse
Affiliation(s)
| | - Carolina Sanchez Aranda
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Federal University of São Paulo, São Paulo, Brazil
| | - Dirceu Solé
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Federal University of São Paulo, São Paulo, Brazil
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Aghamohammadi A, Rezaei N, Yazdani R, Delavari S, Kutukculer N, Topyildiz E, Ozen A, Baris S, Karakoc-Aydiner E, Kilic SS, Kose H, Gulez N, Genel F, Reisli I, Djenouhat K, Tahiat A, Boukari R, Ladj S, Belbouab R, Ferhani Y, Belaid B, Djidjik R, Kechout N, Attal N, Saidani K, Barbouche R, Bousfiha A, Sobh A, Rizk R, Elnagdy MH, Al-Ahmed M, Al-Tamemi S, Nasrullayeva G, Adeli M, Al-Nesf M, Hassen A, Mehawej C, Irani C, Megarbane A, Quinn J, Maródi L, Modell V, Modell F, Al-Herz W, Geha RS, Abolhassani H. Consensus Middle East and North Africa Registry on Inborn Errors of Immunity. J Clin Immunol 2021; 41:1339-1351. [PMID: 34052995 PMCID: PMC8310844 DOI: 10.1007/s10875-021-01053-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/26/2021] [Indexed: 01/03/2023]
Abstract
Background Inborn errors of immunity (IEIs) are a heterogeneous group of genetic defects of immunity, which cause high rates of morbidity and mortality mainly among children due to infectious and non-infectious complications. The IEI burden has been critically underestimated in countries from middle- and low-income regions and the majority of patients with IEI in these regions lack a molecular diagnosis. Methods We analyzed the clinical, immunologic, and genetic data of IEI patients from 22 countries in the Middle East and North Africa (MENA) region. The data was collected from national registries and diverse databases such as the Asian Pacific Society for Immunodeficiencies (APSID) registry, African Society for Immunodeficiencies (ASID) registry, Jeffrey Modell Foundation (JMF) registry, J Project centers, and International Consortium on Immune Deficiency (ICID) centers. Results We identified 17,120 patients with IEI, among which females represented 39.4%. Parental consanguinity was present in 60.5% of cases and 27.3% of the patients were from families with a confirmed previous family history of IEI. The median age of patients at the onset of disease was 36 months and the median delay in diagnosis was 41 months. The rate of registered IEI patients ranges between 0.02 and 7.58 per 100,000 population, and the lowest rates were in countries with the highest rates of disability-adjusted life years (DALY) and death rates for children. Predominantly antibody deficiencies were the most frequent IEI entities diagnosed in 41.2% of the cohort. Among 5871 patients genetically evaluated, the diagnostic yield was 83% with the majority (65.2%) having autosomal recessive defects. The mortality rate was the highest in patients with non-syndromic combined immunodeficiency (51.7%, median age: 3.5 years) and particularly in patients with mutations in specific genes associated with this phenotype (RFXANK, RAG1, and IL2RG). Conclusions This comprehensive registry highlights the importance of a detailed investigation of IEI patients in the MENA region. The high yield of genetic diagnosis of IEI in this region has important implications for prevention, prognosis, treatment, and resource allocation. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-021-01053-z.
Collapse
Affiliation(s)
- Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Necil Kutukculer
- Department of Pediatric Immunology, Ege University Faculty of Medicine, Bornova-İzmir, Turkey
| | - Ezgi Topyildiz
- Department of Pediatric Immunology, Ege University Faculty of Medicine, Bornova-İzmir, Turkey
| | - Ahmet Ozen
- Faculty of Medicine, Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul Jeffrey Modell Foundation Diagnostic Center for Primary Immune Deficiencies, Istanbul, Turkey
| | - Safa Baris
- Faculty of Medicine, Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul Jeffrey Modell Foundation Diagnostic Center for Primary Immune Deficiencies, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Faculty of Medicine, Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul Jeffrey Modell Foundation Diagnostic Center for Primary Immune Deficiencies, Istanbul, Turkey
| | - Sara Sebnem Kilic
- Uludag University, Medical Faculty, Department of Pediatric Immunology and Rheumatology, Bursa, Turkey
| | - Hulya Kose
- Uludag University, Medical Faculty, Department of Pediatric Immunology and Rheumatology, Bursa, Turkey
| | - Nesrin Gulez
- Department of Pediatric Immunology and Allergy, University of Health Sciences Dr. Behçet Uz Children's Hospital, İzmir, Turkey
| | - Ferah Genel
- Department of Pediatric Immunology and Allergy, University of Health Sciences Dr. Behçet Uz Children's Hospital, İzmir, Turkey
| | - Ismail Reisli
- Department of Pediatric Immunology and Allergy, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Kamel Djenouhat
- Laboratory of Immunology, Department of Medical Biology, Rouiba Hospital, Algiers, Algeria
| | - Azzeddine Tahiat
- Laboratory of Immunology, Department of Medical Biology, Rouiba Hospital, Algiers, Algeria
| | - Rachida Boukari
- Department of Pediatrics, Mustapha Pacha University Hospital, University of Algiers, Algiers, Algeria
| | - Samir Ladj
- Department of Pediatrics, Mustapha Pacha University Hospital, University of Algiers, Algiers, Algeria
| | - Reda Belbouab
- Department of Pediatrics, Mustapha Pacha University Hospital, University of Algiers, Algiers, Algeria
| | - Yacine Ferhani
- Department of Pediatrics, Mustapha Pacha University Hospital, University of Algiers, Algiers, Algeria
| | - Brahim Belaid
- Department of Medical Immunology, University Hospital Center of Beni Messous, University of Algiers, Algiers, Algeria
| | - Reda Djidjik
- Department of Medical Immunology, University Hospital Center of Beni Messous, University of Algiers, Algiers, Algeria
| | - Nadia Kechout
- Department of Immunology, Pasteur Institute of Algeria/Faculty of Medicine, Algiers, Algeria
| | - Nabila Attal
- Department of Immunology, Pasteur Institute of Algeria/Faculty of Medicine, Algiers, Algeria
| | - Khalissa Saidani
- Department of Immunology, Pasteur Institute of Algeria/Faculty of Medicine, Algiers, Algeria
| | - Ridha Barbouche
- Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, Casablanca, Morocco
| | - Ali Sobh
- Department of Pediatrics, Mansoura University Children's Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ragheed Rizk
- Department of Pediatrics, Mansoura University Children's Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Marwa H Elnagdy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mona Al-Ahmed
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait.,Department of Allergy, Al-Rashid Allergy Center, Kuwait University, Kuwait City, Kuwait
| | - Salem Al-Tamemi
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Gulnara Nasrullayeva
- Department Immunology Research Laboratory, Azerbaijan Medical University, Baku, Azerbaijan
| | - Mehdi Adeli
- Allergy and Immunology Division, Pediatrics Department, Sidra Medicine, Doha, Qatar
| | - Maryam Al-Nesf
- Allergy and Immunology Section, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Amel Hassen
- Allergy and Immunology Division, Pediatrics Department, Sidra Medicine, Doha, Qatar
| | - Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Carla Irani
- Internal Medicine and Clinical Immunology, Hotel Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Andre Megarbane
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Jessica Quinn
- Jeffrey Modell Foundation (JMF), New York City, NY, USA
| | | | - László Maródi
- PID Clinical Unit and Laboratory, Department of Dermatology, Semmelweis University, Budapest, Hungary.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY, USA
| | - Vicki Modell
- Jeffrey Modell Foundation (JMF), New York City, NY, USA
| | - Fred Modell
- Jeffrey Modell Foundation (JMF), New York City, NY, USA
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat 13110, PO Box 24923, Kuwait City, Kuwait. .,Allergy and Clinical Immunology Unit, Pediatric Department, Al-Sabah Hospital, Kuwait City, Kuwait.
