1
|
Song J, Lee N, Yang HJ, Lee MS, Kopalli SR, Kim YU, Lee Y. The beneficial potential of ginseng for menopause. J Ginseng Res 2024; 48:449-453. [PMID: 39263310 PMCID: PMC11385173 DOI: 10.1016/j.jgr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 05/30/2024] [Indexed: 09/13/2024] Open
Abstract
Korean Red Ginseng (KRG) has long been used not only as a food supplement but also as a treatment for various diseases. Ginseng originated in South Korea, which later spread to China and Japan, has a wide range of pharmacological activities including immune, endocrine, cardiovascular, and central nervous system effects. KRG is produced by repetitions of steaming and drying of ginseng to extend preservation. During this steaming process, the components of ginseng undergo physio-chemical changes forming a variety of potential active constituents including ginsenoside-Rg3, a unique compound in KRG. Pandemic Coronavirus disease 2019 (COVID-19), has affected both men and women differentially. In particular, women were more vulnerable to COVID-related distress which in turn could aggravate menopause-related disturbances. Complementary and alternative medicinal plants could have aided middle-aged women for several menopause-related symptoms during and post COVID-19 pandemic. This review aimed to explore the beneficial effects of KRG on menopausal symptoms and gynecological cancer.
Collapse
Affiliation(s)
- JiHyeon Song
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Namkyu Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Hyun-Jeong Yang
- Department of Integrative Healthcare, University of Brain Education, Cheonan, Republic of Korea
| | - Myeong Soo Lee
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Yong-Ung Kim
- Department of Pharmaceutical Engineering, College of Cosmetics and Pharmaceuticals, Daegu Haany University, Gyeongsan, Republic of Korea
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Zhang Y, Zhong X, Xi Z, Li Y, Xu H. Antiviral Potential of the Genus Panax: An updated review on their effects and underlying mechanism of action. J Ginseng Res 2023; 47:183-192. [PMID: 36926608 PMCID: PMC10014226 DOI: 10.1016/j.jgr.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
Viral infections are known as one of the major factors causing death. Ginseng is a medicinal plant that demonstrated a wide range of antiviral potential, and saponins are the major bioactive ingredients in the genus Panax with vast therapeutic potential. Studies focusing on the antiviral activity of the genus Panax plant-derived agents (extracts and saponins) and their mechanisms were identified and summarized, including contributions mainly from January 2016 until January 2022. P. ginseng, P. notoginseng, and P. quinquefolius were included in the review as valuable medicinal herbs against infections with 14 types of viruses. Reports from 9 extracts and 12 bioactive saponins were included, with 6 types of protopanaxadiol (PPD) ginsenosides and 6 types of protopanaxatriol (PPT) ginsenosides. The mechanisms mainly involved the inhibition of viral attachment and replication, the modulation of immune response by regulating signaling pathways, including the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway, phosphoinositide-dependent kinase-1 (PDK1)/ protein kinase B (Akt) signaling pathway, c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) pathway, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. This review includes detailed information about the mentioned antiviral effects of the genus Panax extracts and saponins in vitro and in vivo, and in human clinical trials, which provides a scientific basis for ginseng as an adjunctive therapeutic drug or nutraceutical.
