1
|
Grabarczyk M, Justyńska W, Czpakowska J, Smolińska E, Bielenin A, Glabinski A, Szpakowski P. Role of Plant Phytochemicals: Resveratrol, Curcumin, Luteolin and Quercetin in Demyelination, Neurodegeneration, and Epilepsy. Antioxidants (Basel) 2024; 13:1364. [PMID: 39594506 PMCID: PMC11591432 DOI: 10.3390/antiox13111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Polyphenols are an important group of biologically active compounds present in almost all food sources of plant origin and are primarily known for their anti-inflammatory and antioxidative capabilities. Numerous studies have indicated their broad spectrum of pharmacological properties and correlations between their increased supply in the human diet and lower prevalence of various disorders. The positive effects of polyphenols application are mostly discussed in terms of cardiovascular system well-being. However, in recent years, they have also increasingly mentioned as prophylactic and therapeutic factors in the context of neurological diseases, being able to suppress the progression of such disorders and soothe accompanying symptoms. Among over 8000 various compounds, that have been identified, the most widely examined comprise resveratrol, curcumin, luteolin and quercetin. This review focuses on in vitro assessments, animal models and clinical trials, reflecting the most actual state of knowledge, of mentioned polyphenols' medicinal capabilities in epilepsy, demyelinating and neurodegenerative diseases of the central nervous system.
Collapse
Affiliation(s)
- Mikołaj Grabarczyk
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Weronika Justyńska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Joanna Czpakowska
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Ewa Smolińska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Aleksandra Bielenin
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Andrzej Glabinski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Piotr Szpakowski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| |
Collapse
|
2
|
Zhang Y, Hu X, Zou LQ. Flavonoids as therapeutic agents for epilepsy: unveiling anti-inflammatory and antioxidant pathways for novel treatments. Front Pharmacol 2024; 15:1457284. [PMID: 39329119 PMCID: PMC11424894 DOI: 10.3389/fphar.2024.1457284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Epilepsy, a chronic neurological disorder affecting millions globally, is often exacerbated by neuroinflammation and oxidative stress. Existing antiepileptic drugs primarily manage symptoms, leaving the disease's progression largely unaddressed. Flavonoids, ubiquitous plant metabolites with potent anti-inflammatory and antioxidant properties, show promise in epilepsy treatment. Unlike conventional therapies, they target multiple pathophysiological processes simultaneously, offering a comprehensive approach to this complex neurological disorder. This review explores the dual role of flavonoids in mitigating neuroinflammation and reducing oxidative stress through various molecular pathways. By inhibiting key inflammatory mediators and pathways such as NF-κB, MAPK, JNK, and JAK, flavonoids offer neuronal protection. They enhance the body's natural antioxidant defenses by modulating enzyme activities, including superoxide dismutase, catalase, and glutathione peroxidase. Moreover, flavonoids influence crucial antioxidant response pathways like PI3K/AKT, Nrf2, JNK, and PKA. Despite their therapeutic promise, the low bioavailability of flavonoids poses a considerable challenge. However, cutting-edge strategies, including nanotechnology and chemical modifications, are underway to improve their bioavailability and therapeutic efficacy. These advancements support the potential of flavonoids as a valuable addition to epilepsy treatment strategies.
Collapse
Affiliation(s)
- Ya Zhang
- Department of Emergency Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Xizhuo Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Qun Zou
- Department of Emergency Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Cheng Y, Zhang Y, Huang P, Cheng Q, Ding H. Luteolin ameliorates pentetrazole-induced seizures through the inhibition of the TLR4/NF-κB signaling pathway. Epilepsy Res 2024; 201:107321. [PMID: 38382229 DOI: 10.1016/j.eplepsyres.2024.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/21/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Epilepsy represents a prevalent neurological disorder in the population, and the existing antiepileptic drugs (AEDs) often fail to adequately control seizures. Inflammation is recognized as a pivotal factor in the pathophysiology of epilepsy. Luteolin, a natural flavonoid extract, possesses anti-inflammatory properties and exhibits promising neuroprotective activity. Nevertheless, the precise molecular mechanisms underlying the antiepileptic effects of luteolin remain elusive. In this study, we established a rat model of epilepsy using pentylenetetrazole (PTZ) to induce seizures. A series of behavioral experiments were conducted to assess behavioral abilities and cognitive function. Histological techniques, including HE staining, Nissl staining, and TUNEL staining, were employed to assess hippocampal neuronal damage. Additionally, Western blotting, RT-qPCR, and ELISA were utilized to analyze the expression levels of proteins involved in the TLR4/IκBα/NF-κB signaling pathway, transcription levels of apoptotic factors, and levels of inflammatory cytokines, respectively. Luteolin exhibited a dose-dependent reduction in seizure severity, prolonged the latency period of seizures, and shortened seizure duration. Furthermore, luteolin prevented hippocampal neuronal damage in PTZ-induced epileptic rats and partially restored behavioral function and learning and memory abilities. Lastly, PTZ kindling activated the TLR4/IκBα/NF-κB pathway, leading to elevated levels of the cytokines TNF-α, IL-6 and IL-1β, which were attenuated by luteolin. Luteolin exerted anticonvulsant and neuroprotective activities in the PTZ-induced epileptic model. Its mechanism was associated with the inhibition of the TLR4/IκBα/NF-κB pathway, alleviating the immune-inflammatory response in the post-epileptic hippocampus.
