1
|
Kemp JM, Manhard MK, Tkach JA, Prasanphanich AF, Trout AT, Dillman JR, Pednekar A. Influence of fat on hepatic T2 relaxation time estimation: a preliminary investigation. Abdom Radiol (NY) 2024:10.1007/s00261-024-04623-y. [PMID: 39395045 DOI: 10.1007/s00261-024-04623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Affiliation(s)
- Justine M Kemp
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Mary Kate Manhard
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jean A Tkach
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Adam F Prasanphanich
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jonathan R Dillman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Amol Pednekar
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Zhang JH, Neumann T, Schaeffter T, Kolbitsch C, Kerkering KM. Respiratory motion-corrected T1 mapping of the abdomen. MAGMA (NEW YORK, N.Y.) 2024; 37:637-649. [PMID: 39133420 PMCID: PMC11417068 DOI: 10.1007/s10334-024-01196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE The purpose of this study was to investigate an approach for motion-corrected T1 mapping of the abdomen that allows for free breathing data acquisition with 100% scan efficiency. MATERIALS AND METHODS Data were acquired using a continuous golden radial trajectory and multiple inversion pulses. For the correction of respiratory motion, motion estimation based on a surrogate was performed from the same data used for T1 mapping. Image-based self-navigation allowed for binning and reconstruction of respiratory-resolved images, which were used for the estimation of respiratory motion fields. Finally, motion-corrected T1 maps were calculated from the data applying the estimated motion fields. The method was evaluated in five healthy volunteers. For the assessment of the image-based navigator, we compared it to a simultaneously acquired ultrawide band radar signal. Motion-corrected T1 maps were evaluated qualitatively and quantitatively for different scan times. RESULTS For all volunteers, the motion-corrected T1 maps showed fewer motion artifacts in the liver as well as sharper kidney structures and blood vessels compared to uncorrected T1 maps. Moreover, the relative error to the reference breathhold T1 maps could be reduced from up to 25% for the uncorrected T1 maps to below 10% for the motion-corrected maps for the average value of a region of interest, while the scan time could be reduced to 6-8 s. DISCUSSION The proposed approach allows for respiratory motion-corrected T1 mapping in the abdomen and ensures accurate T1 maps without the need for any breathholds.
Collapse
Affiliation(s)
- Jana Huiyue Zhang
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.
- Department of Biomedical Engineering, Technical University of Berlin, Berlin, Germany.
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| | - Tom Neumann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Department of Biomedical Engineering, Technical University of Berlin, Berlin, Germany
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | | |
Collapse
|
3
|
Yang R, Peng H, Pan J, Wan Q, Zou C, Hu F. Native and Gd-EOB-DTPA-Enhanced T1 mapping for Assessment of Liver Fibrosis in NAFLD: Comparative Analysis of Modified Look-Locker Inversion Recovery and Water-specific T1 mapping. Acad Radiol 2024:S1076-6332(24)00443-4. [PMID: 39043516 DOI: 10.1016/j.acra.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/25/2024]
Abstract
RATIONALE AND OBJECTIVES To investigate the diagnostic performance of water-specific T1 mapping for staging liver fibrosis in a non-alcoholic fatty liver disease (NAFLD) rabbit model, in comparison to Modified Look-Locker Inversion recovery (MOLLI) T1 mapping. MATERIALS AND METHODS 60 rabbits were randomly divided into the control group (12 rabbits) and NAFLD model groups (eight rabbits per subgroup) corresponding to different durations of high-fat high cholesterol diet feeding. All rabbits underwent MRI examination including MOLLI T1 mapping and 3D multi-echo variable flip angle (VFAME- GRE) sequences were acquired before and 20 min after the administration of Gd- EOB-DTPA. Histological assessments were performed to evaluate steatosis, inflammation, ballooning, and fibrosis. Statistical analysis included the intraclass correlation coefficient, analysis of variance, spearman correlation, multiple linear regression, and receiver operating characteristic curve. RESULTS A moderate correlation was observed between conventional native T1 and MRI-PDFF (r = -0.513, P < 0.001), as well as between conventional native T1 and liver steatosis grades (r = -0.319, P = 0.016). However, no significant correlation was found between the native wT1 and PDFF (r = 0.137, P = 0.314), or between the native wT1 and steatosis grades (r = 0.106, P = 0.435). In the multiple regression analysis, liver fibrosis, and hepatocellular ballooning were identified as independent factors influencing native wT1 in this study (R2 =0.545, P < 0.05), while steatosis was independently associated with conventional native T1 (R2 =0.321, P < 0.05). The AUC values for native T1, native wT1, HBP T1, and HBP wT1 were 0.549(0.410-0.682), 0.811(0.684-0.903), 0.775(0.644-0.876), and 0.752(0.619-0.858) for F1 or higher, 0.581(0.441-0.711), 0.828(0.704-0.916), 0.832(0.708-0.919), and 0.854(0.734-0.934) for F2 or higher, respectively. CONCLUSION The native wT1 may provide a more reliable assessment of early liver fibrosis in the context of NAFLD compared to conventional native T1.
