1
|
Li L, Xia X, Yang T, Sun Y, Liu X, Xu W, Lu M, Cui D, Wu Y. RNA methylation: A potential therapeutic target in autoimmune disease. Int Rev Immunol 2024; 43:160-177. [PMID: 37975549 DOI: 10.1080/08830185.2023.2280544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and inflammatory bowel disease (IBD) are caused by the body's immune response to autoantigens. The pathogenesis of autoimmune diseases is unclear. Numerous studies have demonstrated that RNA methylation plays a key role in disease progression, which is essential for post-transcriptional regulation and has gradually become a broad regulatory mechanism that controls gene expression in various physiological processes, including RNA nuclear output, translation, splicing, and noncoding RNA processing. Here, we outline the writers, erasers, and readers of RNA methylation, including N6-methyladenosine (m6A), 2'-O-methylation (Nm), 2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytidine (m5C) and N7-methylguanosine (m7G). As the role of RNA methylation modifications in the immune system and diseases is explained, the potential treatment value of these modifications has also been demonstrated. This review reports the relationship between RNA methylation and autoimmune diseases, highlighting the need for future research into the therapeutic potential of RNA modifications.
Collapse
Affiliation(s)
- Lele Li
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiaoping Xia
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Tian Yang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yuchao Sun
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xueke Liu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Wei Xu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Mei Lu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Dawei Cui
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingping Wu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
2
|
Umbreen H, Zhang X, Tang KT, Lin CC. Regulation of Myeloid Dendritic Cells by Synthetic and Natural Compounds for the Treatment of Rheumatoid Arthritis. Int J Mol Sci 2022; 24:ijms24010238. [PMID: 36613683 PMCID: PMC9820359 DOI: 10.3390/ijms24010238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Different subsets of dendritic cells (DCs) participate in the development of rheumatoid arthritis (RA). In particular, myeloid DCs play a key role in the generation of autoreactive T and B cells. Herein, we undertook a literature review on those synthetic and natural compounds that have therapeutic efficacy/potential for RA and act through the regulation of myeloid DCs. Most of these compounds inhibit both the maturation of DCs and their secretion of inflammatory cytokines and, subsequently, alter the downstream T-cell response (suppression of Th1 and Th17 responses while expanding the Treg response). The majority of the synthetic compounds are approved for the treatment of patients with RA, which is consistent with the importance of DCs in the pathogenesis of RA. All of the natural compounds are derived from plants. Their DC-modulating effect has been demonstrated both in vitro and in vivo. In addition, these natural products ameliorate arthritis in rodents and are potential therapeutics for human RA.
Collapse
Affiliation(s)
- Hira Umbreen
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Xiang Zhang
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Kuo-Tung Tang
- Division of Allergy, Immunology, and Rheumatology, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (K.-T.T.); (C.-C.L.); Tel.: +886-4-23592525 (ext. 3334) (K.-T.T.); +886-4-23592525 (ext. 3003) (C.-C.L.); Fax: +886-4-23503285 (K.-T.T. & C.-C.L.)
| | - Chi-Chien Lin
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Institute of Biomedical Science, The iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (K.-T.T.); (C.-C.L.); Tel.: +886-4-23592525 (ext. 3334) (K.-T.T.); +886-4-23592525 (ext. 3003) (C.-C.L.); Fax: +886-4-23503285 (K.-T.T. & C.-C.L.)
| |
Collapse
|
3
|
Developing cerium modified gold nanoclusters for the treatment of advanced-stage rheumatoid arthritis. Mater Today Bio 2022; 15:100331. [PMID: 35795138 PMCID: PMC9251783 DOI: 10.1016/j.mtbio.2022.100331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022]
|
4
|
Wu S, Li XF, Wu YY, Yin SQ, Huang C, Li J. N6 -Methyladenosine and Rheumatoid Arthritis: A Comprehensive Review. Front Immunol 2021; 12:731842. [PMID: 34630412 PMCID: PMC8498590 DOI: 10.3389/fimmu.2021.731842] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/09/2021] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA), one of the most common autoimmune diseases, is characterized by immune cell infiltration, fibroblast-like synovial cell hyperproliferation, and cartilage and bone destruction. To date, numerous studies have demonstrated that immune cells are one of the key targets for the treatment of RA. N6-methyladenosine (m6A) is the most common internal modification to eukaryotic mRNA, which is involved in the splicing, stability, export, and degradation of RNA metabolism. m6A methylated-related genes are divided into writers, erasers, and readers, and they are critical for the regulation of cell life. They play a significant role in various biological processes, such as virus replication and cell differentiation by controlling gene expression. Furthermore, a growing number of studies have indicated that m6A is associated with the occurrence of numerous diseases, such as lung cancer, bladder cancer, gastric cancer, acute myeloid leukemia, and hepatocellular carcinoma. In this review, we summarize the history of m6A research and recent progress on RA research concerning m6A enzymes. The relationship between m6A enzymes, immune cells, and RA suggests that m6A modification offers evidence for the pathogenesis of RA, which will help in the development of new therapies for RA.