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, 1 Blackfan Circle, Karp, Bldg, 10th Floor, Boston, MA, 02115, USA.
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran. .,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, 14186, Huddinge, Stockholm, Sweden.
| |
Collapse
|
15
|
King JR, Notarangelo LD, Hammarström L. An appraisal of the Wilson & Jungner criteria in the context of genomic-based newborn screening for inborn errors of immunity. J Allergy Clin Immunol 2021; 147:428-438. [PMID: 33551024 PMCID: PMC8344044 DOI: 10.1016/j.jaci.2020.12.633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/25/2022]
Abstract
Wilson and Jungner's recommendations for population-based screening have been used to guide decisions regarding candidate disease inclusion in newborn screening programs for the past 50 years. The advent of genomic-based technologies, including next-generation sequencing and its potential application to newborn screening, along with a changing landscape in terms of modern clinical practice and ethical, social, and legal considerations has led to a call for review of these criteria. Inborn errors of immunity (IEI) are a heterogeneous group of more than 450 genetically determined disorders of immunity, which are associated with significant morbidity and mortality, particularly where diagnosis and treatment are delayed. We argue that in addition to screening for severe combined immunodeficiency disease, which has already been initiated in several countries, other clinically significant IEI should be screened for at birth. Because of disease heterogeneity and identifiable genetic targets, a next-generation sequencing-based screening approach would be most suitable. A combination of worldwide experience and technological advances has improved our ability to diagnose and effectively treat patients with IEI. Considering IEI in the context of updated recommendations for population-based screening supports their potential inclusion as disease targets in newborn screening programs.
Collapse
Affiliation(s)
- Jovanka R King
- Department of Clinical Immunology, Karolinska University Hospital Huddinge, Stockholm, Sweden; Department of Immunopathology, SA Pathology, Women's and Children's Hospital Campus, Adelaide, Australia; Robinson Research Institute and Discipline of Paediatrics, School of Medicine, University of Adelaide, Adelaide, Australia
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Lennart Hammarström
- Department of Clinical Immunology, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
16
|
Tavakol M, Jamee M, Azizi G, Sadri H, Bagheri Y, Zaki-Dizaji M, Mahdavi FS, Jadidi-Niaragh F, Tajfirooz S, Kamali AN, Aghamahdi F, Noorian S, Kojidi HT, Mosavian M, Matani R, Dolatshahi E, Porrostami K, Elahimehr N, Fatemi-Abhari M, Sharifi L, Arjmand R, Haghi S, Zainaldain H, Yazdani R, Shaghaghi M, Abolhassani H, Aghamohammadi A. Diagnostic Approach to the Patients with Suspected Primary Immunodeficiency. Endocr Metab Immune Disord Drug Targets 2020; 20:157-171. [PMID: 31456526 DOI: 10.2174/1871530319666190828125316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/16/2019] [Accepted: 08/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Primary immunodeficiency diseases (PIDs) are a group of more than 350 disorders affecting distinct components of the innate and adaptive immune systems. In this review, the classic and advanced stepwise approach towards the diagnosis of PIDs are simplified and explained in detail. RESULTS Susceptibility to recurrent infections is the main hallmark of almost all PIDs. However, noninfectious complications attributable to immune dysregulation presenting with lymphoproliferative and/or autoimmune disorders are not uncommon. Moreover, PIDs could be associated with misleading presentations including allergic manifestations, enteropathies, and malignancies. CONCLUSION Timely diagnosis is the most essential element in improving outcome and reducing the morbidity and mortality in PIDs. This wouldn't be possible unless the physicians keep the diagnosis of PID in mind and be sufficiently aware of the approach to these patients.