Collapse
Affiliation(s)
- Yahong Cheng
- College of Medicine and Health Science, Wuhan Polytechnic University, No.68, Xuefu South Road, Wuhan, Hubei 430023, PR China
| | - Yiyuan Zhang
- Wuhan University School of Pharmaceutical Sciences, Wuhan University, No.185 Donghu Road, Wuhan, Hubei 430072, PR China
| | - Puxin Huang
- Wuhan University School of Pharmaceutical Sciences, Wuhan University, No.185 Donghu Road, Wuhan, Hubei 430072, PR China
| | - Qingzhou Cheng
- College of Medicine and Health Science, Wuhan Polytechnic University, No.68, Xuefu South Road, Wuhan, Hubei 430023, PR China.
| | - Hong Ding
- Wuhan University School of Pharmaceutical Sciences, Wuhan University, No.185 Donghu Road, Wuhan, Hubei 430072, PR China.
| |
Collapse
|
4
|
A Comprehensive Review on Anti-Inflammatory Response of Flavonoids in Experimentally-Induced Epileptic Seizures. Brain Sci 2023; 13:brainsci13010102. [PMID: 36672083 PMCID: PMC9856497 DOI: 10.3390/brainsci13010102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Flavonoids, a group of natural compounds with phenolic structure, are becoming popular as alternative medicines obtained from plants. These compounds are reported to have various pharmacological properties, including attenuation of inflammatory responses in multiple health issues. Epilepsy is a disorder of the central nervous system implicated with the activation of the inflammatory cascade in the brain. The aim of the present study was to summarize the role of various neuroinflammatory mediators in the onset and progression of epilepsy, and, thereafter, to discuss the flavonoids and their classes, including their biological properties. Further, we highlighted the modulation of anti-inflammatory responses achieved by these substances in different forms of epilepsy, as evident from preclinical studies executed on multiple epilepsy models. Overall, the review summarizes the available evidence of the anti-inflammatory potential of various flavonoids in epilepsy.
Collapse
|
5
|
Asgharian P, Quispe C, Herrera-Bravo J, Sabernavaei M, Hosseini K, Forouhandeh H, Ebrahimi T, Sharafi-Badr P, Tarhriz V, Soofiyani SR, Helon P, Rajkovic J, Durna Daştan S, Docea AO, Sharifi-Rad J, Calina D, Koch W, Cho WC. Pharmacological effects and therapeutic potential of natural compounds in neuropsychiatric disorders: An update. Front Pharmacol 2022; 13:926607. [PMID: 36188551 PMCID: PMC9521271 DOI: 10.3389/fphar.2022.926607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropsychiatric diseases are a group of disorders that cause significant morbidity and disability. The symptoms of psychiatric disorders include anxiety, depression, eating disorders, autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder, and conduct disorder. Various medicinal plants are frequently used as therapeutics in traditional medicine in different parts of the world. Nowadays, using medicinal plants as an alternative medication has been considered due to their biological safety. Despite the wide range of medications, many patients are unable to tolerate the side effects and eventually lose their response. By considering the therapeutic advantages of medicinal plants in the case of side effects, patients may prefer to use them instead of chemical drugs. Today, the use of medicinal plants in traditional medicine is diverse and increasing, and these plants are a precious heritage for humanity. Investigation about traditional medicine continues, and several studies have indicated the basic pharmacology and clinical efficacy of herbal medicine. In this article, we discuss five of the most important and common psychiatric illnesses investigated in various studies along with conventional therapies and their pharmacological therapies. For this comprehensive review, data were obtained from electronic databases such as MedLine/PubMed, Science Direct, Web of Science, EMBASE, DynaMed Plus, ScienceDirect, and TRIP database. Preclinical pharmacology studies have confirmed that some bioactive compounds may have beneficial therapeutic effects in some common psychiatric disorders. The mechanisms of action of the analyzed biocompounds are presented in detail. The bioactive compounds analyzed in this review are promising phytochemicals for adjuvant and complementary drug candidates in the pharmacotherapy of neuropsychiatric diseases. Although comparative studies have been carefully reviewed in the preclinical pharmacology field, no clinical studies have been found to confirm the efficacy of herbal medicines compared to FDA-approved medicines for the treatment of mental disorders. Therefore, future clinical studies are needed to accelerate the potential use of natural compounds in the management of these diseases.