Collapse
Affiliation(s)
- Ru Yang
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, No.278, Baoguang Road, Xindu District, Chengdu, Sichuan, China (R.Y., J.P., F.H.)
| | - Hao Peng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, China (H.P., Q.W., C.Z.)
| | - Jing Pan
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, No.278, Baoguang Road, Xindu District, Chengdu, Sichuan, China (R.Y., J.P., F.H.)
| | - Qian Wan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, China (H.P., Q.W., C.Z.)
| | - Chao Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, China (H.P., Q.W., C.Z.)
| | - Fubi Hu
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, No.278, Baoguang Road, Xindu District, Chengdu, Sichuan, China (R.Y., J.P., F.H.).
| |
Collapse
|
4
|
Lyu L, Ren J, Lu W, Li Y, Zhong J, Yao W. Association between quadriceps fat pad edema and patellofemoral osteoarthritis: a quantitative Q-Dixon-based magnetic resonance imaging (MRI) analysis. Quant Imaging Med Surg 2024; 14:3275-3288. [PMID: 38720842 PMCID: PMC11074733 DOI: 10.21037/qims-23-1730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/20/2024] [Indexed: 05/12/2024]
Abstract
Background Anterior knee pain (AKP) is a common symptom of patellofemoral osteoarthritis (PFOA). There is limited prospective evidence supporting the relationships between patellofemoral maltracking parameters, AKP, and PFOA. Thus, this prospective cross-sectional study aimed to determine the association between quadriceps fat pad (QFP) edema and patellofemoral maltracking in patients with chronic AKP and to evaluate the feasibility and diagnostic performance of a PFOA assessment using fat fraction (FF) and T2* based on Q-Dixon. Methods This was a cross-sectional study with prospective data collection. Patients with chronic AKP were recruited from an orthopedic outpatient magnetic resonance imaging (MRI) waiting room at Shanghai Tongren Hospital between November 1, 2022, and April, 30, 2023. Exclusion criteria included age of <18 years, knee trauma, major internal derangement, prior surgery/arthroscopy, pre-existing joint diseases, and contraindications to MRI. MRI was performed using a 3.0-T instrument, and patellofemoral maltracking parameters were measured. Patellofemoral feature-relevant items, including patellar cartilage defects, patellar bone marrow lesions (BMLs), patellar osteophytes, anterior femoral osteophytes, Hoffa synovitis, and synovitis-effusion, from the semi-quantitative MRI Osteoarthritis Knee Score (MOAKS) were measured. The Anterior Knee Pain Scale (AKPS) was used to assess pain and function. FF/T2* measurement differences between groups and their associations with maltracking metrics, osteoarthritis grading based on the Iwano grading system, MOAKS, and AKPS, were investigated. Based on Iwano grading, the participants were categorized as having no-PFOA (n=40), mild PFOA (n=40), and advanced PFOA (n=40). Chi-squared and one-way analysis of variance were used to assess potential differences between the groups. Spearman's correlation test was used to analyze the correlation between the morphological parameters, AKPS, Iwano grade, MOAKS, and MRI quantitative values. Receiver operating characteristic (ROC) curves assessed the area under the curve (AUC), sensitivity, and specificity of quantitative values for distinguishing PFOA from no-PFOA. Results Among the 120 included patients, those in the mild (86.2±8.5) and advanced (83.9±9.5) PFOA groups had significantly lower AKPS scores than those in the no-PFOA group (88.8±7.3) (P=0.03). The mean FF and T2* values of the QFP were significantly higher in the no-PFOA group than those in the mild and advanced PFOA groups (P<0.001 for FF and P=0.02 for T2*). Quantitative data on the QFP and patellofemoral maltracking parameters showed no association. FF (r=-0.686, P<0.001) and T2* (r=-0.314, P=0.008) showed a negative correlation with the Iwano grade. The AUCs for PFOA diagnosis were 0.906 [95% confidence interval (CI), 0.853-0.960] (FF) and 0.744 (95% CI, 0.657-0.831) (T2*). Conclusions QFP FF and T2* were not associated with patellofemoral maltracking parameters but with increased PFOA in patients with AKP, suggesting that QFP abnormalities play a role in PFOA. Therefore, a quantitative QFP assessment (FF and T2*) based on Q-Dixon technology could be a convenient and reliable new imaging biomarker for PFOA severity during clinical diagnosis, treatment, and follow-up.