Collapse
Affiliation(s)
- Marzieh Tavakol
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Allergy and Clinical Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Sadri
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Allergy and Clinical Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Yasser Bagheri
- Clinical Research Development Unit (CRDU), 5 azar Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | | | | | - Sanaz Tajfirooz
- Department of Pediatrics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Ali N Kamali
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Fatemeh Aghamahdi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Pediatric Endocrinology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Shahab Noorian
- Department of Pediatric Endocrinology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Habibeh Taghavi Kojidi
- Department of Pediatric Endocrinology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Mosavian
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Gastroenterology and Hepatology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Rahman Matani
- Department of Gastroenterology and Hepatology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Elahe Dolatshahi
- Department of Rheumatology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Kumars Porrostami
- Department of Pediatrics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Nasrin Elahimehr
- Department of Pediatrics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Marzie Fatemi-Abhari
- Department of Pediatrics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Laleh Sharifi
- Uro- Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Arjmand
- Department of Infectious Disease, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sabahat Haghi
- Department of Hematology & Oncology, School of Medicine, Alborz university of medical sciences, Karaj, Iran
| | - Hamed Zainaldain
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shaghaghi
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Bahrami A, Sayyahfar S, Soltani Z, Khodadost M, Moazzami B, Rezaei N. Evaluation of the frequency and diagnostic delay of primary immunodeficiency disorders among suspected patients based on the 10 warning sign criteria: A cross-sectional study in Iran. Allergol Immunopathol (Madr) 2020; 48:711-719. [PMID: 32404246 DOI: 10.1016/j.aller.2020.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION The prevalence of undiagnosed primary immunodeficiency diseases is remarkably high and contributes to increasing the rate of morbidity and mortality among this group of patients. OBJECTIVE To examine the 10 warning sign scoring system in patients suspected of primary immune deficiency and also estimate the diagnostic delay in patients with proven disease. METHODS This descriptive cross-sectional study was carried out during the years 2015-2016 in Ali Asghar (AS) Clinic and Hospital. Two hundred patients with suspected primary immune deficiency disease were eligible for inclusion in the study. Multivariable logistic regression analysis was used to determine the relation between findings. RESULTS In this study, the majority of suspected cases of immunodeficiency were males (57%) with a mean age of 3.33±2.89 years. Twenty-one (10.5%) patients were diagnosed with immunodeficiency disease. The mean diagnostic delay among primary immune deficient patients was 2.05±1.7 years. There was a significant relationship between having parental consanguinity (OR=2.68, 95% CI: 1.07-6.70), allergies (OR=5.03, 95% CI: 1.13-22.31), vaccine adverse effects (OR=9.31, 95% CI: 1.24-69.96) and primary immune deficiency diagnosis. No association was observed between age (OR=0.98, 95% CI: 0.84-1.14), gender (OR=0.99, 95% CI: 0.39-2.47), immune deficiency scoring (OR=0.68, 95% CI: 0.31-1.45) and primary immune deficiency diagnosis. CONCLUSION Ten warning sign scoring system is of less value to consider a patient suspected of having primary immune deficiency. There is a meaningful delay in diagnosis of primary immune deficiencies especially in antibody deficiency defects which seeks further upgrading of knowledge in physicians.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The aim of this review is as follows: (1) to present the role of otitis as a warning sign for inborn errors of immunity (IEI), (2) to establish which patients presenting otitis should be investigated for IEI, (3) to review data about main IEI associated with otitis-prone patients. RECENT FINDINGS Otitis media is a very common infection in general population. The concept of otitis-prone children established a certain frequency of the infections in order to look for conditions leading to them. The confirmation of middle ear impairment by specialists has demonstrated better confiability. The hallmarks for immunologic evaluation are the presence of complications as mastoiditis and membrane perforation, failure to thrive, and additional respiratory symptoms. Humoral immunodeficiencies have been more frequently described in association with otitis-prone patients, for example, hypogammaglobulinemia, MBL deficiency, and IEI associated with major syndromes. Most of the patients with confirmed IEI present otitis as one of the recurrent infections. It is suggested the investigation of immune defects in patients with otitis, and the following warning signs are suggested: Otitis evolving with mastoiditis, abscesses, or systemic infections; no response to appropriate antibiotic therapy; otitis media associated with other infections; recurrent otitis leading to failure to thrive and general developmental delay; and family history of primary immunodeficiency and/or consanguinity.
Collapse
|
19
|
Trained Immunity Based-Vaccines as a Prophylactic Strategy in Common Variable Immunodeficiency. A Proof of Concept Study. Biomedicines 2020; 8:biomedicines8070203. [PMID: 32660100 PMCID: PMC7400202 DOI: 10.3390/biomedicines8070203] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Background. A major concern in the care of common variable immunodeficiency (CVID) patients is the persistence of subclinical or recurrent respiratory tract infections (RRTI) despite adequate trough IgG levels, which impacts the quality of life (QoL) and morbidity. Therefore, the development of new approaches to prevent and treat infection, especially RRTI, is necessary. Objectives. We conducted a clinical observational study from May, 2016 to December, 2017 in 20 CVID patients; ten of these patients had a history of RRTI and received the polybacterial preparation MV130, a trained immunity-based vaccine (TIbV) to assess its impact on their QoL and prognosis. Methods. Subjects with RRTI received MV130 for 3 months and were followed up to 12 months after initiation of the treatment. The primary endpoint was a reduction in RRTI at the end of the study. We analyzed the pharmacoeconomic impact on the RRTI group before and after immunotherapy by estimating the direct and indirect costs, and assessed CVID-QoL and cytokine profile. Specific antibody responses to the bacteria contained in MV130 were measured. Results. The RRTI-group treated with TIbV MV130 showed a significant decrease in infection rate (p = 0.006) throughout the 12 months after initiation of the treatment. A decrease in antibiotic use and unscheduled outpatient visits was observed (p = 0.005 and p = 0.002, respectively). Significant increases in anti-pneumococcus and anti-MV130 IgA antibodies (p = 0.039 both) were detected after 12 months of MV130. Regarding the CVID QoL questionnaire, an overall decrease in the score by more than 50% was observed (p < 0.05) which demonstrated that patients experienced an improvement in their QoL. The pharmacoeconomic analysis showed that the real annual direct costs decreased up to 4 times per patient with the prophylactic intervention (p = 0.005). Conclusion. The sublingual administration of the TIbV MV130 significantly reduced the rate of respiratory infections, antibiotic use and unscheduled visits, while increasing specific IgA responses in CVID patients. Additionally, the CVID population felt that their QoL was improved, and a decrease in expenses derived from health care was predicted.
