1
|
Shanbhag S, Kampleitner C, Sanz-Esporrin J, Lie SA, Gruber R, Mustafa K, Sanz M. Regeneration of alveolar bone defects in the experimental pig model: A systematic review and meta-analysis. Clin Oral Implants Res 2024; 35:467-486. [PMID: 38450852 DOI: 10.1111/clr.14253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE Pigs are emerging as a preferred experimental in vivo model for bone regeneration. The study objective was to answer the focused PEO question: in the pig model (P), what is the capacity of experimental alveolar bone defects (E) for spontaneous regeneration in terms of new bone formation (O)? METHODS Following PRISMA guidelines, electronic databases were searched for studies reporting experimental bone defects or extraction socket healing in the maxillae or mandibles of pigs. The main inclusion criteria were the presence of a control group of untreated defects/sockets and the assessment of regeneration via 3D tomography [radiographic defect fill (RDF)] or 2D histomorphometry [new bone formation (NBF)]. Random effects meta-analyses were performed for the outcomes RDF and NBF. RESULTS Overall, 45 studies were included reporting on alveolar bone defects or extraction sockets, most frequently in the mandibles of minipigs. Based on morphology, defects were broadly classified as 'box-defects' (BD) or 'cylinder-defects' (CD) with a wide range of healing times (10 days to 52 weeks). Meta-analyses revealed pooled estimates (with 95% confidence intervals) of 50% RDF (36.87%-63.15%) and 43.74% NBF (30.47%-57%) in BD, and 44% RDF (16.48%-71.61%) and 39.67% NBF (31.53%-47.81%) in CD, which were similar to estimates of socket-healing [48.74% RDF (40.35%-57.13%) and 38.73% NBF (28.57%-48.89%)]. Heterogeneity in the meta-analysis was high (I2 > 90%). CONCLUSION A substantial body of literature revealed a high capacity for spontaneous regeneration in experimental alveolar bone defects of (mini)pigs, which should be considered in future studies of bone regeneration in this animal model.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Carina Kampleitner
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Javier Sanz-Esporrin
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, Madrid, Spain
| | - Stein-Atle Lie
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Reinhard Gruber
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Mariano Sanz
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
2
|
Park SJ, Rahman MM, Lee J, Kang SW, Kim S. Investigation of Bone Regeneration Efficacy of New Bovine Bone Minerals in a Canine Mandibular Critical Defect Model. Adv Healthc Mater 2023; 12:e2202942. [PMID: 37256639 DOI: 10.1002/adhm.202202942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/26/2023] [Indexed: 06/01/2023]
Abstract
This study aims to investigate the bone regeneration effect of bovine hydroxyapatite-processed biomaterials Bone-XB and S1-XB in a beagle mandibular defect model. A total of four saddle-type critical sizes (15 mm × 10 mm) bone defects are created in each dog: two defects in the left mandible and two defects in the right mandible. The defect control (DC) group is kept unfilled, and the other three defects are filled with three different biomaterials as follows: positive control Bio-Oss (Bio-Oss group), Bone-XB (XB group), and S1-XB (S1-XB group). Bone regeneration is evaluated by radiography, micro-computed tomography, and histological analysis. It is revealed that Bone-XB and S1-XB significantly increase newly formed bone, defect filling percentage, and bone healing score compared to the DC group, which is confirmed by bone microstructure augmentation (bone volume/total volume, trabecular number, and trabecular thickness). Interestingly, no significant differences are observed between the Bone-XB, S1-XB, and Bio-Oss groups. It is suggested that Bone-XB or S1-XB stimulates bone regeneration demonstrated by the increase in newly formed bone and bone microstructure, thereby improving bone defect filling, which is equivalent to the Bio-Oss. Therefore, bovine hydroxyapatite-processed Bone-XB or S1-XB can be considered effective biomaterials for correcting critical-size bone defects or fractures.
