1
|
Anti-arthritic activity of Tin oxide-Chitosan-Polyethylene glycol carvacrol nanoparticles against Freund’s adjuvant induced arthritic rat model via the inhibition of cyclooxygenase‑2 and prostaglandin E2. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
2
|
Liebold I, Grützkau A, Göckeritz A, Gerl V, Lindquist R, Feist E, Zänker M, Häupl T, Poddubnyy D, Zernicke J, Smiljanovic B, Alexander T, Burmester GR, Gay S, Stuhlmüller B. Peripheral blood mononuclear cells are hypomethylated in active rheumatoid arthritis and methylation correlates with disease activity. Rheumatology (Oxford) 2021; 60:1984-1995. [PMID: 33200208 DOI: 10.1093/rheumatology/keaa649] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Epigenetic modifications are dynamic and influence cellular disease activity. The aim of this study was to investigate global DNA methylation in peripheral blood mononuclear cells (PBMCs) of RA patients to clarify whether global DNA methylation pattern testing might be useful in monitoring disease activity as well as the response to therapeutics. METHODS Flow cytometric measurement of 5-methyl-cytosine (5'-mC) was established using the cell line U937. In the subsequent prospective study, 62 blood samples were investigated, including 17 healthy donors and 45 RA patients at baseline and after 3 months of treatment with methotrexate, the IL-6 receptor inhibitor sarilumab, and Janus kinase inhibitors. Methylation status was assessed with an anti-5'-mC antibody and analysed in PBMCs and CD4+, CD8+, CD14+ and CD19+ subsets. Signal intensities of 5'-mC were correlated with 28-joint DASs with ESR and CRP (DAS28-ESR and DAS28-CRP). RESULTS Compared with healthy individuals, PBMCs of RA patients showed a significant global DNA hypomethylation. Signal intensities of 5'-mC correlated with transcription levels of DNMT1, DNMT3B and MTR genes involved in methylation processes. Using flow cytometry, significant good correlations and linear regression values were achieved in RA patients between global methylation levels and DAS28-ESR values for PBMCs (r = -0.55, P = 0.002), lymphocytes (r = -0.57, P = 0.001), CD4+ (r = -0.57, P = 0.001), CD8+ (r = -0.54, P = 0.001), CD14+ (r = -0.49, P = 0.008) and CD19+ (r = -0.52, P = 0.004) cells. CONCLUSIONS The degree of global DNA methylation was found to be associated with disease activity. Based on this novel approach, the degree of global methylation is a promising biomarker for therapy monitoring and the prediction of therapy outcome in inflammatory diseases.
Collapse
Affiliation(s)
- Ilka Liebold
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Andreas Grützkau
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz-Institute, Berlin, Germany
| | - Anika Göckeritz
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Velia Gerl
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Randall Lindquist
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz-Institute, Berlin, Germany
| | - Eugen Feist
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany.,Department of Rheumatology, Helios Fachklinik, Vogelsang-Gommern, Germany
| | - Michael Zänker
- Immanuel Klinikum Bernau Herzzentrum Brandenburg, Medizinische Hochschule Brandenburg, Bernau, Germany
| | - Thomas Häupl
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Denis Poddubnyy
- Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Corporate Member of Berlin Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Jan Zernicke
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Biljana Smiljanovic
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Tobias Alexander
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Gerd R Burmester
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Steffen Gay
- Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Bruno Stuhlmüller
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| |
Collapse
|
3
|
Jones MA, MacCuaig WM, Frickenstein AN, Camalan S, Gurcan MN, Holter-Chakrabarty J, Morris KT, McNally MW, Booth KK, Carter S, Grizzle WE, McNally LR. Molecular Imaging of Inflammatory Disease. Biomedicines 2021; 9:152. [PMID: 33557374 PMCID: PMC7914540 DOI: 10.3390/biomedicines9020152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory diseases include a wide variety of highly prevalent conditions with high mortality rates in severe cases ranging from cardiovascular disease, to rheumatoid arthritis, to chronic obstructive pulmonary disease, to graft vs. host disease, to a number of gastrointestinal disorders. Many diseases that are not considered inflammatory per se are associated with varying levels of inflammation. Imaging of the immune system and inflammatory response is of interest as it can give insight into disease progression and severity. Clinical imaging technologies such as computed tomography (CT) and magnetic resonance imaging (MRI) are traditionally limited to the visualization of anatomical information; then, the presence or absence of an inflammatory state must be inferred from the structural abnormalities. Improvement in available contrast agents has made it possible to obtain functional information as well as anatomical. In vivo imaging of inflammation ultimately facilitates an improved accuracy of diagnostics and monitoring of patients to allow for better patient care. Highly specific molecular imaging of inflammatory biomarkers allows for earlier diagnosis to prevent irreversible damage. Advancements in imaging instruments, targeted tracers, and contrast agents represent a rapidly growing area of preclinical research with the hopes of quick translation to the clinic.