Collapse
|
20
|
Guevara-Hoyer K, Vasconcelos J, Marques L, Fernandes AA, Ochoa-Grullón J, Marinho A, Sequeira T, Gil C, Rodríguez de la Peña A, Serrano García I, Recio MJ, Fernández-Arquero M, Pérez de Diego R, Ramos JT, Neves E, Sánchez-Ramón S. Variable immunodeficiency study: Evaluation of two European cohorts within a variety of clinical phenotypes. Immunol Lett 2020; 223:78-88. [PMID: 32344018 DOI: 10.1016/j.imlet.2020.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/02/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Given the wide heterogeneity of common variable immunodeficiency (CVID), several groups have proposed clinical and immunological classifications to better define follow-up and prognostic algorithms. The present study aims to validate recent clinical and laboratory algorithms, based on different combinations of CVID biomarkers, to provide more personalized treatment and follow-up strategies. METHODS We analysed clinical and immunological features of 80 patients with suspected or diagnosed CVID, in two reference centres of Portugal and Spain. Clinical manifestations were categorized into clinical phenotyping proposed by Chapel et al. [1] that included cytopenia; polyclonal lymphocytic infiltration; unexplained enteropathy; and no disease-related complications. RESULTS 76% of patients in our cohort entered one of the four categories of clinical phenotyping, without overlap (cytopenia; polyclonal lymphocytic infiltration; unexplained enteropathy; and no disease-related complications). The most prominent phenotype was "cytopenia" (40%) followed by "polyclonal lymphocytic infiltration" (19%). The remaining 24% patients of our cohort had overlap of 2 clinical phenotypes (cytopenia and unexplained enteropathy mainly). A delay of CVID diagnosis in more than 6 years presented 3.7-fold higher risk of developing lymphoproliferation and/or malignancy (p < 0.05), and was associated with increased CD8+CD45RO + T-lymphocytes (p < 0.05). An association between decreased switched-memory B cells with lymphoproliferation and malignancy was observed (p < 0.03 and p < 0.05, respectively). CD4 + T-lymphocytopenia correlated with autoimmune phenotype, with 30% prevalence (p < 0.05). HLA-DR7 expression was related to CVID onset in early life in our patients (13 vs 25 years), and DQ2.5 or DQ2.2 with unexplained enteropathy (p < 0.05). CONCLUSIONS The phenotypic and genetic study is crucial for an adequate clinical orientation of CVID patients. In these two independent cohorts of patients, classification based in clinical and laboratory algorithms, provides more personalized treatment and follow-up strategies.
Collapse
Affiliation(s)
- Kissy Guevara-Hoyer
- Department of Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain; Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain; Immunodeficiency Interdepartmental Group (GIID), Madrid, Spain
| | - Julia Vasconcelos
- Department of Immunology, Centro Hospitalar e Universitário Do Porto, Porto, Portugal
| | - Laura Marques
- Department of Pediatrics, Centro Hospitalar e Universitário Do Porto, Porto, Portugal
| | | | - Juliana Ochoa-Grullón
- Department of Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain; Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain; Immunodeficiency Interdepartmental Group (GIID), Madrid, Spain
| | - Antonio Marinho
- Clinical Immunology Unit, Centro Hospitalar e Universitário Do Porto, Porto, Portugal
| | - Teresa Sequeira
- Clinical Immunology Unit, Centro Hospitalar e Universitário Do Porto, Porto, Portugal
| | - Celia Gil
- Department of Pediatrics, Hospital Clínico San Carlos, Madrid, Spain
| | | | - Irene Serrano García
- Department of Epidemiology and Preventive Medicine, Hospital Clínico San Carlos, Madrid, Spain
| | - M José Recio
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain; Immunodeficiency Interdepartmental Group (GIID), Madrid, Spain
| | - Miguel Fernández-Arquero
- Department of Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain; Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain; Immunodeficiency Interdepartmental Group (GIID), Madrid, Spain
| | - Rebeca Pérez de Diego
- Immunodeficiency Interdepartmental Group (GIID), Madrid, Spain; Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, Madrid, Spain
| | - José Tomas Ramos
- Department of Pediatrics, Hospital Clínico San Carlos, Madrid, Spain
| | - Esmeralda Neves
- Department of Immunology, Centro Hospitalar e Universitário Do Porto, Porto, Portugal
| | - Silvia Sánchez-Ramón
- Department of Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain; Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain; Immunodeficiency Interdepartmental Group (GIID), Madrid, Spain.
| |
Collapse
|
21
|
Ziętkiewicz M, Więsik-Szewczyk E, Matyja-Bednarczyk A, Napiórkowska-Baran K, Zdrojewski Z, Jahnz-Różyk K. Shorter Diagnostic Delay in Polish Adult Patients With Common Variable Immunodeficiency and Symptom Onset After 1999. Front Immunol 2020; 11:982. [PMID: 32655544 PMCID: PMC7326034 DOI: 10.3389/fimmu.2020.00982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most clinically significant primary antibody immunodeficiency recognized in adulthood. Previously published data have shown an average diagnostic delay of 10 years for Polish adult patients with CVID. In the current study, we aimed to analyze the current diagnostic delay of adult patients with CVID in Poland. To this end, we identified patients from four immunological centers specialized in the care of adult patients with primary immunodeficiencies (PID). Demographic and clinical data of patients were collected using an internet database. We identified 103 adult patients (F:M 44.7%:55.3%) in Poland with CVID. The median age at onset of symptoms was 24 (0–66), 33 (4–70) at diagnosis, and 37 (18–73) years at the time of analysis. The median diagnostic delay for the entire study population was 6 (0–57) years. However, this delay was higher in patients with symptom onset before the year 2000 than after the year 1999 [15 (0–57) vs. 3 (0–19) years; p < 0.001]. Comparing patients (median ≤ 6 years, N = 53) with short diagnostic delay (SDD) and those (median > 6 years, N = 50) with long diagnostic delay (LDD), the LDD group had a statistically significant higher incidence of infections of the lower respiratory tract before diagnosis (90.0 vs. 71.70%). During the entire observation period, cytopenias (44.00 vs. 22.64%), granulomatous lesions (28.00 vs. 11.32%), and solid tumors (14.00 vs. 1.89%) were significantly more frequent in the LDD group. In conclusion, we found a significant reduction in the median diagnostic delay in Polish CVID patients with disease onset in the last two decades.
