1
|
Xu J, Zhou L, Chen H, He Y, Zhao G, Li L, Efferth T, Ding Z, Shan L. Aerosol inhalation of total ginsenosides repairs acute lung injury and inhibits pulmonary fibrosis through SMAD2 signaling-mediated mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155871. [PMID: 39098168 DOI: 10.1016/j.phymed.2024.155871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a progressive lung disease caused by previous acute lung injury (ALI), but there is currently no satisfactory therapy available. Aerosol inhalation of medicine is an effective way for treating PF. Total ginsenosides (TG) shows potential for the treatment of ALI and PF, but the effects of inhaled TG remain unclear. PURPOSE To determine the therapeutic effects of TG in ALI and PF, to assess the superiority of the inhaled form of TG over the routine form, and to clarify the mechanism of action of inhaled TG. METHODS Ultrahigh-performance liquid chromatography coupled with Q-Exactive Orbitrap mass spectrometry (UPLC-QE-MS) was applied to determine the chemoprofile of TG. A mouse model of ALI and PF was established to evaluate the effects of inhaled TG by using bronchoalveolar lavage fluid (BALF) analysis, histopathological observation, hydroxyproline assay, and immunohistochemical analysis. Primary mouse lung fibroblasts (MLF) and human lung fibroblast cell line (HFL1) were applied to determine the in vitro effects and mechanism of TG by using cell viability assay, quantitative real time PCR (qPCR) assay, and western blot (WB) analysis. RESULTS The UPLC-QE-MS results revealed the main types of ginsenosides in TG, including Re (14.15 ± 0.42%), Rd (8.42 ± 0.49%), Rg1 (6.22 ± 0.42%), Rb3 (3.28 ± 0.01%), Rb2 (3.09 ± 0.00%), Rc (2.33 ± 0.01%), Rg2 (2.09 ± 0.04%), Rb1 (1.43 ± 0.24%), and Rf (0.13 ± 0.06%). Inhaled TG, at dosages of 10, 20, and 30 mg/kg significantly alleviated both ALI and PF in mice. Analyses of BALF and HE staining revealed that TG modulated the levels of IFN-γ, IL-1β, and TGF-β1, reduced inflammatory cell infiltration, and restored the alveolar architecture of the lung tissues. Furthermore, HE and Masson's trichrome staining demonstrated that TG markedly decreased fibroblastic foci and collagen fiber deposition, evidenced by the reduction of blue-stained collagen fibers. Hydroxyproline assay and immunohistochemical analyses indicated that TG significantly decreased hydroxyproline level and down-regulated the expression of Col1a1, Col3a1, and α-sma. The inhaled administration of TG demonstrated enhanced efficacy over the oral route when comparable doses were used. Additionally, inhaled TG showed superior safety and therapeutic profiles compared to pirfenidone, as evidenced by a CCK8 assay, which confirmed that TG concentrations ranging from 20 to 120 μg/ml were non-cytotoxic. qPCR and WB analyses revealed that TG, at concentrations of 25, 50, and 100 μg/ml, significantly suppressed the phosphorylation of smad2 induced by TGF-β1 and down-regulated the expression of fibrotic genes and proteins, including α-sma, Col1a1, Col3a1, and FN1, suggesting an anti-fibrotic mechanism mediated by the smad2 signaling pathway. In vitro, TG's safety and efficacy were also found to be superior to those of pirfenidone. CONCLUSIONS This study demonstrates, for the first time, the therapeutic efficacy of inhaled TG in treating ALI and PF. Inhaled TG effectively inhibits inflammation and reduces collagen deposition, with a particular emphasis on its role in modulating the Smad2 signaling pathway, which is implicated in the anti-fibrotic mechanism of TG. The study also highlights the superiority of inhaled TG over the oral route and its favorable safety profile in comparison to pirfenidone, positioning it as an ideal alternative for ALI and PF therapy.