Collapse
Key Words
- ARI, acute respiratory illness
- BG, black ginseng
- BVDV, bovine viral diarrhea virus
- CHB, chronic hepatitis B
- CSFV, classical swine fever virus
- CVBs, group B coxsackieviruses
- DAA, direct-acting antiviral therapies
- EBV, the Epstein-Barr virus
- EV, enterovirus
- EV71, human enterovirus 71
- GCRV, grass carp reovirus
- GSLS, Ginseng stem-leaf saponins
- HAART, highly active antiretroviral drug therapy
- HBV, hepatitis B virus
- HCV, Hepatitis C virus
- HIV-1, human immunodeficiency virus type 1
- HP, highly pathogenic
- HSV, herpes simplex virus
- HVJ, hemagglutinating virus of Japan
- IFN-1, type-I interferon
- JAK, janus kinase
- JNK, c-Jun N-terminal kinase
- KRG, Korean Red Ginseng
- KSHV, Kaposi's sarcoma-associated herpesvirus
- MHV-68, murine gammaherpesvirus 68
- NDV, Newcastle disease virus
- NK, natural killer
- PNAB, PEGylated nanoparticle albumin-bound
- PNR, P. notoginseng root water extract
- PPD, protopanaxadiol
- PPT, protopanaxatriol
- PRRSV, porcine reproductive and respiratory syndrome virus
- Panax ginseng
- RSV, respiratory syncytial virus
- RV, rotavirus
- STAT, signal transducer and activator of transcription
- antiviral activity
- ginseng
- ginsenosides
- mechanism of action
Collapse
Affiliation(s)
- Yibo Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Xuanlei Zhong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Behl T, Rocchetti G, Chadha S, Zengin G, Bungau S, Kumar A, Mehta V, Uddin MS, Khullar G, Setia D, Arora S, Sinan KI, Ak G, Putnik P, Gallo M, Montesano D. Phytochemicals from Plant Foods as Potential Source of Antiviral Agents: An Overview. Pharmaceuticals (Basel) 2021; 14:381. [PMID: 33921724 PMCID: PMC8073840 DOI: 10.3390/ph14040381] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022] Open
Abstract
To date, the leading causes of mortality and morbidity worldwide include viral infections, such as Ebola, influenza virus, acquired immunodeficiency syndrome (AIDS), severe acute respiratory syndrome (SARS) and recently COVID-19 disease, caused by the SARS-CoV-2 virus. Currently, we can count on a narrow range of antiviral drugs, especially older generation ones like ribavirin and interferon which are effective against viruses in vitro but can often be ineffective in patients. In addition to these, we have antiviral agents for the treatment of herpes virus, influenza virus, HIV and hepatitis virus. Recently, drugs used in the past especially against ebolavirus, such as remdesivir and favipiravir, have been considered for the treatment of COVID-19 disease. However, even if these drugs represent important tools against viral diseases, they are certainly not sufficient to defend us from the multitude of viruses present in the environment. This represents a huge problem, especially considering the unprecedented global threat due to the advancement of COVID-19, which represents a potential risk to the health and life of millions of people. The demand, therefore, for new and effective antiviral drugs is very high. This review focuses on three fundamental points: (1) presents the main threats to human health, reviewing the most widespread viral diseases in the world, thus describing the scenario caused by the disease in question each time and evaluating the specific therapeutic remedies currently available. (2) It comprehensively describes main phytochemical classes, in particular from plant foods, with proven antiviral activities, the viruses potentially treated with the described phytochemicals. (3) Consideration of the various applications of drug delivery systems in order to improve the bioavailability of these compounds or extracts. A PRISMA flow diagram was used for the inclusion of the works. Taking into consideration the recent dramatic events caused by COVID-19 pandemic, the cry of alarm that denounces critical need for new antiviral drugs is extremely strong. For these reasons, a continuous systematic exploration of plant foods and their phytochemicals is necessary for the development of new antiviral agents capable of saving lives and improving their well-being.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, University Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Swati Chadha
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey; (G.Z.); (K.I.S.); (G.A.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Vineet Mehta
- Department of Pharmacology, Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh 171207, India;
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh;
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | - Gaurav Khullar
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Dhruv Setia
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Kouadio Ibrahime Sinan
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey; (G.Z.); (K.I.S.); (G.A.)
| | - Gunes Ak
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey; (G.Z.); (K.I.S.); (G.A.)
| | - Predrag Putnik
- Department of Food Technology, University North, 48000 Koprivnica, Croatia;
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini, 5, 80131 Naples, Italy
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
4
|
Ratan ZA, Youn SH, Kwak YS, Han CK, Haidere MF, Kim JK, Min H, Jung YJ, Hosseinzadeh H, Hyun SH, Cho JY. Adaptogenic effects of Panax ginseng on modulation of immune functions. J Ginseng Res 2021; 45:32-40. [PMID: 33437154 PMCID: PMC7790873 DOI: 10.1016/j.jgr.2020.09.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Traditional medicinal practices have used natural products such as adaptogens to treat inflammatory, autoimmune, neurodegenerative, bacterial, and viral diseases since the early days of civilization. Panax ginseng Myer is a common herb used in East Asian countries for millennia, especially in Korea, China, and Japan. Numerous studies indicate that ginseng can modulate the immune system and thereby prevent diseases. Although the human immune system comprises many different types of cells, multiple studies suggest that each type of immune cell can be controlled or stimulated by ginseng or its derivatives. Provisional lists of ginseng's potential for use against viruses, bacteria, and other microorganisms suggest it may prove to be a valuable pharmaceutical resource, particularly if higher-quality evidence can be found. Here, we reviewed the role of ginseng as an immune-modulating agent in attempt to provide a valuable starting point for future studies on the herb and the human immune system.