Collapse
Affiliation(s)
- Marcin Ziętkiewicz
- Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Więsik-Szewczyk
- Department of Internal Medicine, Pneumonology, Allergology and Clinical Immunology, Central Clinical Hospital of the Ministry of National Defense, Military Institute of Medicine, Warsaw, Poland
| | - Aleksandra Matyja-Bednarczyk
- Outpatient Clinic for the Immunological and Hypercoagulable Diseases, The University Hospital in Krakow, Kraków, Poland
| | - Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Zbigniew Zdrojewski
- Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, Medical University of Gdansk, Gdansk, Poland
| | - Karina Jahnz-Różyk
- Department of Internal Medicine, Pneumonology, Allergology and Clinical Immunology, Central Clinical Hospital of the Ministry of National Defense, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
22
|
Boton Pereira DH, Primo LS, Pelizari G, Flores E, de Moraes-Vasconcelos D, Condino-Neto A, Prestes-Carneiro LE. Primary Immunodeficiencies in a Mesoregion of São Paulo, Brazil: Epidemiologic, Clinical, and Geospatial Approach. Front Immunol 2020; 11:862. [PMID: 32477349 PMCID: PMC7235164 DOI: 10.3389/fimmu.2020.00862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/15/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Primary immunodeficiencies (PIDs) are rare genetic disorders leading to immunologic abnormalities that can affect different organs and systems. We determined the epidemiology, clinical, and geospatial characteristics of PID disorders among patients diagnosed over a 5 year period in a reference hospital covering a mesoregion in São Paulo, Brazil. Methods: A retrospective analysis of 39 patients with recognizable PIDs according to the criteria of the European Society of Primary Immunodeficiencies were enrolled. Thirty-four patients came from outpatient immunodeficiency clinics and five patients from active search. Demographic, clinical, and immunologic data were collected, and maps were constructed using a geographic information system. Results: The ratio of females to males was 1.4:1, and 48.7% of patients were younger than 17 years of age. The mean age at the onset of symptoms in children was 2.0 years [standard error of the mean (SEM), 1.7 years] and the diagnosis lag was 5.1 years (SEM, 3.1 years); the mean age at diagnosis in adults was 16.3 years (SEM, 11.8 years) and the lag was 10.8 years (SEM, 10.9 years). Antibody deficiency and common variable immunodeficiencies were the most common categories and phenotypes, respectively. The need for intravenous antibiotics and respiratory tract infections were the most prevalent warning signs, with an overall mortality rate of 15.3%. Autoimmune diseases were diagnosed in 56.4% and visceral leishmaniasis in 5.1% of patients. In the active search, 29 patients were investigated and 17.2% were diagnosed; early diagnosis, the involvement of multidisciplinary professionals, and dissemination of knowledge achieved milestone benefits. The distribution of PID networks in Brazil shows great asymmetry between regions and at a regional level; it was shown that the patients lived mainly in Presidente Prudente municipality. Conclusions: The implementation of an immunodeficiency outpatient clinic in a referral hospital covering a mesoregion with a large population has led to the generation of policies and practices to improve the diagnosis, quality of life, and care of patients with PIDs and their families. Furthermore, the search for hospitalized patients with warning signs for PIDs showed great benefits. Inequality in the distribution of PID network centers in Brazil was demonstrated.
Collapse
Affiliation(s)
| | - Lívia Souza Primo
- Imunnodeficiencies Outpatient Clinic, Regional Hospital of Presidente Prudente, Presidente Prudente, Brazil
| | - Giovana Pelizari
- Department of Pediatrics, Oeste Paulista University, Presidente Prudente, Brazil
| | - Edilson Flores
- Department of Statistics, Paulista State University, Presidente Prudente, Brazil
| | - Dewton de Moraes-Vasconcelos
- Laboratory of Medical Investigation Unit 56, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luiz Euribel Prestes-Carneiro
- Imunnodeficiencies Outpatient Clinic, Regional Hospital of Presidente Prudente, Presidente Prudente, Brazil.,Department of Internal Medicine, Oeste Paulista University, Presidente Prudente, Brazil
| |
Collapse
|
23
|
Chen R. Primary Immunodeficiency. Rare Dis 2020. [DOI: 10.5772/intechopen.89624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
24
|
Lewandowicz-Uszyńska A, Pasternak G, Świerkot J, Bogunia-Kubik K. Primary Immunodeficiencies: Diseases of Children and Adults - A Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1289:37-54. [PMID: 32803731 DOI: 10.1007/5584_2020_556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary immunodeficiencies (PIDs) belong to a group of rare congenital diseases occurring all over the world that may be seen in both children and adults. In most cases, genetic predispositions are already known. As shown in this review, genetic abnormalities may be related to dysfunction of the immune system, which manifests itself as recurrent infections, increased risk of cancer, and autoimmune diseases. This article reviews the various forms of PIDs, including their characterization, management strategies, and complications. Novel aspects of the diagnostics and monitoring of PIDs are presented.
Collapse
Affiliation(s)
- Aleksandra Lewandowicz-Uszyńska
- Third Department and Clinic of Pediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, Wroclaw, Poland. .,Department of Immunology and Pediatrics, The J. Gromkowski Provincial Hospital, Wroclaw, Poland.
| | - Gerard Pasternak
- Third Department and Clinic of Pediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, Wroclaw, Poland
| | - Jerzy Świerkot
- Department and Clinic of Rheumatology and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, The Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
25
|
Ickrath P, Morbach H, Schwaneck EC, Gehrke T, Scherzad A, Hagen R, Hackenberg S. [Recurrent infections of the upper aerodigestive tract in patients with primary immunodeficiency]. HNO 2019; 67:819-824. [PMID: 31119330 DOI: 10.1007/s00106-019-0683-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Primary immunodeficiency is a rare disease of humoral and cellular immune defense, which can lead to severe and recurrent infections of different organs. The diagnosis of this disease is often difficult, and its early identification is necessary for adequate treatment and control. OBJECTIVE This study aimed to analyze ear, nose, and throat (ENT) infections in adults and children with a primary immunodeficiency. We attempted to characterize possible warning signs that should trigger an immunologic diagnostic workup. MATERIALS AND METHODS The current study comprised a retrospective case series of patients with primary immunodeficiencies. The type of immunodeficiency and the number of ENT infections were recorded. RESULTS A total of 85 Patients were included in the study. 56 patients (66%) had an acute exacerbation of chronic rhinosinusitis (n = 28), cervical lymphadenitis (n = 16), acute tonsillitis (n = 14), and acute otitis media (n = 6). Reporting detailed information about the frequencies and dates of infections was not possible, due to the retrospective nature of the analysis. CONCLUSION The prevalence of ENT infections in patients with a primary immunodeficiency is increased compared to the normal population. For the ENT specialist, these findings underline the necessity of including primary immunodeficiency in the differential diagnosis and initiating targeted diagnostic methods where indicated. Interdisciplinary collaboration with rheumatologists and immunologists is highly recommended, particularly for pediatric patients.