Collapse
Affiliation(s)
- Jiaan Xu
- Fuyang Academy of Research, Zhejiang Chinese Medical University, Hangzhou 310053, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310053, China
| | - Huixin Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yuzhou He
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province), Hangzhou 310053, China
| | - Guoping Zhao
- Fuyang Academy of Research, Zhejiang Chinese Medical University, Hangzhou 310053, China; CAS Key Laboratory of Synthetic Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lan Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310053, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany.
| | - Zhishan Ding
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Letian Shan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province), Hangzhou 310053, China.
| |
Collapse
|
2
|
Elhady SS, Goda MS, Mehanna ET, El-Sayed NM, Hazem RM, Elfaky MA, Almalki AJ, Mohamed MS, Abdelhameed RFA. Ziziphus spina-christi L. extract attenuates bleomycin-induced lung fibrosis in mice via regulating TGF-β1/SMAD pathway: LC-MS/MS Metabolic profiling, chemical composition, and histology studies. Biomed Pharmacother 2024; 176:116823. [PMID: 38834008 DOI: 10.1016/j.biopha.2024.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024] Open
Abstract
Ancient Egyptians (including Bedouins and Nubians) have long utilized Ziziphus spina-christi (L.), a traditional Arabian medicinal herb, to alleviate swellings and inflammatory disorders. It is also mentioned in Christian and Muslim traditions. Ziziphus spina-christi L. (Family: Rhamnaceae) is a plentiful source of polyphenols, revealing free radical scavenging, antioxidant, metal chelating, cytotoxic, and anti-inflammatory activities. Herein, different classes of the existing bioactive metabolites in Z. spina-christi L. were detected using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the first time. The study also aimed to assess the anti-inflammatory and antifibrotic properties of Z. spina-christi L. extract against bleomycin-induced lung fibrosis in an experimental mouse model. 32 male Swiss Albino mice were assigned into 4 groups; the first and second were the normal control group and the bleomycin positive control (single 2.5 U/kg bleomycin intratracheal dose). The third and fourth groups received 100 and 200 mg/kg/day Z. spina-christi L. extract orally for 3 weeks, 2 weeks before bleomycin, and 1 week after. The bioactive metabolites in Z. spina-christi L. extract were identified as phenolic acids, catechins, flavonoids, chalcones, stilbenes, triterpenoid acids, saponins, and sterols. The contents of total phenolic compounds and flavonoids were found to be 196.62 mg GAE/gm and 33.29 mg QE/gm, respectively. In the experimental study, histopathological examination revealed that lung fibrosis was attenuated in both Z. spina-christi L.- treated groups. Z. spina-christi L. extract downregulated the expression of nuclear factor kappa B (NF-κB) p65 and decreased levels of the inflammatory markers tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and c-Jun N-terminal kinase (JNK) in lung tissue. Z. spina-christi L. also downregulated the expression of the fibrotic parameters collagen-1, alpha-smooth muscle actin (α-SMA), transforming growth factor-beta 1 (TGF-β1), matrix metalloproteinase-9 (MMP-9) and SMAD3, with upregulation of the antifibrotic SMAD7 in lung tissue. Overall, the present study suggests a potential protective effect of Z. spina-christi L. extract against bleomycin-induced lung fibrosis through regulation of the TGF-β1/SMAD pathway.
Collapse
Affiliation(s)
- Sameh S Elhady
- King Abdulaziz University Herbarium, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Marwa S Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Norhan M El-Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Reem M Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mahmoud A Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmad J Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Malik Suliman Mohamed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, Khartoum University, Khartoum 11111, Sudan
| | - Reda F A Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt.
