1
|
Wang G, Wang J, Momeni MR. Epigallocatechin-3-gallate and its nanoformulation in cervical cancer therapy: the role of genes, MicroRNA and DNA methylation patterns. Cancer Cell Int 2023; 23:335. [PMID: 38129839 PMCID: PMC10740301 DOI: 10.1186/s12935-023-03161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Green tea, a popular and healthy nonalcoholic drink consumed globally, is abundant in natural polyphenols. One of these polyphenols is epigallocatechin-3-gallate (EGCG), which offers a range of health benefits, such as metabolic regulation, antioxidant properties, anti-inflammatory effects, and potential anticancer properties. Clinical research has shown that EGCG can inhibit cancers in the male and female reproductive systems, including ovarian, cervical, endometrial, breast, testicular, and prostate cancers. Further research on cervical cancer has revealed the crucial role of epigenetic mechanisms in the initiation and progression of this type of cancer. These include changes to the DNA, histones, and non-coding RNAs, such as microRNAs. These changes are reversible and can occur even before genetic mutations, making them a potential target for intervention therapies. One promising approach to cancer prevention and treatment is the use of specific agents (known as epi-drugs) that target the cancer epigenome or epigenetic dysregulation. Phytochemicals, a group of diverse molecules, have shown potential in modulating cancer processes through their interaction with the epigenetic machinery. Among these, green tea and its main polyphenol EGCG have been extensively studied. This review highlights the therapeutic effects of EGCG and its nanoformulations on cervical cancer. It also discusses the epigenetic events involved in cervical cancer, such as DNA methylation and microRNA dysregulation, which may be affected by EGCG.
Collapse
Affiliation(s)
- Guichun Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinyi Wang
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| | | |
Collapse
|
2
|
Liang Y, Wu B, Zhang Y, Liu H. Oxidative stress and EROD activity in Caco-2 cells upon exposure to chlorinated hydrophobic organic compounds from drinking water reservoirs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150015. [PMID: 34509843 DOI: 10.1016/j.scitotenv.2021.150015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Our previous studies showed hydrophobic organic compounds (HOCs) in the sediments of drinking water reservoirs caused DNA damage in human cells (Caco-2) after chlorination. However, the main mechanisms remained unclear. This study compared oxidative damage and EROD activity in Caco-2 cells upon exposure to chlorinated HOCs, and the role of antioxidants (catalase, vitamin C and epigallocatechin gallate (EGCG)) in reducing the toxicities was examined. The result showed that chlorinated HOCs induced a 4-fold increase in production of reactive oxygen species (ROS) compared with HOCs. Antioxidants supplement significantly reduced ROS yields and DNA peroxidation. HOCs with relatively higher TEQbio were greatly reduced (about 98%) after chlorination, indicating dioxin-like toxicity is not the main factor inducing oxidative damage by chlorinated HOCs. Yet, ROS and the associated oxidative damage seem to be more responsible for causing DNA damage in the cells. Antioxidants including catalase, Vitamin C and EGCG showed protective effect against chlorination.
Collapse
Affiliation(s)
- Yan Liang
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Binbin Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Centre for Cardiovascular Genomics and Medicine, The Chinese University of Hong Kong (CUHK), HKSAR, China
| | - Yanling Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hailong Liu
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
3
|
Alshahrani S, Ashafaq M, Hussain S, Mohammed M, Sultan M, Jali AM, Siddiqui R, Islam F. Renoprotective effects of cinnamon oil against APAP-Induced nephrotoxicity by ameliorating oxidative stress, apoptosis and inflammation in rats. Saudi Pharm J 2021; 29:194-200. [PMID: 33679180 PMCID: PMC7910143 DOI: 10.1016/j.jsps.2021.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Acetaminophen (APAP) is used as a primary medication in relieving moderate pain and fever. However, APAP is associated with toxic effects in renal tissue that appear because of its free radicals property. The principle goal of the present work is to assess the kidney damage by APAP and its restore antioxidative property of cinnamon oil (CO). Animals were distributed into six animals each in six groups. Rats were administered with three varying doses of CO from 50 to 200 mg/kg b.w. respectively and only a single dose of APAP. APAP induced an alteration in serum biochemical markers, imbalance in oxidative parameters, morphological changes in kidney tissue along with increased interleukins cytokines (IL-1β & 6) and caspase (3, 9) levels. CO administration significantly ameliorates all the parameters and histopathological changes were restored. Moreover, it also restored the activities of antioxidative enzymes. Our work proved that an variance of oxidative markers in the kidney by APAP is ameliorated by CO in rats. Thus, CO could be used in reducing APAP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Mohammad Ashafaq
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Sohail Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Manal Mohammed
- Substance Abuse Research Center (SARC), College of Pharmacy, Jazan University, Saudi Arabia
| | - Muhammad Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Rahimullah Siddiqui
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Fakhrul Islam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| |
Collapse
|
4
|
Hu J, Zhang C, Li X, Du X. An Electrochemical Sensor Based on Chalcogenide Molybdenum Disulfide-Gold-Silver Nanocomposite for Detection of Hydrogen Peroxide Released by Cancer Cells. SENSORS 2020; 20:s20236817. [PMID: 33260678 PMCID: PMC7730666 DOI: 10.3390/s20236817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
Hydrogen peroxide (H2O2) as a crucial signal molecule plays a vital part in the growth and development of various cells under normal physiological conditions. The development of H2O2 sensors has received great research interest because of the importance of H2O2 in biological systems and its practical applications in other fields. In this study, a H2O2 electrochemical sensor was constructed based on chalcogenide molybdenum disulfide-gold-silver nanocomposite (MoS2-Au-Ag). Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) were utilized to characterize the nanocomposites, and the electrochemical performances of the obtained sensor were assessed by two electrochemical detection methods: cyclic voltammetry and chronoamperometry. The results showed that the MoS2-Au-Ag-modified glassy carbon electrode (GCE) has higher sensitivity (405.24 µA mM-1 cm-2), wider linear detection range (0.05-20 mM) and satisfactory repeatability and stability. Moreover, the prepared sensor was able to detect the H2O2 discharge from living tumor cells. Therefore, this study offers a platform for the early diagnosis of cancer and other applications in the fields of biology and biomedicine.