Collapse
Affiliation(s)
- Meredith A. Jones
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (M.A.J.); (W.M.M.); (A.N.F.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - William M. MacCuaig
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (M.A.J.); (W.M.M.); (A.N.F.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (M.A.J.); (W.M.M.); (A.N.F.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - Seda Camalan
- Department of Internal Medicine, Wake Forest Baptist Health, Winston-Salem, NC 27157, USA; (S.C.); (M.N.G.)
| | - Metin N. Gurcan
- Department of Internal Medicine, Wake Forest Baptist Health, Winston-Salem, NC 27157, USA; (S.C.); (M.N.G.)
| | - Jennifer Holter-Chakrabarty
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Katherine T. Morris
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Molly W. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - Kristina K. Booth
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Steven Carter
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| |
Collapse
|
4
|
Zhang Z, Chinnathambi A, Ali Alharbi S, Bai L. Copper oxide nanoparticles from Rabdosia rubescens attenuates the complete Freund’s adjuvant (CFA) induced rheumatoid arthritis in rats via suppressing the inflammatory proteins COX-2/PGE2. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
5
|
Piao X, Zhou J, Hu J. Role of RP11-83J16.1, a novel long non-coding RNA, in rheumatoid arthritis. Am J Transl Res 2020; 12:1397-1414. [PMID: 32355550 PMCID: PMC7191173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to explore the effects of long non-coding RNA (lncRNA) expression on rheumatoid arthritis (RA). LncRNA expression profiles were obtained from the synovial tissues of five RA patients and five age-/gender-matched controls by RNA-Seq. Six candidate lncRNAs were then chosen and their levels in synovial fluid further examined in 25 RA patients and 25 health controls using RT-qPCR. The effects of lncRNA RP11-83J16.1 overexpression and knockdown on RA fibroblast-like synoviocytes (RA-FLS) function, inflammation state, and URI1, FRAT1, and β-catenin levels were assessed. After RNA-Seq, lncRNA expression profiles clearly distinguished RA patients from controls, and 190 upregulated lncRNAs and 131 downregulated lncRNAs were identified, which were mainly enriched in proliferative/immune/inflammatory pathways. Results of RT-qPCR showed that the levels of lncRNAs MTCO2P12, KCNQ5-IT1 and RP11-83J16.1 were increased, whereas lncRNAs LINC00570, RP11-342M1.6, and REXO1L4P were decreased in RA patients compared to controls. Notably, lncRNA RP11-83J16.1 correlated with increased inflammation and disease activity in RA patients. Additionally, lncRNA RP11-83J16.1 promoted cell proliferation, migration, invasion and inflammation, reduced apoptosis, and positively regulates cellular URI1, FRAT1 and β-catenin expression in RA-FLS. Rescue experiments revealed that URI1 overexpression compensated for the regulatory effects of lncRNA RP11-83J16.1 knockdown in RA-FLS. In conclusion, lncRNA RP11-83J16.1, a novel lncRNA identified by RNA-Seq, correlates with increased risk and disease activity of RA, and promotes RA-FLS proliferation, migration, invasion and inflammation by regulating URI1 and downstream β-catenin pathway components.
Collapse
Affiliation(s)
- Xuemei Piao
- Department of Rheumatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Jieru Zhou
- Department of Health Management, Shanghai East Hospital, Tongji University School of MedicineShanghai, China
| | - Jiandong Hu
- Department of Rheumatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese MedicineShanghai, China
| |
Collapse
|
6
|
Bustamante MF, Agustín-Perez M, Cedola F, Coras R, Narasimhan R, Golshan S, Guma M. Design of an anti-inflammatory diet (ITIS diet) for patients with rheumatoid arthritis. Contemp Clin Trials Commun 2020; 17:100524. [PMID: 32025586 PMCID: PMC6997513 DOI: 10.1016/j.conctc.2020.100524] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/01/2020] [Accepted: 01/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that affects synovial joints, leading to inflammation, joint destruction, loss of function, and disability. Although recent pharmaceutical advances have improved treatment of RA, patients with RA often inquire about dietary interventions to improve RA symptoms, as they perceive rapid changes in their symptoms after consumption of certain foods. There is evidence that some ingredients have pro- or anti-inflammatory effects. In addition, recent literature has shown a link between diet and microbiome changes. Both diet and the gut microbiome are linked to circulating metabolites that may modulate inflammation. However, evidence of the effects of an anti-inflammatory and probiotic-rich diet in patients with RA is scarce. There is also a need for biological data to support its anti-inflammatory effects. Methods The main goal of this study is to delineate the design process for a diet tailored to our RA population. To achieve this goal, we collected information on diet, supplements, cooking methods, and intake of different ingredients for each patient. Different groups were interviewed, and their feedback was assessed to design a diet that incorporates suggested anti-inflammatory ingredients in a manner that was easy for patients to adopt based on their lifestyles and backgrounds. Results We designed a diet that includes a high intake of potential anti-inflammatory ingredients. Feedback from highly motivated patients was critical in constructing an anti-inflammatory diet (ITIS diet) with elevated adherence. Conclusion In order to tailor our diet, we surveyed our patients on several different parameters. We obtained important feedback on how feasible our ITIS diet is for RA patients. Using this feedback, we made minor improvements and finalized the design of the ITIS diet. This diet is being used in an on-going pilot study to determine their anti-inflammatory effect in pain and joint swelling in RA patients. Trial registration Not applicable.