| |
Collapse
|
3
|
Mousa AM, Nooman MU, Abbas SS, Gebril SM, Abdelraof M, Al-Kashef AS. Protective effects of microbial biosurfactants produced by Bacillus halotolerans and Candida parapsilosis on bleomycin-induced pulmonary fibrosis in mice: Impact of antioxidant, anti-inflammatory and anti-fibrotic properties via TGF-β1/Smad-3 pathway and miRNA-326. Toxicol Appl Pharmacol 2024; 486:116939. [PMID: 38643951 DOI: 10.1016/j.taap.2024.116939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible disease which considered the most fatal pulmonary fibrosis. Pulmonary toxicity including IPF is the most severe adverse effect of bleomycin, the chemotherapeutic agent. Based on the fact that, exogenous surfactants could induce alveolar stabilization in many lung diseases, the aim of this study was to explore the effects of low cost biosurfactants, surfactin (SUR) and sophorolipids (SLs), against bleomycin-induced pulmonary fibrosis in mice due to their antioxidant, and anti-inflammatory properties. Surfactin and sophorolipids were produced by microbial conversion of frying oil and potato peel wastes using Bacillus halotolerans and Candida parapsilosis respectively. These biosurfactants were identified by FTIR, 1H NMR, and LC-MS/MS spectra. C57BL/6 mice were administered the produced biosurfactants daily at oral dose of 200 mg kg-1 one day after the first bleomycin dose (35 U/kg). We evaluated four study groups: Control, Bleomycin, Bleomycin+SUR, Bleomycin+SLs. After 30 days, lungs from each mouse were sampled for oxidative stress, ELISA, Western blot, histopathological, immunohistochemical analyses. Our results showed that the produced SUR and SLs reduced pulmonary oxidative stress and inflammatory response in the lungs of bleomycin induced mice as they suppressed SOD, CAT, and GST activities also reduced NF-κβ, TNF-α, and CD68 levels. Furthermore, biosurfactants suppressed the expression of TGF-β1, Smad-3, and p-JNK fibrotic signaling pathway in pulmonary tissues. Histologically, SUR and SLs protected against lung ECM deposition caused by bleomycin administration. Biosurfactants produced from microbial sources can inhibit the induced inflammatory and fibrotic responses in bleomycin-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Amria M Mousa
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| | - Mohamed U Nooman
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| | - Samah S Abbas
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Egypt.
| | - Sahar M Gebril
- Histology and Cell Biology Department, Faculty of Medicine, Sohag University, Egypt.
| | - Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt.
| | - Amr S Al-Kashef
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| |
Collapse
|
4
|
Somanader DVN, Zhao P, Widdop RE, Samuel CS. The involvement of the Wnt/β-catenin signaling cascade in fibrosis progression and its therapeutic targeting by relaxin. Biochem Pharmacol 2024; 223:116130. [PMID: 38490518 DOI: 10.1016/j.bcp.2024.116130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Organ scarring, referred to as fibrosis, results from a failed wound-healing response to chronic tissue injury and is characterised by the aberrant accumulation of various extracellular matrix (ECM) components. Once established, fibrosis is recognised as a hallmark of stiffened and dysfunctional tissues, hence, various fibrosis-related diseases collectively contribute to high morbidity and mortality in developed countries. Despite this, these diseases are ineffectively treated by currently-available medications. The pro-fibrotic cytokine, transforming growth factor (TGF)-β1, has emerged as the master regulator of fibrosis progression, owing to its ability to promote various factors and processes that facilitate rapid ECM synthesis and deposition, whilst negating ECM degradation. TGF-β1 signal transduction is tightly controlled by canonical (Smad-dependent) and non-canonical (MAP kinase- and Rho-associated protein kinase-dependent) intracellular protein activity, whereas its pro-fibrotic actions can also be facilitated by the Wnt/β-catenin pathway. This review outlines the pathological sequence of events and contributing roles of TGF-β1 in the progression of fibrosis, and how the Wnt/β-catenin pathway contributes to tissue repair in acute disease settings, but to fibrosis and related tissue dysfunction in synergy with TGF-β1 in chronic diseases. It also outlines the anti-fibrotic and related signal transduction mechanisms of the hormone, relaxin, that are mediated via its negative modulation of TGF-β1 and Wnt/β-catenin signaling, but through the promotion of Wnt/β-catenin activity in acute disease settings. Collectively, this highlights that the crosstalk between TGF-β1 signal transduction and the Wnt/β-catenin cascade may provide a therapeutic target that can be exploited to broadly treat and reverse established fibrosis.