Collapse
Affiliation(s)
- Parina Asgharian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Mahsa Sabernavaei
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Forouhandeh
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Ebrahimi
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paria Sharafi-Badr
- Department of Pharmacognosy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahideh Tarhriz
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paweł Helon
- Branch in Sandomierz, Jan Kochanowski University of Kielce, Sandomierz, Poland
| | - Jovana Rajkovic
- Medical Faculty, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, Sivas, Turkey
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, Lublin, Poland
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| |
Collapse
|
6
|
Paving Luteolin Therapeutic Potentialities and Agro-Food-Pharma Applications: Emphasis on In Vivo Pharmacological Effects and Bioavailability Traits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1987588. [PMID: 34594472 PMCID: PMC8478534 DOI: 10.1155/2021/1987588] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022]
Abstract
Luteolin is a naturally occurring secondary metabolite belonging to the class of flavones. As many other natural flavonoids, it is often found in combination with glycosides in many fruits, vegetables, and plants, contributing to their biological and pharmacological value. Many preclinical studies report that luteolin present excellent antioxidant, anticancer, antimicrobial, neuroprotective, cardioprotective, antiviral, and anti-inflammatory effects, and as a consequence, various clinical trials have been designed to investigate the therapeutic potential of luteolin in humans. However, luteolin has a very limited bioavailability, which consequently affects its biological properties and efficacy. Several drug delivery strategies have been developed to raise its bioavailability, with nanoformulations and lipid carriers, such as liposomes, being the most intensively explored. Pharmacological potential of luteolin in various disorders has also been underlined, but to some of them, the exact mechanism is still poorly understood. Given the great potential of this natural antioxidant in health, this review is aimed at providing an extensive overview on the in vivo pharmacological action of luteolin and at stressing the main features related to its bioavailability, absorption, and metabolism, while essential steps determine its absolute health benefits and safety profiles. In addition, despite the scarcity of studies on luteolin bioavailability, the different drug delivery formulations developed to increase its bioavailability are also listed here.
Collapse
|
7
|
Galvani G, Mottolese N, Gennaccaro L, Loi M, Medici G, Tassinari M, Fuchs C, Ciani E, Trazzi S. Inhibition of microglia overactivation restores neuronal survival in a mouse model of CDKL5 deficiency disorder. J Neuroinflammation 2021; 18:155. [PMID: 34238328 PMCID: PMC8265075 DOI: 10.1186/s12974-021-02204-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Background CDKL5 deficiency disorder (CDD), a severe neurodevelopmental disorder characterized by early onset epilepsy, intellectual disability, and autistic features, is caused by mutations in the CDKL5 gene. Evidence in animal models of CDD showed that absence of CDKL5 negatively affects neuronal survival, as well as neuronal maturation and dendritic outgrowth; however, knowledge of the substrates underlying these alterations is still limited. Neuroinflammatory processes are known to contribute to neuronal dysfunction and death. Recent evidence shows a subclinical chronic inflammatory status in plasma from CDD patients. However, to date, it is unknown whether a similar inflammatory status is present in the brain of CDD patients and, if so, whether this plays a causative or exacerbating role in the pathophysiology of CDD. Methods We evaluated microglia activation using AIF-1 immunofluorescence, proinflammatory cytokine expression, and signaling in the brain of a mouse model of CDD, the Cdkl5 KO mouse, which is characterized by an impaired survival of hippocampal neurons that worsens with age. Hippocampal neuron survival was determined by DCX, NeuN, and cleaved caspase-3 immunostaining in Cdkl5 KO mice treated with luteolin (10 mg/kg), a natural anti-inflammatory flavonoid. Since hippocampal neurons of Cdkl5 KO mice exhibit increased susceptibility to excitotoxic stress, we evaluated neuronal survival in Cdkl5 KO mice injected with NMDA (60 mg/kg) after a 7-day treatment with luteolin. Results We found increased microglial activation in the brain of the Cdkl5 KO mouse. We found alterations in microglial cell morphology and number, increased levels of AIF-1 and proinflammatory cytokines, and activation of STAT3 signaling. Remarkably, treatment with luteolin recovers microglia alterations as well as neuronal survival and maturation in Cdkl5 KO mice, and prevents the increase in NMDA-induced cell death in the hippocampus. Conclusions Our results suggest that neuroinflammatory processes contribute to the pathogenesis of CDD and imply the potential usefulness of luteolin as a treatment option in CDD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02204-0.