Collapse
Affiliation(s)
- P Ickrath
- Klinik und Poliklinik für Hals‑, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen, Universitätsklinikum Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Deutschland.
| | - H Morbach
- Schwerpunkt Pädiatrische Rheumatologie und Immunologie, Kinderklinik und Poliklinik, Universitätsklinikum Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Deutschland
| | - E C Schwaneck
- Schwerpunkt Rheumatologie/Klinische Immunologie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Deutschland
| | - T Gehrke
- Klinik und Poliklinik für Hals‑, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen, Universitätsklinikum Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Deutschland
| | - A Scherzad
- Klinik und Poliklinik für Hals‑, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen, Universitätsklinikum Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Deutschland
| | - R Hagen
- Klinik und Poliklinik für Hals‑, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen, Universitätsklinikum Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Deutschland
| | - S Hackenberg
- Klinik und Poliklinik für Hals‑, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen, Universitätsklinikum Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Deutschland
| |
Collapse
|
26
|
Comparison of clinical and immunological features and mortality in common variable immunodeficiency and agammaglobulinemia patients. Immunol Lett 2019; 210:55-62. [DOI: 10.1016/j.imlet.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 04/14/2019] [Accepted: 05/02/2019] [Indexed: 12/31/2022]
|
27
|
El-Sayed ZA, Abramova I, Aldave JC, Al-Herz W, Bezrodnik L, Boukari R, Bousfiha AA, Cancrini C, Condino-Neto A, Dbaibo G, Derfalvi B, Dogu F, Edgar JDM, Eley B, El-Owaidy RH, Espinosa-Padilla SE, Galal N, Haerynck F, Hanna-Wakim R, Hossny E, Ikinciogullari A, Kamal E, Kanegane H, Kechout N, Lau YL, Morio T, Moschese V, Neves JF, Ouederni M, Paganelli R, Paris K, Pignata C, Plebani A, Qamar FN, Qureshi S, Radhakrishnan N, Rezaei N, Rosario N, Routes J, Sanchez B, Sediva A, Seppanen MR, Serrano EG, Shcherbina A, Singh S, Siniah S, Spadaro G, Tang M, Vinet AM, Volokha A, Sullivan KE. X-linked agammaglobulinemia (XLA):Phenotype, diagnosis, and therapeutic challenges around the world. World Allergy Organ J 2019; 12:100018. [PMID: 30937141 PMCID: PMC6439403 DOI: 10.1016/j.waojou.2019.100018] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/29/2019] [Accepted: 02/13/2019] [Indexed: 11/17/2022] Open
Abstract
Background X-linked agammaglobulinemia is an inherited immunodeficiency recognized since 1952. In spite of seven decades of experience, there is still a limited understanding of regional differences in presentation and complications. This study was designed by the Primary Immunodeficiencies Committee of the World Allergy Organization to better understand regional needs, challenges and unique patient features. Methods A survey instrument was designed by the Primary Immunodeficiencies Committee of the World Allergy Organization to collect both structured and semi-structured data on X-linked agammaglobulinemia. The survey was sent to 54 centers around the world chosen on the basis of World Allergy Organization participation and/or registration in the European Society for Immunodeficiencies. There were 40 centers that responded, comprising 32 countries. Results This study reports on 783 patients from 40 centers around the world. Problems with diagnosis are highlighted by the reported delays in diagnosis>24 months in 34% of patients and the lack of genetic studies in 39% of centers Two infections exhibited regional variation. Vaccine-associated paralytic poliomyelitis was seen only in countries with live polio vaccination and two centers reported mycobacteria. High rates of morbidity were reported. Acute and chronic lung diseases accounted for 41% of the deaths. Unusual complications such as inflammatory bowel disease and large granular lymphocyte disease, among others were specifically enumerated, and while individually uncommon, they were collectively seen in 20.3% of patients. These data suggest that a broad range of both inflammatory, infectious, and autoimmune conditions can occur in patients. The breadth of complications and lack of data on management subsequently appeared as a significant challenge reported by centers. Survival above 20 years of age was lowest in Africa (22%) and reached above 70% in Australia, Europe and the Americas. Centers were asked to report their challenges and responses (n = 116) emphasized the difficulties in access to immunoglobulin products (16%) and reflected the ongoing need for education of both patients and referring physicians. Conclusions This is the largest study of patients with X-linked agammaglobulinemia and emphasizes the continued morbidity and mortality of XLA despite progress in diagnosis and treatment. It presents a world view of the successes and challenges for patients and physicians alike. A pivotal finding is the need for education of physicians regarding typical symptoms suggesting a possible diagnosis of X-linked agammaglobulinemia and sharing of best practices for the less common complications.