Collapse
Affiliation(s)
- Zubair Ahmed Ratan
- School of Health and Society, University of Wollongong, NSW, Australia
- Department of Biomedical Engineering, Khulna University of Engineering and Technology, Khulna, Bangladesh
| | - Soo Hyun Youn
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Yi-Seong Kwak
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Chang-Kyun Han
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | | | - Jin Kyeong Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyeyoung Min
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - You-Jung Jung
- Biological Resources Utilization Department, National Institute of Biological Resources, Incheon, Republic of Korea
| | | | - Sun Hee Hyun
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
5
|
Wright SM, Altman E. Inhibition of Herpes Simplex Viruses, Types 1 and 2, by Ginsenoside 20(S)-Rg3. J Microbiol Biotechnol 2020; 30:101-108. [PMID: 31693840 PMCID: PMC9728284 DOI: 10.4014/jmb.1908.08047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Infections by herpes simplex viruses have an immense impact on humans, ranging from selflimiting, benign illness to serious, life-threatening diseases. While nucleoside analog drugs are available, resistance has been increasing and currently no vaccine exists. Ginsenosides derived from Panax ginseng have been documented to inhibit several viruses and bolster immune defenses. This study evaluated 12 of the most relevant ginsenosides from P. ginseng for toxicities and inhibition of herpes simplex viruses types 1 and 2 in Vero cells. The effects of test compounds and virus infection were determined using a PrestoBlue cell viability assay. Time course studies were also conducted to better understand at what points the virus life cycle was affected. Non-toxic concentrations of the ginsenosides were determined and ranged from 12.5 µM to greater than 100 µM. Ginsenoside 20(S)-Rg3 demonstrated the greatest inhibitory effect and was active against both HSV-1 and HSV-2 with an IC50 of approximately 35 µM. The most dramatic inhibition-over 100% compared to controls-occurred when the virus was exposed to 20(S)-Rg3 for 4 h prior to being added to cells. 20(S)-Rg3 holds promise as a potential chemotherapeutic agent against herpes simplex viruses and, when used together with valacyclovir, may prevent increased resistance to drugs.
Collapse
Affiliation(s)
- Stephen M. Wright
- Department of Biology and the Tennessee Center for Botanical Medicine Research, Middle Tennessee State University, TN 37132, USA,Corresponding author Phone: +615-898-2056 Fax: +615-898-5093 E-mail:
| | - Elliot Altman
- Department of Biology and the Tennessee Center for Botanical Medicine Research, Middle Tennessee State University, TN 37132, USA
| |
Collapse
|
6
|
Pharmacological effects of ginseng on infectious diseases. Inflammopharmacology 2019; 27:871-883. [PMID: 31407196 DOI: 10.1007/s10787-019-00630-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/03/2019] [Indexed: 12/11/2022]
Abstract
Ginseng has been traditionally used as an herbal nutritional supplement in Asian countries, including Korea, China, Japan, and Vietnam for several millennia. Most studies have focused on the role of ginseng on anti-oxidative stress, anti-inflammatory, and anti-cancer activities. Recently, modulator activities of ginseng on the immune responses during pathogenic bacterial and viral infections and beneficial effects of ginseng in infectious diseases have been elucidated. In vivo and in vitro studies revealed the potential of ginseng extracts and ginsenosides Rg1, Rg3, Rb1, Rb2, Rb3, compound K, Re, Rd, Rh2 for treatment of several infectious diseases. The molecular mechanisms of these effects mainly involve inflammatory cytokines (TNF-α, IL-6, IL-1β, IFN-γ, IL-10), apoptotic pathway (bcl-2, bcl-xL), PI3K/Akt pathway, MAPKs pathway, JAK2/STAT5, NF-κB pathway, and the inflammasome. In this review, we will summarize the current knowledge on the effects of ginseng in the immune responses during the infections and its bioactivities on the prevention of infectious diseases as well as its underlying mechanisms. Moreover, the therapeutic potential of ginseng as an anti-bacterial and anti-viral medication and vaccine adjuvant will be discussed as well.