Collapse
Affiliation(s)
- Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy.
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy.
| |
Collapse
|
8
|
Meskinimood S, Rahimi N, Faghir-Ghanesefat H, Gholami M, Sharifzadeh M, Dehpour AR. Modulatory effect of opioid ligands on status epilepticus and the role of nitric oxide pathway. Epilepsy Behav 2019; 101:106563. [PMID: 31675604 DOI: 10.1016/j.yebeh.2019.106563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 11/26/2022]
Abstract
Epilepsy is a chronic disorder that causes unprovoked, recurrent seizures. Status epilepticus (SE) is a medical emergency associated with significant morbidity and mortality. Morphine has been the cornerstone of pain controlling medicines for a long time. In addition to the analgesic and opioid responses, morphine has also revealed anticonvulsant effects in different epilepsy models including pentylenetetrazole (PTZ)-induced seizures threshold. Some authors suggest that nitric oxide (NO) pathway interactions of morphine explain the reason for its pro or anticonvulsant activities. To induce SE, injection of a single dose of lithium chloride (127 mg/kg, intraperitoneal (i.p.)) 20 h before pilocarpine (60 mg/kg, i.p.) was used. Administration of morphine (15 mg/kg, i.p.) inhibited the SE and decreased the mortality in rats when injected 30 min before pilocarpine. On the other hand, injection of L-NG-nitro arginine methyl ester (L-NAME, a nonselective NO synthase (NOS) blocker; 10 mg/kg, i.p.), 7-nitroindazole (7-NI, a neuronal NOS (nNOS) blocker; 30 mg/kg, i.p.), and aminoguanidine (AG, an inducible NOS (iNOS) blocker; 50 mg/kg, i.p.) 15 min before morphine, significantly reversed inhibitory effect of morphine on SE. Subsequently, measurement of nitrite metabolite levels in the hippocampus of SE-induced rats displayed high levels of nitrite metabolite for the control group. However, after injection of morphine in SE-induced rats, nitrite metabolite levels reduced. In conclusion, these findings demonstrated that NO pathway (both nNOS and iNOS) interactions are involved in the anticonvulsant effects of morphine on the SE signs and mortality rate induced by lithium-pilocarpine in rats.
Collapse
Affiliation(s)
- Shahab Meskinimood
- Department of Pharmacology & Toxicology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Rahimi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hedyeh Faghir-Ghanesefat
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Department of Pharmacology & Toxicology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology & Toxicology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Divergent Effects of Hypertonic Fluid Resuscitation on Renal Pathophysiological and Structural Parameters in Rat Model of Lower Body Ischemia/Reperfusion-Induced Sterile Inflammation. Shock 2019; 50:655-663. [PMID: 29283977 DOI: 10.1097/shk.0000000000001096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The pathogenesis of acute kidney injury (AKI) is characterized by the deterioration of tissue perfusion and oxygenation and enhanced inflammation. The purpose of this study was to investigate whether or not the hemodynamic and inflammatory effects of hypertonic saline (HS) protect the kidney by promoting renal microcirculatory oxygenation and possible deleterious effects of HS due to its high sodium content on renal functional and structural injury following ischemia/reperfusion. Mechanically ventilated and anesthetized rats were randomly divided into four groups (n = 6 per group): a sham-operated control group; a group subjected to renal ischemia for 45 min by supra-aortic occlusion followed by 2 h of reperfusion (I/R); and I/R group treated with a continuous i.v. infusion (5 mL/kg/h) of either % 0.9 NaCl (IR+NS) or %10 NaCl (I/R+HS) after releasing the clamp. Systemic and renal hemodynamic, renal cortical (CμPO2), and medullar microcirculatory pO2 (MμPO2) are measured by the oxygen-dependent quenching of the phosphorescence lifetime technique. Renal functional, inflammatory, and tissues damage parameters were also assessed. HS, but not NS, treatment restored I/R-induced reduced mean arterial pressure, CμPO2, renal oxygen deliver (DO2ren), and consumption (VO2ren). HS caused a decrease in tubular sodium reabsorption (TNa) that correlated with an elevation of fractional sodium excretion (EFNa) and urine output. HS had an anti-inflammatory effect by reducing the levels TNF-α, IL-6, and hyaluronic acid in the renal tissue samples as compared with the I/R and I/R+NS groups (P < 0.05). HS treatment was also associated with mild acidosis and an increased renal tubular damage. Despite HS resuscitation improving the systemic hemodynamics, microcirculatory oxygenation, and renal oxygen consumption as well as inflammation, it should be limited or strictly controlled for long-term use because of provoking widespread renal structural damage.