Collapse
Affiliation(s)
- Zeinab A El-Sayed
- Pediatric Allergy and Immunology Unit, Children's Hospital, Ain Shams University, Cairo, Egypt
| | - Irina Abramova
- Department of Immunology, National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Juan Carlos Aldave
- Primary Immunodeficiency Unit, Allergy and Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Allergy and Clinical Immunology Unit, Al-Sabah Hospital, Kuwait City, Kuwait
| | - Liliana Bezrodnik
- Immunology Unit Hospital de Niños Ricardo Gutiérrez and CIC (Clinical Immunology Center), CABA, Buenos Aires, Argentina
| | - Rachida Boukari
- Department of Immunology, Institut Pasteur d'Algérie, Faculty of Medicine, Algiers, Algeria
| | - Ahmed Aziz Bousfiha
- Clinical Immunology Unit, P1, Ibn Rushd Hospital, Laboratoire d'Immunologie Clinique, Inflammation et Allergie LICIA and Medicine and Pharmacy Faculty of Hassan II University, Casablanca, Morocco
| | - Caterina Cancrini
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù, "University of Rome Tor Vergata", Rome, Italy
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo - Sp, Brazil
| | - Ghassan Dbaibo
- Division of Pediatric Infectious Diseases and Center for Infectious Diseases Research, Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Beata Derfalvi
- Dalhousie University, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Figen Dogu
- Ankara University School of Medicine, Department of Pediatric Immunology and Allergy, Ankara, Turkey
| | - J David M Edgar
- The Royal Hospitals & Queen's University Belfast, United Kingdom
| | - Brian Eley
- Paediatric Infectious Diseases Unit, Red Cross War Memorial Children's Hospital and the Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Rasha Hasan El-Owaidy
- Pediatric Allergy and Immunology Unit, Children's Hospital, Ain Shams University, Cairo, Egypt
| | | | - Nermeen Galal
- Department of Pediatrics, Faculty of Medicine, Cairo University, Egypt
| | - Filomeen Haerynck
- Primary Immunodeficiency Research Lab, Ghent University, Belgium.,Centre for Primary Immunodeficiency, Department of Pediatric Pulmonology and Immunology, Ghent University Hospital, Belgium
| | - Rima Hanna-Wakim
- Division of Pediatric Infectious Diseases and Center for Infectious Diseases Research, Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Elham Hossny
- Pediatric Allergy and Immunology Unit, Children's Hospital, Ain Shams University, Cairo, Egypt
| | - Aydan Ikinciogullari
- Ankara University School of Medicine, Department of Pediatric Immunology and Allergy, Ankara, Turkey
| | - Ebtihal Kamal
- Department of Microbiology, Parasitology and Immunology, Faculty of Medicine, University of Khartoum, Sudan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nadia Kechout
- Department of Immunology, Institut Pasteur d'Algérie, Faculty of Medicine, Algiers, Algeria
| | - Yu Lung Lau
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomohiro Morio
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Viviana Moschese
- Pediatric Immunopathology and Allergology Unit, Tor Vergata University Hospital, University of Rome Tor Vergata, Rome, Italy
| | - Joao Farela Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Centro Hospitalar de Lisboa Central and CEDOC Nova Medical School, Lisboa, Portugal
| | - Monia Ouederni
- Pediatric Immuno-hematology Unit, Bone Marrow Transplantation Center, University Tunis El Manar, Faculty of Medicine, Tunis, Tunisia
| | - Roberto Paganelli
- Department of Medicine and Sciences of Aging, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | | | - Claudio Pignata
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Alessandro Plebani
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Farah Naz Qamar
- Department of Pediatric and Child Health, Aga Khan University Hospital, Karachi, Pakistan
| | - Sonia Qureshi
- Department of Pediatric and Child Health, Aga Khan University Hospital, Karachi, Pakistan
| | - Nita Radhakrishnan
- Department of Pediatric Hematology Oncology, Super Speciality Pediatric Hospital and PG Teaching Institute, Noida, India
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, and Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - John Routes
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Berta Sanchez
- Servicio de Inmunología, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Mikko Rj Seppanen
- Rare Diseases Center, Children's Hospital and Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Edith Gonzalez Serrano
- The Immunodeficiencies Research Unit, National Institute of Pediatrics, Mexico City, Mexico
| | - Anna Shcherbina
- Department of Immunology, National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Surjit Singh
- Department of Pediatrics and Chief, Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sangeetha Siniah
- Paediatric Institute Kuala Lumpur General Hospital, Kuala Lumpur, Malaysia.,Department of Allergy and Immunology, The Royal Children's Hospital Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia
| | | | - Mimi Tang
- The University of Melbourne, Australia
| | | | - Alla Volokha
- Department of Pediatric Infectious Diseases and Immunology, Shupyk National Medical Academy of Postgraduate Education and Center for Clinical Immunology, City Children's Hospital N1, Kiev, Ukraine
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
28
|
Supporting caregivers during hematopoietic cell transplantation for children with primary immunodeficiency disorders. J Allergy Clin Immunol 2018; 143:2271-2278. [PMID: 31178019 DOI: 10.1016/j.jaci.2018.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/23/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Caregivers of children with primary immunodeficiency disorders (PIDs) experience significant psychological distress during their child's hematopoietic cell transplantation (HCT) process. OBJECTIVES This study aims to understand caregiver challenges and identify areas for health care system-level improvements to enhance caregiver well-being. METHODS In this mixed-methods study caregivers of children with PIDs were contacted in August to November 2017 through online and electronic mailing lists of rare disease consortiums and foundations. Caregivers were invited to participate in an online survey assessing sociodemographic variables, the child's medical characteristics, psychosocial support use, and the World Health Organization-5 Well-Being Index. Open-ended questions about health care system improvements were included. Descriptive statistics and linear multivariate regression analyses were conducted. A modified content analysis method was used to code responses and identify emergent themes. RESULTS Among the 80 caregiver respondents, caregivers had a median age of 34 years (range, 23-62 years) and were predominantly female, white, and married with male children given a diagnosis of severe combined immune deficiency. In the adjusted regression model lower caregiver well-being was significantly associated with lower household income and medical complications. Challenges during HCT include maintaining relationships with partners and the child's healthy sibling or siblings, managing self-care, and coping with feelings of uncertainty. Caregivers suggested several organizational-level solutions to enhance psychosocial support, including respite services, online connections to other PID caregivers, and bedside mental health services. CONCLUSIONS Certain high-risk subpopulations of caregivers might need more targeted psychosocial support to reduce the long-term effect of the HCT experience on their well-being. Caregivers suggested several organizational-level solutions for provision of this support.