Collapse
|
7
|
Enhancing Immunomodulatory Function of Red Ginseng Through Fermentation Using Bifidobacterium animalis Subsp. lactis LT 19-2. Nutrients 2019; 11:nu11071481. [PMID: 31261829 PMCID: PMC6682942 DOI: 10.3390/nu11071481] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 01/19/2023] Open
Abstract
Removal of sugar moieties from ginsenosides has been proposed to increase their biological effects in various disease models. In order to identify strains that can increase aglycone contents, we performed a screening using bacteria isolated from the feces of infants focusing on acid tolerance and β-glucosidase activity. We isolated 565 bacteria and selected Bifidobacterium animalis subsp. lactis LT 19-2 (LT 19-2), which exhibited the highest β-glucosidase activity with strong acid tolerance. As red ginseng (RG) has been known to exert immunomodulatory functions, we fermented RG using LT 19-2 (FRG) and investigated whether this could alter the aglycone profile of ginsenosides and improve its immunomodulatory effect. FRG increased macrophage activity more potently compared to RG, demonstrated by higher TNF-α and IL-6 production. More importantly, the FRG treatment stimulated the proliferation of mouse splenocytes and increased TNF-α levels in bone marrow-derived macrophages, confirming that the enhanced immunomodulatory function can be recapitulated in primary immune cells. Examination of the molecular mechanism revealed that F-RG could induce phosphorylations of ERK, p38, JNK, and NF-κB. Analysis of the ginsenoside composition showed a decrease in Rb1, Re, Rc, and Rb3, accompanied by an increase in Rd, Rh1, F2, and Rg3, the corresponding aglycone metabolites, in FRG compared to RG. Collectively, LT 19-2 maybe used as a probiotic strain to improve the bioactivity of functional foods through modifying the aglycone/glycoside profile.
Collapse
|
8
|
Moon PD, Lee JS, Kim HY, Han NR, Kang I, Kim HM, Jeong HJ. Heat-treated Lactobacillus plantarum increases the immune responses through activation of natural killer cells and macrophages on in vivo and in vitro models. J Med Microbiol 2019; 68:467-474. [DOI: 10.1099/jmm.0.000938] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Phil-Dong Moon
- 1 Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- 2 Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin Soo Lee
- 1 Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee-Yun Kim
- 1 Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Na-Ra Han
- 1 Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Inyeong Kang
- 3 Biogenicskorea Co., Ltd., Seoul 06628, Republic of Korea
| | - Hyung-Min Kim
- 1 Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun-Ja Jeong
- 4 Department of Food Science & Technology and Biochip Research Center, Hoseo University, Chungnam 31499, Republic of Korea
| |
Collapse
|
9
|
Choi JG, Jin YH, Lee H, Oh TW, Yim NH, Cho WK, Ma JY. Protective Effect of Panax notoginseng Root Water Extract against Influenza A Virus Infection by Enhancing Antiviral Interferon-Mediated Immune Responses and Natural Killer Cell Activity. Front Immunol 2017; 8:1542. [PMID: 29181006 PMCID: PMC5693858 DOI: 10.3389/fimmu.2017.01542] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/30/2017] [Indexed: 01/27/2023] Open
Abstract
Influenza is an acute respiratory illness caused by the influenza A virus, which causes economic losses and social disruption mainly by increasing hospitalization and mortality rates among the elderly and people with chronic diseases. Influenza vaccines are the most effective means of preventing seasonal influenza, but can be completely ineffective if there is an antigenic mismatch between the seasonal vaccine virus and the virus circulating in the community. In addition, influenza viruses resistant to antiviral drugs are emerging worldwide. Thus, there is an urgent need to develop new vaccines and antiviral drugs against these viruses. In this study, we conducted in vitro and in vivo analyses of the antiviral effect of Panax notoginseng root (PNR), which is used as an herbal medicine and nutritional supplement in Korea and China. We confirmed that PNR significantly prevented influenza virus infection in a concentration-dependent manner in mouse macrophages. In addition, PNR pretreatment inhibited viral protein (PB1, PB2, HA, NA, M1, PA, M2, and NP) and viral mRNA (NS1, HA, PB2, PA, NP, M1, and M2) expression. PNR pretreatment also increased the secretion of pro-inflammatory cytokines [tumor necrosis factor alpha and interleukin 6] and interferon (IFN)-beta and the phosphorylation of type-I IFN-related proteins (TANK-binding kinase 1, STAT1, and IRF3) in vitro. In mice exposed to the influenza A H1N1 virus, PNR treatment decreased mortality by 90% and prevented weight loss (by approximately 10%) compared with the findings in untreated animals. In addition, splenocytes from PNR-administered mice displayed significantly enhanced natural killer (NK) cell activity against YAC-1 cells. Taking these findings together, PNR stimulates an antiviral response in murine macrophages and mice that protects against viral infection, which may be attributable to its ability to stimulate NK cell activity. Further investigations are needed to reveal the molecular mechanisms underlying the protective effects of PNR and its components against influenza virus A infection.