Collapse
Affiliation(s)
- Sung-Jin Park
- Research Center, HLB bioStep Co., Ltd., Incheon, 22014, Republic of Korea
- Laboratory of Hygienic Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Md Mahbubur Rahman
- Research Center, HLB bioStep Co., Ltd., Incheon, 22014, Republic of Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21936, Republic of Korea
| | - Jaebum Lee
- Medpark Co., Ltd., Seoul, 07282, Republic of Korea
- Laboratory for Applied Periodontal & Craniofacial Research, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Suk-Woong Kang
- Department of Orthopedic surgery, Busan National University Yangsan Hospital, Yangsan, 50612, Republic of Korea
| | - Sokho Kim
- Research Center, HLB bioStep Co., Ltd., Incheon, 22014, Republic of Korea
| |
Collapse
|
3
|
Carlisle PL, Guda T, Silliman DT, Hale RG, Brown Baer PR. Are critical size bone notch defects possible in the rabbit mandible? J Korean Assoc Oral Maxillofac Surg 2019; 45:97-107. [PMID: 31106138 PMCID: PMC6502752 DOI: 10.5125/jkaoms.2019.45.2.97] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 11/07/2022] Open
Abstract
Objectives Small animal maxillofacial models, such as non-segmental critical size defects (CSDs) in the rabbit mandible, need to be standardized for use as preclinical models of bone regeneration to mimic clinical conditions such as maxillofacial trauma. The objective of this study is the establishment of a mechanically competent CSD model in the rabbit mandible to allow standardized evaluation of bone regeneration therapies. Materials and Methods Three sizes of bony defect were generated in the mandibular body of rabbit hemi-mandibles: 12 mm×5 mm, 12 mm×8 mm, and 15 mm×10 mm. The hemi-mandibles were tested to failure in 3-point flexure. The 12 mm×5 mm defect was then chosen for the defect size created in the mandibles of 26 rabbits with or without cautery of the defect margins and bone regeneration was assessed after 6 and 12 weeks. Regenerated bone density and volume were evaluated using radiography, micro-computed tomography, and histology. Results Flexural strength of the 12 mm×5 mm defect was similar to its contralateral; whereas the 12 mm×8 mm and 15 mm×10 mm groups carried significantly less load than their respective contralaterals (P<0.05). This demonstrated that the 12 mm×5 mm defect did not significantly compromise mandibular mechanical integrity. Significantly less (P<0.05) bone was regenerated at 6 weeks in cauterized defect margins compared to controls without cautery. After 12 weeks, the bone volume of the group with cautery increased to that of the control without cautery after 6 weeks. Conclusion An empty defect size of 12 mm×5 mm in the rabbit mandibular model maintains sufficient mechanical stability to not require additional stabilization. However, this defect size allows for bone regeneration across the defect. Cautery of the defect only delays regeneration by 6 weeks suggesting that the performance of bone graft materials in mandibular defects of this size should be considered with caution.
Collapse
Affiliation(s)
- Patricia L Carlisle
- Department of Craniomaxillofacial Regenerative Medicine, Dental and Trauma Research Detachment, Fort Sam Houston, TX, USA
| | - Teja Guda
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - David T Silliman
- Department of Craniomaxillofacial Regenerative Medicine, Dental and Trauma Research Detachment, Fort Sam Houston, TX, USA
| | - Robert G Hale
- Department of Craniomaxillofacial Regenerative Medicine, Dental and Trauma Research Detachment, Fort Sam Houston, TX, USA
| | - Pamela R Brown Baer
- Department of Craniomaxillofacial Regenerative Medicine, Dental and Trauma Research Detachment, Fort Sam Houston, TX, USA
| |
Collapse
|
4
|
Carlisle P, Guda T, Silliman DT, Burdette AJ, Talley AD, Alvarez R, Tucker D, Hale RG, Guelcher SA, BrownBaer PR. Localized low-dose rhBMP-2 is effective at promoting bone regeneration in mandibular segmental defects. J Biomed Mater Res B Appl Biomater 2018; 107:1491-1503. [PMID: 30265782 DOI: 10.1002/jbm.b.34241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/11/2018] [Accepted: 08/18/2018] [Indexed: 12/29/2022]
Abstract
At least 26% of recent battlefield injuries are to the craniomaxillofacial (CMF) region. Recombinant human bone morphogenetic protein 2 (rhBMP-2) is used to treat CMF open fractures, but several complications have been associated with its use. This study tested the efficacy and safety of a lower (30% recommended) dose of rhBMP-2 to treat mandibular fractures. rhBMP-2 delivered via a polyurethane (PUR) and hydroxyapatite/β-tricalcium phosphate (Mastergraft®) scaffold was evaluated in a 2 cm segmental mandibular defect in minipigs. Bone regeneration was analyzed at 4, 8, and 12 weeks postsurgery using clinical computed tomography (CT) and rhBMP-2, and inflammatory marker concentrations were analyzed in serum and surgery-site drain effluent. CT scans revealed that pigs treated with PUR-Mastergraft® + rhBMP-2 had complete bone bridging, while the negative control group showed incomplete bone-bridging (n = 6). Volumetric analysis of regenerated bone showed that the PUR-Mastergraft® + rhBMP-2 treatment generated significantly more bone than control by 4 weeks, a trend that continued through 12 weeks. Variations in inflammatory analytes were detected in drain effluent samples and saliva but not in serum, suggesting a localized healing response. Importantly, the rhBMP-2 group did not exhibit an excessive increase in inflammatory analytes compared to control. Treatment with low-dose rhBMP-2 increases bone regeneration capacity in pigs with mandibular continuity defects and restores bone quality. Negative complications from rhBMP-2, such as excessive inflammatory analyte levels, were not observed. Together, these results suggest that treatment with low-dose rhBMP-2 is efficacious and may improve safety when treating CMF open fractures. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1491-1503, 2019.