Collapse
|
29
|
Janssen LMA, Bassett P, Macken T, van Esch J, Pruijt H, Knoops A, Sköld M, Parker A, de Vries J, de Vries E. Mild Hypogammaglobulinemia Can Be a Serious Condition. Front Immunol 2018; 9:2384. [PMID: 30374358 PMCID: PMC6196282 DOI: 10.3389/fimmu.2018.02384] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/25/2018] [Indexed: 11/22/2022] Open
Abstract
Background: Most patients with primary antibody deficiency (PAD) suffer from less well-described and understood forms of hypogammaglobulinemia (unclassified primary antibody deficiency, unPAD). Because of the moderately decreased immunoglobulin levels compared to CVID, unPAD is generally considered to be clinically mild and not very relevant. Objective: To describe our cohort of—mainly—unPAD patients, and to analyze whether subgroups can be identified. Methods: Data were prospectively collected (February-2012 to June-2016) as part of a standardized, 1-day Care Pathway for suspected primary immunodeficiency. The TNO-AZL Questionnaire for Health-Related Quality of Life (HRQoL) was part of the pre-first-visit intake procedure. Results: Three hundred and twenty patients were referred to the Care Pathway. Data from 23/27 children and 99/113 adults who were diagnosed with PAD and gave informed consent were available for analysis. 89/99 adults had unPAD, the majority (74%) were female and 44% already showed bronchiectasis. HRQoL was significantly decreased in all domains, meaning that a lot of unPAD patients had to cope simultaneously with pain, negative feelings and impairments in cognition, home management tasks, sleep, social interaction, and work. The most prominently impaired HRQoL domain was vitality, indicating these patients feel extremely tired and worn out. Conclusion: These results highlight the need for more attention to the potential patient burden of unPADs. A larger cohort is needed to increase our understanding of unPADs and to analyze whether distinct subgroups can be identified. For now, it is important for the clinician to acknowledge the existence of unPAD and be aware of its potential consequences, in order to timely and appropriately manage its effects and complications.
Collapse
Affiliation(s)
| | | | - Thomas Macken
- Department of Pulmonology, Jeroen Bosch Hospital, 's-Hertogenbosch, Netherlands
| | - Jolanda van Esch
- Department of Pediatrics, Jeroen Bosch Hospital, 's-Hertogenbosch, Netherlands
| | - Hans Pruijt
- Department of Internal Medicine, Jeroen Bosch Hospital, 's-Hertogenbosch, Netherlands
| | - Arnoud Knoops
- Department of Radiology, Jeroen Bosch Hospital, 's-Hertogenbosch, Netherlands
| | - Markus Sköld
- The Binding Site Group Limited, Birmingham, United Kingdom
| | - Antony Parker
- The Binding Site Group Limited, Birmingham, United Kingdom
| | - Jolanda de Vries
- Department of Medical and Clinical Psychology, Tilburg University and Elisabeth TweeSteden Hospital, Tilburg, Netherlands
| | - Esther de Vries
- Department of Tranzo, Tilburg University, Tilburg, Netherlands.,Laboratory for Medical Microbiology and Immunology, Elisabeth Tweesteden Hospital, Tilburg, Netherlands
| |
Collapse
|
30
|
Psychosocial services for primary immunodeficiency disorder families during hematopoietic cell transplantation: A descriptive study. Palliat Support Care 2018; 17:409-414. [PMID: 30223912 DOI: 10.1017/s1478951518000603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Caregivers for patients undergoing hematopoietic cell transplantation (HCT) are susceptible to significant psychosocial distress. This cross-sectional study aimed to describe psychosocial support services offered and used by caregivers of pediatric primary immune deficiency (PID) during HCT at 35 hospitals across North America. METHOD Caregivers of pediatric patients with PID were recruited by e-mail to participate in an anonymous 140-question survey instrument between April and May 2016 (N = 171). RESULT Of those meeting inclusion criteria (53%), family counseling services were only offered to fewer than half of caregivers (42%). Of the survey participants not offered counseling services, the majority desired family counseling (70%) and sibling counseling (73%). That said, when offered counseling, utilization rates were low, with 22% of caregivers using family counseling and none using sibling counseling. SIGNIFICANCE OF RESULTS These results indicate the need to offer and tailor counseling services for families throughout the HCT process. Further research should focus on reducing barriers to utilization of counseling services such as offering bedside counseling services, online modalities, and/or financial assistance.
Collapse
|
31
|
de Albuquerque JAT, de Oliveira Junior EB, Zurro NB, Vendramini P, Ishizuka EK, Borgli DDSP, de Souza MS, Condino-Neto A. A C126R de novo Mutation in CYBB Leads to X-linked Chronic Granulomatous Disease With Recurrent Pneumonia and BCGitis. Front Pediatr 2018; 6:248. [PMID: 30255005 PMCID: PMC6141742 DOI: 10.3389/fped.2018.00248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/20/2018] [Indexed: 11/24/2022] Open
Abstract
Chronic granulomatous disease (CGD) is an innate immune deficiency of phagocytic cells caused by mutations that affect components of the NADPH oxidase system, with resulting impairment in reactive oxygen species production. Patients with CGD are susceptible to recurrent infections and hyperinflammatory responses. Mutations in CYBB lead to the X-linked form of CGD and are responsible for ~ 70% of cases. In this study, we report the case of a 2.5-year-old male patient with recurrent pneumonia and Bacillus Calmette-Guérin infection (BCGitis). As his first clinical manifestation, he presented with bullous impetigo at 18 days of age, which was followed by recurrent pneumonia and regional BCGitis. Genetic analysis revealed a de novo mutation in exon 5 of the CYBB gene: a single-nucleotide substitution, c.376T > C, leading to a C126R change.
Collapse
Affiliation(s)
- Jose Antonio Tavares de Albuquerque
- Immunogenic Assessoria e Diagnóstico em Saúde LTDA, São Paulo, Brazil.,PENSI Institute, José Luiz Egídio Setúbal Foundation, Sabará Hospital, São Paulo, Brazil
| | - Edgar Borges de Oliveira Junior
- Immunogenic Assessoria e Diagnóstico em Saúde LTDA, São Paulo, Brazil.,PENSI Institute, José Luiz Egídio Setúbal Foundation, Sabará Hospital, São Paulo, Brazil
| | - Nuria Bengala Zurro
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paola Vendramini
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edson Kiyotaka Ishizuka
- Immunogenic Assessoria e Diagnóstico em Saúde LTDA, São Paulo, Brazil.,PENSI Institute, José Luiz Egídio Setúbal Foundation, Sabará Hospital, São Paulo, Brazil
| | | | | | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|