Collapse
Affiliation(s)
- Jang-Gi Choi
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Young-Hee Jin
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Heeeun Lee
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Tae Woo Oh
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Nam-Hui Yim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Won-Kyung Cho
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Jin Yeul Ma
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| |
Collapse
|
10
|
Cho YK, Kim JE. Effect of Korean Red Ginseng intake on the survival duration of human immunodeficiency virus type 1 patients. J Ginseng Res 2017; 41:222-226. [PMID: 28413328 PMCID: PMC5386125 DOI: 10.1016/j.jgr.2016.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/21/2016] [Accepted: 12/08/2016] [Indexed: 12/22/2022] Open
Abstract
Background Long-term ginseng intake can increase longevity in healthy individuals. Here, we examined if long-term treatment with Panax ginseng Meyer (Korean Red Ginseng, KRG) can also enhance survival duration (SD) in patients with human immunodeficiency virus type 1 (HIV-1) infection. Methods We retrospectively analyzed 252 HIV-1 patients diagnosed from 1986 to 2013 prior to the initiation of antiretroviral therapy. Overall, 162 patients were treated with KRG (3,947 ± 4,943 g) for 86 ± 63 mo. The effects of KRG on SD were analyzed according to the KRG intake level and the length of the follow-up period. Results There were significant correlations between the total amount of KRG and SD in the KRG intake group (r = 0.64, p < 0.0001) as well as between total amount of KRG and mean annual decrease in CD4+ T-cell count in all 252 patients (r = −0.17, p < 0.01). The annual decrease in CD4+ T-cell count (change in cells/μL) was significantly slower in KRG-treated patients than in patients receiving no KRG (48 ± 40 vs. 106 ± 162; p < 0.001). The SD (in months) was also significantly longer in the KRG group than in the no-KRG group (101 ± 64 vs. 59 ± 40, p < 0.01). Conclusion KRG prolongs survival in HIV-1 patients, possibly by slowing the decrease in CD4+ T-cell count.