Collapse
Affiliation(s)
- Deidree V N Somanader
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Peishen Zhao
- Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
5
|
Habashy NH, Olleak SA, Abu-Serie MM, Shaban NZ. A new approach for the treatment of bleomycin-induced rat pulmonary injury by combined protein fraction of major royal jelly protein 2 and its isoform X1. Biomed Pharmacother 2023; 167:115578. [PMID: 37742609 DOI: 10.1016/j.biopha.2023.115578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023] Open
Abstract
Nowadays, royal jelly (RJ) has gained great interest as a functional food due to its valuable pharmacological effects. We investigated the therapeutic potency of combined protein fraction (PF50) of major RJ protein 2 and its isoform X1 on bleomycin (Bleo)-induced pulmonary injury in rats. Our study examined the impact of PF50 on pulmonary oxidative and inflammatory stress as well as smooth muscle alpha-actin (α-SMA). In addition, the predicted impacts of this PF on the activity of matrix metalloproteinase (MMP)- 8 and 15-prostaglandin dehydrogenase (15-PGDH) and the E-type prostanoid 2 (EP2) and IL-13 α2 subunit (IL13α2R) receptors, were evaluated using molecular docking. The results showed that PF50 reduced pulmonary inflammatory cells and their secreted pro-inflammatory mediators, including NF-κB, IKK, IL-4, IL-6, and NO. Additionally, the levels of IgE and mucin were diminished after treatment with PF50. Moreover, PF50 treatment improved pulmonary oxidative stress indices such as lipid peroxidation, GSH, SOD, and GPX. The histopathological findings, chest conventional X-ray, and immunohistochemistry of α-SMA confirmed the ameliorating effect of PF50. The docking outcomes reported the probable competitive inhibitory influence of PF50 on MMP-8 and a postulated blocking effect on EP2 and IL13α2R. Thus, PF50 could be a novel approach for treating pulmonary injuries.
Collapse
Affiliation(s)
- Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Shaimaa A Olleak
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg EL-Arab, 21934 Alexandria, Egypt.
| | - Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Genovese T, Duranti A, Monaco F, Siracusa R, Fusco R, Impellizzeri D, D’Amico R, Cordaro M, Cuzzocrea S, Di Paola R. Inhibition of Fatty Acid Amide Hydrolase (FAAH) Regulates NF-kb Pathways Reducing Bleomycin-Induced Chronic Lung Inflammation and Pulmonary Fibrosis. Int J Mol Sci 2023; 24:10125. [PMID: 37373275 PMCID: PMC10298572 DOI: 10.3390/ijms241210125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
The deadly interstitial lung condition known as idiopathic pulmonary fibrosis (IPF) worsens over time and for no apparent reason. The traditional therapy approaches for IPF, which include corticosteroids and immunomodulatory drugs, are often ineffective and can have noticeable side effects. The endocannabinoids are hydrolyzed by a membrane protein called fatty acid amide hydrolase (FAAH). Increasing endogenous levels of endocannabinoid by pharmacologically inhibiting FAAH results in numerous analgesic advantages in a variety of experimental models for pre-clinical pain and inflammation. In our study, we mimicked IPF by administering intratracheal bleomycin, and we administered oral URB878 at a dose of 5 mg/kg. The histological changes, cell infiltration, pro-inflammatory cytokine production, inflammation, and nitrosative stress caused by bleomycin were all reduced by URB878. Our data clearly demonstrate for the first time that the inhibition of FAAH activity was able to counteract not only the histological alteration bleomycin-induced but also the cascade of related inflammatory events.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, Italy
| | - Francesco Monaco
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| |
Collapse
|
7
|
Butler K, Banday AR. APOBEC3-mediated mutagenesis in cancer: causes, clinical significance and therapeutic potential. J Hematol Oncol 2023; 16:31. [PMID: 36978147 PMCID: PMC10044795 DOI: 10.1186/s13045-023-01425-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Apolipoprotein B mRNA-editing enzyme, catalytic polypeptides (APOBECs) are cytosine deaminases involved in innate and adaptive immunity. However, some APOBEC family members can also deaminate host genomes to generate oncogenic mutations. The resulting mutations, primarily signatures 2 and 13, occur in many tumor types and are among the most common mutational signatures in cancer. This review summarizes the current evidence implicating APOBEC3s as major mutators and outlines the exogenous and endogenous triggers of APOBEC3 expression and mutational activity. The review also discusses how APOBEC3-mediated mutagenesis impacts tumor evolution through both mutagenic and non-mutagenic pathways, including by inducing driver mutations and modulating the tumor immune microenvironment. Moving from molecular biology to clinical outcomes, the review concludes by summarizing the divergent prognostic significance of APOBEC3s across cancer types and their therapeutic potential in the current and future clinical landscapes.