Collapse
|
10
|
Asokan SM, Wang RY, Hung TH, Lin WT. Hepato-protective effects of Glossogyne tenuifolia in Streptozotocin-nicotinamide-induced diabetic rats on high fat diet. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:117. [PMID: 31170991 PMCID: PMC6554944 DOI: 10.1186/s12906-019-2529-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/23/2019] [Indexed: 01/26/2023]
Abstract
Background Glossogyne tenuifolia (GT) is a traditional herbal tea in Penghu Island, Taiwan. Its extract is traditionally been used as an antipyretic, hepatoprotective and anti-inflammatory remedy in folk medicine among local residents. The present study investigated whether GT could improve streptozotocin-induced acute liver injury of type 2 diabetes mellitus. Methods Male Wistar rats aged eight weeks were induced to be hyperglycemic by the subcutaneous injection of streptozotocin-nicotinamide (STZ-NA) and a combination of a high-fat diet (HFD) (N group). The animals were given GT extracts at a low dose (50 mg/kg) (L group) or a high dose (150 mg/kg) (H group) or an anti-diabetic drug (acarbose) (P group) in drinking water for 4 weeks. Results The results revealed that STZ-NA increased hepatomegaly, hepatocyte cross-sectional area, hypertrophy-related pathways (IL6/STAT3-MEK5-ERK5, NFATc3, p38 and JNK MAPK), proapoptotic molecules (cytochrome C, cleaved caspase-3), and fibrosis-related pathways (FGF-2, pERK1/2). These pathway components were then expressed at lower levels in the L and H group when compared with the N group. The liver-protective effect of GT in STZ-NA-induced diabetic rats with hyperlipidemia was through an enhancement in the activation of the compensatory PI3K-Akt and Bcl2 survival-related pathway. Conclusion The results demonstrate that the hot water extracts of GT efficiently ameliorates the STZ-NA-induced diabetes associated liver damage in rat models.
Collapse
|
11
|
The Flavone Luteolin Improves Central Nervous System Disorders by Different Mechanisms: A Review. J Mol Neurosci 2018; 65:491-506. [DOI: 10.1007/s12031-018-1094-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/21/2018] [Indexed: 01/17/2023]
|
12
|
The role of flavonoids on oxidative stress in epilepsy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:171756. [PMID: 25653736 PMCID: PMC4306219 DOI: 10.1155/2015/171756] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/11/2014] [Indexed: 11/18/2022]
Abstract
Backgrounds. Oxidative stress can result from excessive free-radical production and it is likely implicated as a possible mechanism involved in the initiation and progression of epileptogenesis. Flavonoids can protect the brain from oxidative stress. In the central nervous system (CNS) several flavonoids bind to the benzodiazepine site on the GABAA-receptor resulting in anticonvulsive effects. Objective. This review provides an overview about the role of flavonoids in oxidative stress in epilepsy. The mechanism of action of flavonoids and its relation to the chemical structure is also discussed. Results/Conclusions. There is evidence that suggests that flavonoids have potential for neuroprotection in epilepsy.
Collapse
|
13
|
Bahçekapılı N, Akgün-Dar K, Albeniz I, Kapucu A, Kandil A, Yağız O, Üzüm G. Erythropoietin pretreatment suppresses seizures and prevents the increase in inflammatory mediators during pentylenetetrazole-induced generalized seizures. Int J Neurosci 2014; 124:762-70. [DOI: 10.3109/00207454.2013.878935] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Karaman I, Kizilay-Ozfidan G, Karadag CH, Ulugol A. Lack of effect of ceftriaxone, a GLT-1 transporter activator, on spatial memory in mice. Pharmacol Biochem Behav 2013; 108:61-5. [DOI: 10.1016/j.pbb.2013.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/12/2013] [Accepted: 04/18/2013] [Indexed: 01/16/2023]
|