Collapse
Affiliation(s)
- Young-Keol Cho
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung-Eun Kim
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Nguyen CT, Luong TT, Lee SY, Kim GL, Kwon H, Lee HG, Park CK, Rhee DK. Panax ginseng aqueous extract prevents pneumococcal sepsis in vivo by potentiating cell survival and diminishing inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:1055-1061. [PMID: 26407948 DOI: 10.1016/j.phymed.2015.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/14/2015] [Accepted: 07/17/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND More than 50% of sepsis cases are caused by Streptococcus pneumoniae, and hospital mortality related to sepsis comprises 52% of all hospital deaths. Therefore, sepsis is a medical emergency, and any treatment against the agent that produces it, is welcome. PURPOSE The role of Panax ginseng C.A. Meyer (Araliaceae) aqueous extract in bacterial infection in vivo is not well understood. Here, the protective effect of Korean red ginseng (KRG) extract against pneumococcal infection and sepsis was elucidated. STUDY DESIGN In this study, mice were administrated KRG (25, 50, 100 mg/kg) for 15 days, and then infected with a lethal S. pneumoniae strain. Survival rate, body weight, and colonization were determined. METHODS The RAW 264.7 macrophage cells were infected with S. pneumoniae and cell viability was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Inflammation was examined using an enzyme-linked immunosorbent assay (ELISA) and hematoxylin and eosin (HE) staining while gene expression was determined using western blotting. RESULTS KRG-pre-treated mice (100 mg/kg of KRG) had significantly higher survival rates and body weights than those of the non-treated controls; KRG-pre-treated mice had lower bacterial number and morbidity than those of the non-treated controls. 100 mg/kg of KRG administration decreased cytokine levels including tumor necrosis factor (TNF)-α (897 and 623 pg/ml, control and KRG groups, respectively, P < 0.05) and interleukin (IL)-1β (175 and 127 pg/ml, control and KRG groups, respectively, P = 0.051), nitric oxide level (149 and 81 nM, control and KRG groups, respectively, P < 0.05), and neutrophil infiltration 48 h post-infection, in vivo. In pneumococcal infection, KRG pre-treatment downregulated toll-like receptor (TLR) 4 and TNF-ɑ expressions in RAW 264.7 macrophage cells and increased cell survival by activating phosphoinositide 3-kinase (PI3K)/AKT signaling. CONCLUSION Taken together, 100 mg/kg of KRG appeared to protect host cells from lethal pneumococcal sepsis by inhibiting inflammation as well as by enhancing bacterial clearance thereby reinforcing cell survival against pneumococcal infection.
Collapse
Affiliation(s)
- Cuong Thach Nguyen
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Truc Thanh Luong
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Seung Yeop Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Gyu Lee Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Hyogyoung Kwon
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Asan 336-745, Republic of Korea
| | - Hong-Gyun Lee
- The Korean Ginseng Research Institute, Korea Ginseng Co., Daejeon 305-805, Republic of Korea
| | - Chae-Kyu Park
- The Korean Ginseng Research Institute, Korea Ginseng Co., Daejeon 305-805, Republic of Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
12
|
Im K, Kim J, Min H. Ginseng, the natural effectual antiviral: Protective effects of Korean Red Ginseng against viral infection. J Ginseng Res 2015; 40:309-314. [PMID: 27746682 PMCID: PMC5052424 DOI: 10.1016/j.jgr.2015.09.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 08/27/2015] [Accepted: 09/07/2015] [Indexed: 02/06/2023] Open
Abstract
Korean Red Ginseng (KRG) is a heat-processed ginseng developed by the repeated steaming and air-drying of fresh ginseng. Compared with fresh ginseng, KRG has been shown to possess greater pharmacological activities and stability because of changes that occur in its chemical constituents during the steaming process. In addition to anticancer, anti-inflammatory, and immune-modulatory activities, KRG and its purified components have also been shown to possess protective effects against microbial infections. Here, we summarize the current knowledge on the properties of KRG and its components on infections with human pathogenic viruses such as respiratory syncytial virus, rhinovirus, influenza virus, human immunodeficiency virus, human herpes virus, hepatitis virus, norovirus, rotavirus, enterovirus, and coxsackievirus. Additionally, the therapeutic potential of KRG as an antiviral and vaccine adjuvant is discussed.
Collapse
Affiliation(s)
| | | | - Hyeyoung Min
- Corresponding author. College of Pharmacy, Chung-Ang University, 84 Heukseokro, Dongjakgu, Seoul 06974, Korea.