Collapse
Affiliation(s)
- Patricia Carlisle
- Department of Craniomaxillofacial Regenerative Medicine, Dental and Trauma Research Detachment, Fort Sam Houston, Texas, 78234
| | - Teja Guda
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas, 78249
| | - David T Silliman
- Department of Craniomaxillofacial Regenerative Medicine, Dental and Trauma Research Detachment, Fort Sam Houston, Texas, 78234
| | - Alexander J Burdette
- United States Naval Medical Research Unit-San Antonio, Fort Sam Houston, Texas, 78234
| | - Anne D Talley
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235
| | - Rene Alvarez
- United States Naval Medical Research Unit-San Antonio, Fort Sam Houston, Texas, 78234
| | - David Tucker
- Department of Craniomaxillofacial Regenerative Medicine, Dental and Trauma Research Detachment, Fort Sam Houston, Texas, 78234
| | - Robert G Hale
- Department of Craniomaxillofacial Regenerative Medicine, Dental and Trauma Research Detachment, Fort Sam Houston, Texas, 78234
| | - Scott A Guelcher
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235
| | - Pamela R BrownBaer
- Department of Craniomaxillofacial Regenerative Medicine, Dental and Trauma Research Detachment, Fort Sam Houston, Texas, 78234
| |
Collapse
|
5
|
Cengiz IF, Oliveira JM, Reis RL. Micro-CT - a digital 3D microstructural voyage into scaffolds: a systematic review of the reported methods and results. Biomater Res 2018; 22:26. [PMID: 30275969 PMCID: PMC6158835 DOI: 10.1186/s40824-018-0136-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/03/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Cell behavior is the key to tissue regeneration. Given the fact that most of the cells used in tissue engineering are anchorage-dependent, their behavior including adhesion, growth, migration, matrix synthesis, and differentiation is related to the design of the scaffolds. Thus, characterization of the scaffolds is highly required. Micro-computed tomography (micro-CT) provides a powerful platform to analyze, visualize, and explore any portion of interest in the scaffold in a 3D fashion without cutting or destroying it with the benefit of almost no sample preparation need. MAIN BODY This review highlights the relationship between the scaffold microstructure and cell behavior, and provides the basics of the micro-CT method. In this work, we also analyzed the original papers that were published in 2016 through a systematic search to address the need for specific improvements in the methods section of the papers including the amount of provided information from the obtained results. CONCLUSION Micro-CT offers a unique microstructural analysis of biomaterials, notwithstanding the associated challenges and limitations. Future studies that will include micro-CT characterization of scaffolds should report the important details of the method, and the derived quantitative and qualitative information can be maximized.