Collapse
Affiliation(s)
| | | | | | - Xin Du
- Correspondence: ; Tel.: +86-136-5640-1019
| |
Collapse
|
5
|
The Antioxidant Capacity In Vitro and In Vivo of Polysaccharides From Bergenia emeiensis. Int J Mol Sci 2020; 21:ijms21207456. [PMID: 33050354 PMCID: PMC7589108 DOI: 10.3390/ijms21207456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022] Open
Abstract
Polysaccharides from Bergenia emeiensis (PBE) showed a robust antioxidant ability on scavenging free radicals in vitro. However, the further antioxidant potential in cell level and in vivo was still unknown. Therefore, in this present study, the protective effect of PBE on human cervical carcinoma cell (Hela) cells and Caenorhabditis elegans against oxidative stress was evaluated. The results showed PBE could reduce the reactive oxygen species (ROS) level in Hela cells and promote the mitochondrial membrane potential. Then, the cell apoptosis was reduced. Moreover, PBE could enhance the survival of C. elegans under thermal stress to 13.44%, and significantly reduce the ROS level, which was connected with the overexpression of sod-3 and the increased nuclear localization of daf-16 transcription factor. Therefore, PBE exhibited a strong antioxidant capacity in the cellular level and for a whole organism. Thus, polysaccharides from B. emeiensis have natural potential to be a safe antioxidant.
Collapse
|
6
|
Mao X, Xiao X, Chen D, Yu B, He J. Tea and Its Components Prevent Cancer: A Review of the Redox-Related Mechanism. Int J Mol Sci 2019; 20:E5249. [PMID: 31652732 PMCID: PMC6862630 DOI: 10.3390/ijms20215249] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer is a worldwide epidemic and represents a major threat to human health and survival. Reactive oxygen species (ROS) play a dual role in cancer cells, which includes both promoting and inhibiting carcinogenesis. Tea remains one of the most prevalent beverages consumed due in part to its anti- or pro-oxidative properties. The active compounds in tea, particularly tea polyphenols, can directly or indirectly scavenge ROS to reduce oncogenesis and cancerometastasis. Interestingly, the excessive levels of ROS induced by consuming tea could induce programmed cell death (PCD) or non-PCD of cancer cells. On the basis of illustrating the relationship between ROS and cancer, the current review discusses the composition and efficacy of tea including the redox-relative (including anti-oxidative and pro-oxidative activity) mechanisms and their role along with other components in preventing and treating cancer. This information will highlight the basis for the clinical utilization of tea extracts in the prevention or treatment of cancer in the future.
Collapse
Affiliation(s)
- Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 611130, China.
| | - Xiangjun Xiao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 611130, China.
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 611130, China.
| | - Jun He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 611130, China.
| |
Collapse
|
7
|
Silva GÁF, Nunes RAL, Morale MG, Boccardo E, Aguayo F, Termini L. Oxidative stress: therapeutic approaches for cervical cancer treatment. Clinics (Sao Paulo) 2018; 73:e548s. [PMID: 30540121 PMCID: PMC6257060 DOI: 10.6061/clinics/2018/e548s] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress results from an imbalance between the generation and elimination of oxidant species. This condition may result in DNA, RNA and protein damage, leading to the accumulation of genetic alterations that can favor malignant transformation. Persistent infection with high-risk human papillomavirus types is associated with inflammatory responses and reactive oxygen species production. In this context, oxidative stress, chronic inflammation and high-risk human papillomavirus can act in a synergistic manner. To counteract the harmful effects of oxidant species, protective molecules, known as antioxidant defenses, are produced by cells to maintain redox homeostasis. In recent years, the use of natural antioxidants as therapeutic strategies for cancer treatment has attracted the attention of the scientific community. This review discusses specific molecules and mechanisms that can act against or together with oxidative stress, presenting alternatives for cervical cancer prevention and treatment.
Collapse
Affiliation(s)
- Gabriela Ávila Fernandes Silva
- Instituto do Cancer do Estado de Sao Paulo ICESP, Centro de Investigacao Translacional em Oncologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Rafaella Almeida Lima Nunes
- Instituto do Cancer do Estado de Sao Paulo ICESP, Centro de Investigacao Translacional em Oncologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Mirian Galliote Morale
- Instituto do Cancer do Estado de Sao Paulo ICESP, Centro de Investigacao Translacional em Oncologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Enrique Boccardo
- Laboratorio de Oncovirologia, Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Francisco Aguayo
- Centro Avanzado de Enfermedades Cronicas (ACCDiS), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Oncologia Basico Clinica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lara Termini
- Instituto do Cancer do Estado de Sao Paulo ICESP, Centro de Investigacao Translacional em Oncologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|