| |
Collapse
|
13
|
Uyangaa E, Patil AM, Eo SK. Prophylactic and therapeutic modulation of innate and adaptive immunity against mucosal infection of herpes simplex virus. Immune Netw 2014; 14:187-200. [PMID: 25177251 PMCID: PMC4148489 DOI: 10.4110/in.2014.14.4.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/28/2014] [Accepted: 08/04/2014] [Indexed: 12/01/2022] Open
Abstract
Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) are the most common cause of genital ulceration in humans worldwide. Typically, HSV-1 and 2 infections via mucosal route result in a lifelong latent infection after peripheral replication in mucosal tissues, thereby providing potential transmission to neighbor hosts in response to reactivation. To break the transmission cycle, immunoprophylactics and therapeutic strategies must be focused on prevention of infection or reduction of infectivity at mucosal sites. Currently, our understanding of the immune responses against mucosal infection of HSV remains intricate and involves a balance between innate signaling pathways and the adaptive immune responses. Numerous studies have demonstrated that HSV mucosal infection induces type I interferons (IFN) via recognition of Toll-like receptors (TLRs) and activates multiple immune cell populations, including NK cells, conventional dendritic cells (DCs), and plasmacytoid DCs. This innate immune response is required not only for the early control of viral replication at mucosal sites, but also for establishing adaptive immune responses against HSV antigens. Although the contribution of humoral immune response is controversial, CD4(+) Th1 T cells producing IFN-γ are believed to play an important role in eradicating virus from the hosts. In addition, the recent experimental successes of immunoprophylactic and therapeutic compounds that enhance resistance and/or reduce viral burden at mucosal sites have accumulated. This review focuses on attempts to modulate innate and adaptive immunity against HSV mucosal infection for the development of prophylactic and therapeutic strategies. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses. Thus, we summarized the current evidence of various immune mediators in response to mucosal HSV infection, focusing on the importance of innate immune responses.
Collapse
Affiliation(s)
- Erdenebileg Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju 561-756, Korea
| | - Ajit Mahadev Patil
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju 561-756, Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju 561-756, Korea
| |
Collapse
|
14
|
Wu H, Høiby N, Yang L, Givskov M, Song Z. Effects of radix ginseng on microbial infections: a narrative review. J TRADIT CHIN MED 2014; 34:227-33. [PMID: 24783938 DOI: 10.1016/s0254-6272(14)60083-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To summarized the antimicrobial-like effects of Radix Ginseng, which provide important information to the relevant researchers and clinicians, and will benefit the clinical treatment of infectious diseases. METHODS PubMed and Google were used to search for and collect scientific publications related to Radix Ginseng and microbial infections. The authors read, classified, and discussed the associated scientific results or evidences, and summarized the corresponding results. RESULTS In this review, recent studies on the beneficial effects of Radix Ginseng extracts on microbial and biofilm infections were reviewed. The importance and significance of Radix Ginseng's beneficial effects are discussed. Evidence for the favorable effects of Radix Ginseng extracts on viral, bacterial, fungal, and parasitic infections and the possible underlying mechanisms are summarized. CONCLUSION Radix Ginseng might be a promising supplemental remedy for the prevention and treatment of infectious diseases.
Collapse
|
15
|
Son M, Lee M, Sung GH, Lee T, Shin YS, Cho H, Lieberman PM, Kang H. Bioactive activities of natural products against herpesvirus infection. J Microbiol 2013; 51:545-51. [PMID: 24173639 DOI: 10.1007/s12275-013-3450-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/27/2013] [Indexed: 11/26/2022]
Abstract
More than 90% of adults have been infected with at least one human herpesvirus, which establish long-term latent infection for the life of the host. While anti-viral drugs exist that limit herpesvirus replication, many of these are ineffective against latent infection. Moreover, drug-resistant strains of herpesvirus emerge following chemotherapeutic treatment. For example, resistance to acyclovir and related nucleoside analogues can occur when mutations arise in either HSV thymidine kinase or DNA polymerases. Thus, there exists an unmet medical need to develop new anti-herpesvirus agents with different mechanisms of action. In this Review, we discuss the promise of anti-herpetic substances derived from natural products including extracts and pure compounds from potential herbal medicines. One example is Glycyrrhizic acid isolated from licorice that shows promising antiviral activity towards human gammaherpesviruses. Secondly, we discuss anti-herpetic mechanisms utilized by several natural products in molecular level. While nucleoside analogues inhibit replicating herpesviruses in lytic replication, some natural products can disrupt the herpesvirus latent infection in the host cell. In addition, natural products can stimulate immune responses against herpesviral infection. These findings suggest that natural products could be one of the best choices for development of new treatments for latent herpesvirus infection, and may provide synergistic anti-viral activity when supplemented with nucleoside analogues. Therefore, it is important to identify which natural products are more efficacious anti-herpetic agents, and to understand the molecular mechanism in detail for further advance in the anti-viral therapies.
Collapse
Affiliation(s)
- Myoungki Son
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, and Institute for Microorganisms, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|