Collapse
Affiliation(s)
- Kelly Butler
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - A Rouf Banday
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Repositioning itraconazole for amelioration of bleomycin-induced pulmonary fibrosis: Targeting HMGB1/TLR4 Axis, NLRP3 inflammasome/NF-κB signaling, and autophagy. Life Sci 2023; 313:121288. [PMID: 36528079 DOI: 10.1016/j.lfs.2022.121288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Bleomycin (BLM) is one of the antitumor medications that had proven efficacy in the treatment of a wide range of malignant conditions. Pulmonary fibrosis which is frequently encountered during the course of bleomycin therapy may significantly reduce the potential efficacy of bleomycin in cancer therapy. This study tested the hypothesis that itraconazole may have mitigating effects on BLM-induced pulmonary fibrosis and tried to delineate the potential mechanisms of these effects. MATERIALS AND METHODS In a rat model of pulmonary fibrosis elicited by BLM, the effect of different doses of itraconazole was explored at the biochemical, histopathological, and electron microscopic levels. KEY FINDINGS Itraconazole, in a dose-dependent manner, exhibited significant effects on the pro-oxidant/antioxidant balance, the inflammatory consequences, high-mobility group box 1/toll-like receptor-4 Axis, autophagy and nuclear factor kappa B/Nod-like receptor protein 3 inflammasome signaling and alleviated the histopathological, immunohistochemical, and electron microscopic perturbations induced by BLM in the pulmonary tissues. SIGNIFICANCE In view of the afore-mentioned data, itraconazole may be a promising drug that efficiently mitigates the deleterious effects of BLM on the pulmonary tissues.
Collapse
|
9
|
Usman IM, Adebisi SS, Musa SA, Iliya IA, Archibong VB, Lemuel AM, Kasozi KI. Tamarindus indica ameliorates behavioral and cytoarchitectural changes in the cerebellar cortex following prenatal aluminum chloride exposure in Wistar rats. Anat Cell Biol 2022; 55:320-329. [PMID: 36002437 PMCID: PMC9519771 DOI: 10.5115/acb.22.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/27/2022] Open
Abstract
Aluminium exposure has been linked with developmental neurotoxicity in humans and experimental animals. The study aimed to evaluate the ameliorative effect of Tamarindus indica on the developing cerebellar cortex, neurobehavior, and immunohistochemistry of the cerebellar cortex following prenatal aluminum chloride (AlCl3) exposure. Pregnant timed Wistar rats were divided into 5 groups (n=4). Group I (negative control) was given distilled water, group II was treated with 200 mg/kg of AlCl3, group III were given 200 mg/kg of AlCl3 and 400 mg/kg of ethyl acetate leaf fraction of Tamarindus indica (EATI), group IV were given 200 mg/kg of AlCl3 and 800 mg/kg of EATI, and group V were treated with 200 mg/kg of AlCl3 s/c and 300 mg/kg of vitamin E for 14 days (prenatal day 7-21) via the oral route. Male pups (n=6) were randomly selected and taken for neurobehavioral studies, and humanely sacrificed via intraperitoneal injection of thiopental sodium. The cerebellum was removed, fixed and tissue processed for histological and immunohistochemical studies. The results revealed that prenatal AlCl3 exposure impacted neurodevelopment and neurobehaviour among exposed pups. Prenatal AlCl3 exposure was marked with delayed cytoarchitectural development of the cerebellar cortex and increased GFAP expression in the cerebellar cortex. On the other hand, treatment with EATI and vitamin E were marked with significant improvements. The present study therefore concluded treatment with EATI shows an ameliorative effect to prenatal AlCl3 exposure.
Collapse
Affiliation(s)
- Ibe Michael Usman
- Department of Human Anatomy, Faculty of Biomedical Sciences, Kampala International University, Bushenyi, Uganda.,Department of Human Anatomy, College of Medicine and Health Science, Ahmadu Bello University, Zaria, Nigeria
| | - Samuel Sunday Adebisi
- Department of Human Anatomy, College of Medicine and Health Science, Ahmadu Bello University, Zaria, Nigeria
| | - Sunday Abraham Musa
- Department of Human Anatomy, College of Medicine and Health Science, Ahmadu Bello University, Zaria, Nigeria
| | | | - Victor Bassey Archibong
- Department of Human Anatomy, Faculty of Biomedical Sciences, Kampala International University, Bushenyi, Uganda.,Department of Human Anatomy, College of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Ann Monima Lemuel
- Department of Human Anatomy, Faculty of Biomedical Sciences, Kampala International University, Bushenyi, Uganda
| | - Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|