Collapse
Affiliation(s)
- Marta F Bustamante
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | | | - Francesca Cedola
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Roxana Coras
- Department of Medicine, University of California San Diego, San Diego, CA, USA.,Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193, Bellaterra, Barcelona, Spain
| | - Rekha Narasimhan
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Shahrokh Golshan
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Monica Guma
- Department of Medicine, University of California San Diego, San Diego, CA, USA.,Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
7
|
Golbahari S, Abtahi Froushani SM. Synergistic benefits of Nicotine and Thymol in alleviating experimental rheumatoid arthritis. Life Sci 2019; 239:117037. [PMID: 31730863 DOI: 10.1016/j.lfs.2019.117037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Given to the anti-inflammatory effect of Nicotine and Thymol, this study was done to evaluate the effects of co-administration of Nicotine and Thymol on the clinical aspects, and immunity responses in Freund's complete adjuvant (FCA)-induced RA in Wistar rat. METHODS The study population contained a total of 50 male Wistar rats with a weight range 150 ± 7 g, which RA was induced through FCA at them. These animals were randomly allocated into five groups (n = 10): RA rats treated with PBS (100 mg/kg orally), RA rats treated with Thymol (100 mg/kg orally), RA rats treated with Nicotine (2.5mg/kg-orally), and RA rats treated with combined Nicotine and Thymol (half doses with each one-orally). All treatments were initiated at day seven p.i. when all rats showed a clinical score of ≥1. Clinical symptoms of the disease were recorded every other day until the day 23 p.i. RESULTS Obtained data revealed the combination therapy reduced the severity of the disease and improved weight-gaining more profound than each medication alone. Furthermore, combination therapy caused a reduction in some hematological and biochemical RA parameters, such as Rheumatoid factor, C-Reactive Protein, Nitric oxide, Myeloperoxidase, IL-1, and IL-17 more impressive than each treatment alone. Interestingly, the combination therapy with half doses of Nicotine and Thymol did not have any synergistic advantage in anti-proliferation effect, and therefore immunosuppression side effect compared with using each of agents alone. CONCLUSION Collectively, it is possible that combination therapy can be applied as a beneficial strategy to control RA.
Collapse
Affiliation(s)
- Sara Golbahari
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | |
Collapse
|
8
|
Alwarith J, Kahleova H, Rembert E, Yonas W, Dort S, Calcagno M, Burgess N, Crosby L, Barnard ND. Nutrition Interventions in Rheumatoid Arthritis: The Potential Use of Plant-Based Diets. A Review. Front Nutr 2019; 6:141. [PMID: 31552259 PMCID: PMC6746966 DOI: 10.3389/fnut.2019.00141] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA), a chronic inflammatory autoimmune disease, affects roughly 1% of the world's population. RA pathogenesis remains unclear, but genetic factors account for 50–60% of the risk while the remainder might be linked to modifiable factors, such as infectious diseases, tobacco smoking, gut bacteria, and nutrition. Dietary triggers may play an inciting role in the autoimmune process, and a compromised intestinal barrier may allow food components or microorganisms to enter the blood stream, triggering inflammation. In addition, excessive body weight may affect pharmacotherapy response and the likelihood of disease remission, as well as the risk of disease mortality. Evidence suggests that changes in diet might play an important role in RA management and remission. Several studies have shown improvements in RA symptoms with diets excluding animal products. Studies have also shown that dietary fiber found in these plant-based foods can improve gut bacteria composition and increase bacterial diversity in RA patients, thus reducing their inflammation and joint pain. Although some of the trigger foods in RA patients are individualized, a vegan diet helps improve symptoms by eliminating many of these foods. This review examines the potential role of a plant-based diet in mediating RA symptoms. Further research is needed to test the effectiveness of plant-based diets on joint pain, inflammation, and quality of life in patients with RA.
Collapse
Affiliation(s)
- Jihad Alwarith
- Physicians Committee for Responsible Medicine, Washington, DC, United States
| | - Hana Kahleova
- Physicians Committee for Responsible Medicine, Washington, DC, United States
| | - Emilie Rembert
- Physicians Committee for Responsible Medicine, Washington, DC, United States
| | - Willy Yonas
- Physicians Committee for Responsible Medicine, Washington, DC, United States
| | - Sara Dort
- Physicians Committee for Responsible Medicine, Washington, DC, United States
| | - Manuel Calcagno
- Physicians Committee for Responsible Medicine, Washington, DC, United States
| | - Nora Burgess
- Physicians Committee for Responsible Medicine, Washington, DC, United States
| | - Lee Crosby
- Physicians Committee for Responsible Medicine, Washington, DC, United States
| | - Neal D Barnard
- Physicians Committee for Responsible Medicine, Washington, DC, United States.,Adjunct Faculty, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|