Collapse
Affiliation(s)
- Sha Wu
- Anhui Institute of Innovative Drugs, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Feng Li
- Anhui Institute of Innovative Drugs, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China.,Postdoctoral Station of Clinical Medicine of Anhui Medical University, Hefei, China
| | - Yuan-Yuan Wu
- Anhui Institute of Innovative Drugs, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Su-Qin Yin
- Anhui Institute of Innovative Drugs, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- Anhui Institute of Innovative Drugs, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Anhui Institute of Innovative Drugs, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Applicability and implementation of the collagen-induced arthritis mouse model, including protocols (Review). Exp Ther Med 2021; 22:939. [PMID: 34335888 PMCID: PMC8290431 DOI: 10.3892/etm.2021.10371] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
Animal models of rheumatoid arthritis (RA) are essential for studying the pathogenesis of RA in vivo and determining the efficacy of anti-RA drugs. During the past decades, numerous rodent models of arthritis have been evaluated as potential models and the modeling methods are relatively well-developed. Among these models, the collagen-induced arthritis (CIA) mouse model is the first choice and the most widely used because it may be generated rapidly and inexpensively and is relatively similar in pathogenesis to human RA. To date, there have been numerous classic studies and reviews discussing related pathogeneses and modeling methods. Based on this knowledge, combined with the latest convenient and effective methods for CIA model construction, the present review aims to introduce the model to beginners and clarify important details regarding its use. Information on the origin and pathogenesis of the CIA model, the protocol for establishing it, the rate of successful arthritis induction and the methods used to evaluate the severity of arthritis are briefly summarized. With this information, it is expected that researchers who have recently entered the field or are not familiar with this information will be able to start quickly, avoid unnecessary errors and obtain reliable results.
Collapse
|
6
|
Immunogenicity Challenges Associated with Subcutaneous Delivery of Therapeutic Proteins. BioDrugs 2021; 35:125-146. [PMID: 33523413 PMCID: PMC7848667 DOI: 10.1007/s40259-020-00465-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
The subcutaneous route of administration has provided convenient and non-inferior delivery of therapeutic proteins compared to intravenous infusion, but there is potential for enhanced immunogenicity toward subcutaneously administered proteins in a subset of patients. Unwanted anti-drug antibody response toward proteins or monoclonal antibodies upon repeated administration is shown to impact the pharmacokinetics and efficacy of multiple biologics. Unique immunogenicity challenges of the subcutaneous route have been realized through various preclinical and clinical examples, although subcutaneous delivery has often demonstrated comparable immunogenicity to intravenous administration. Beyond route of administration as a treatment-related factor of immunogenicity, certain product-related risk factors are particularly relevant to subcutaneously administered proteins. This review attempts to provide an overview of the mechanism of immune response toward proteins administered subcutaneously (subcutaneous proteins) and comments on product-related risk factors related to protein structure and stability, dosage form, and aggregation. A two-wave mechanism of antigen presentation in the immune response toward subcutaneous proteins is described, and interaction with dynamic antigen-presenting cells possessing high antigen processing efficiency and migratory activity may drive immunogenicity. Mitigation strategies for immunogenicity are discussed, including those in general use clinically and those currently in development. Mechanistic insights along with consideration of risk factors involved inspire theoretical strategies to provide antigen-specific, long-lasting effects for maintaining the safety and efficacy of therapeutic proteins.
Collapse
|
7
|
Edilova MI, Akram A, Abdul-Sater AA. Innate immunity drives pathogenesis of rheumatoid arthritis. Biomed J 2020; 44:172-182. [PMID: 32798211 PMCID: PMC8178572 DOI: 10.1016/j.bj.2020.06.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease affecting ∼1% of the general population. This disease is characterized by persistent articular inflammation and joint damage driven by the proliferating synovial tissue fibroblasts as well as neutrophil, monocyte and lymphocyte trafficking into the synovium. The factors leading to RA pathogenesis remain poorly elucidated although genetic and environmental factors have been proposed to be the main contributors to RA. The majority of the early studies focused on the role of lymphocytes and adaptive immune responses in RA. However, in the past two decades, emerging studies showed that the innate immune system plays a critical role in the onset and progression of RA pathogenesis. Various innate immune cells including monocytes, macrophages and dendritic cells are involved in inflammatory responses seen in RA patients as well as in driving the activation of the adaptive immune system, which plays a major role in the later stages of the disease. Here we focus the discussion on the role of different innate immune cells and components in initiation and progression of RA. New therapeutic approaches targeting different inflammatory pathways and innate immune cells will be highlighted here. Recent emergence and the significant roles of innate lymphoid cells and inflammasomes will be also discussed.
Collapse
Affiliation(s)
- Maria I Edilova
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Ali Akram
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario Canada; The University Health Network, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Ali A Abdul-Sater
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario Canada.
| |
Collapse
|