Collapse
Affiliation(s)
- Ibrahim Fatih Cengiz
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
6
|
Gharat TP, Diaz-Rodriguez P, Erndt-Marino JD, Jimenez Vergara AC, Munoz Pinto DJ, Bearden RN, Huggins SS, Grunlan M, Saunders WB, Hahn MS. A canine in vitro model for evaluation of marrow-derived mesenchymal stromal cell-based bone scaffolds. J Biomed Mater Res A 2018; 106:2382-2393. [PMID: 29633508 PMCID: PMC6158043 DOI: 10.1002/jbm.a.36430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/18/2018] [Accepted: 03/28/2018] [Indexed: 12/23/2022]
Abstract
Tissue engineered bone grafts based on bone marrow mesenchymal stromal cells (MSCs) are being actively developed for craniomaxillofacial (CMF) applications. As for all tissue engineered implants, the bone-regenerating capacity of these MSC-based grafts must first be evaluated in animal models prior to human trials. Canine models have traditionally resulted in improved clinical translation of CMF grafts relative to other animal models. However, the utility of canine CMF models for evaluating MSC-based bone grafts rests on canine MSCs (cMSCs) responding in a similar manner to scaffold-based stimuli as human MSCs (hMSCs). Herein, cMSC and hMSC responses to polyethylene glycol (PEG)-based scaffolds were therefore compared in the presence or absence of osteoinductive polydimethylsiloxane (PDMS). Notably, the conjugation of PDMS to PEG-based constructs resulted in increases in both cMSC and hMSC osteopontin and calcium deposition. Based on these results, cMSCs were further used to assess the efficacy of tethered bone morphogenic protein 2 (BMP2) in enhancing PEG-PDMS scaffold osteoinductivity. Addition of low doses of tethered BMP2 (100 ng/mL) to PEG-PDMS systems increased cMSC expression of osterix and osteopontin compared to both PEG-PDMS and PEG-BMP2 controls. Furthermore, these increases were comparable to effects seen with up to five-times higher BMP2 doses noted in literature. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2382-2393, 2018.
Collapse
Affiliation(s)
- Tanmay P. Gharat
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | | - Josh D. Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | | - Dany J. Munoz Pinto
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert N. Bearden
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Shannon S. Huggins
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Melissa Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - W. Brian Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
7
|
Hu S, Zhou Y, Zhao Y, Xu Y, Zhang F, Gu N, Ma J, Reynolds MA, Xia Y, Xu HH. Enhanced bone regeneration and visual monitoring via superparamagnetic iron oxide nanoparticle scaffold in rats. J Tissue Eng Regen Med 2018; 12:e2085-e2098. [DOI: 10.1002/term.2641] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 11/28/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Shuying Hu
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical University Nanjing P. R. China
| | - Yi Zhou
- Yixing People's Hospital Yixing P. R. China
| | - Yantao Zhao
- Beijing Engineering Research Center of Orthopaedic ImplantsFirst Affiliated Hospital of CPLA General Hospital Beijing P. R. China
| | - Yang Xu
- Affiliated Stomatology Hospital of Soochow University Suzhou P. R. China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical University Nanjing P. R. China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical EngineeringSoutheast University Nanjing P. R. China
- Suzhou Institute & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoutheast University Suzhou P. R. China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical University Nanjing P. R. China
| | - Mark A. Reynolds
- Department of Advanced Oral Sciences & TherapeuticsUniversity of Maryland School of Dentistry Baltimore MD USA
| | - Yang Xia
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical University Nanjing P. R. China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical EngineeringSoutheast University Nanjing P. R. China
- Department of Advanced Oral Sciences & TherapeuticsUniversity of Maryland School of Dentistry Baltimore MD USA
| | - Hockin H.K. Xu
- Department of Advanced Oral Sciences & TherapeuticsUniversity of Maryland School of Dentistry Baltimore MD USA
- Center for Stem Cell Biology & Regenerative MedicineUniversity of Maryland School of Medicine Baltimore MD USA
- Department of Mechanical EngineeringUniversity of Maryland Baltimore County Baltimore County MD USA
| |
Collapse
|
8
|
Sun Y, Wang C, Chen Q, Liu H, Deng C, Ling P, Cui FZ. Effects of the bilayer nano-hydroxyapatite/mineralized collagen-guided bone regeneration membrane on site preservation in dogs. J Biomater Appl 2017; 32:242-256. [DOI: 10.1177/0885328217715150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yi Sun
- School of Stomatology, Wannan Medical college, WuHu, Anhui, PR China
| | - Chengyue Wang
- School of Stomatology, Wannan Medical college, WuHu, Anhui, PR China
| | - Qixin Chen
- School of Stomatology, Wannan Medical college, WuHu, Anhui, PR China
| | - Hai Liu
- School of Stomatology, Wannan Medical college, WuHu, Anhui, PR China
| | - Chao Deng
- School of Stomatology, Wannan Medical college, WuHu, Anhui, PR China
| | - Peixue Ling
- School of Stomatology, Wannan Medical college, WuHu, Anhui, PR China
| | - Fu-Zhai Cui
- School of Stomatology, Wannan Medical college, WuHu, Anhui, PR China
| |
Collapse
|