Collapse
Affiliation(s)
- Liangjing Lyu
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Ren
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Lu
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongliang Li
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyu Zhong
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwu Yao
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Michelotti FC, Kupriyanova Y, Mori T, Küstner T, Heilmann G, Bombrich M, Möser C, Schön M, Kuss O, Roden M, Schrauwen-Hinderling VB. An Empirical Approach to Derive Water T 1 from Multiparametric MR Images Using an Automated Pipeline and Comparison With Liver Stiffness. J Magn Reson Imaging 2024; 59:1193-1203. [PMID: 37530755 DOI: 10.1002/jmri.28906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Water T1 of the liver has been shown to be promising in discriminating the progressive forms of fatty liver diseases, inflammation, and fibrosis, yet proper correction for iron and lipid is required. PURPOSE To examine the feasibility of an empirical approach for iron and lipid correction when measuring imaging-based T1 and to validate this approach by spectroscopy on in vivo data. STUDY TYPE Retrospective. POPULATION Next to mixed lipid-iron phantoms, individuals with different hepatic lipid content were investigated, including people with type 1 diabetes (N = 15, %female = 15.6, age = 43.5 ± 14.0), or type 2 diabetes mellitus (N = 21, %female = 28.9, age = 59.8 ± 9.7) and healthy volunteers (N = 9, %female = 11.1, age = 58.0 ± 8.1). FIELD STRENGTH/SEQUENCES 3 T, balanced steady-state free precession MOdified Look-Locker Inversion recovery (MOLLI), multi- and dual-echo gradient echo Dixon, gradient echo magnetic resonance elastography (MRE). ASSESSMENT T1 values were measured in phantoms to determine the respective correction factors. The correction was tested in vivo and validated by proton magnetic resonance spectroscopy (1 H-MRS). The quantification of liver T1 based on automatic segmentation was compared to the T1 values based on manual segmentation. The association of T1 with MRE-derived liver stiffness was evaluated. STATISTICAL TESTS Bland-Altman plots and intraclass correlation coefficients (ICCs) were used for MOLLI vs. 1 H-MRS agreement and to compare liver T1 values from automatic vs. manual segmentation. Pearson's r correlation coefficients for T1 with hepatic lipids and liver stiffness were determined. A P-value of 0.05 was considered statistically significant. RESULTS MOLLI T1 values after correction were found in better agreement with the 1 H-MRS-derived water T1 (ICC = 0.60 [0.37; 0.76]) in comparison with the uncorrected T1 values (ICC = 0.18 [-0.09; 0.44]). Automatic quantification yielded similar liver T1 values (ICC = 0.9995 [0.9991; 0.9997]) as with manual segmentation. A significant correlation of T1 with liver stiffness (r = 0.43 [0.11; 0.67]) was found. A marked and significant reduction in the correlation strength of T1 with liver stiffness (r = 0.05 [-0.28; 0.38], P = 0.77) was found after correction for hepatic lipid content. DATA CONCLUSION Imaging-based correction factors enable accurate estimation of water T1 in vivo. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Filippo C Michelotti
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
| | - Yuliya Kupriyanova
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
| | - Tim Mori
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas Küstner
- Diagnostics and Interventional Radiology, Medical Image and Data Analysis (MIDAS.lab), University Hospital of Tübingen, Tübingen, Germany
| | - Geronimo Heilmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
| | - Maria Bombrich
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
| | - Clara Möser
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Martin Schön
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
| | - Oliver Kuss
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Centre for Health and Society, Faculty of Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Vera B Schrauwen-Hinderling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
6
|
Sussman MS, Jhaveri KS. A short-TR single-echo spin-echo breath-hold method for assessing liver T2. MAGMA (NEW YORK, N.Y.) 2024; 37:101-113. [PMID: 38071698 DOI: 10.1007/s10334-023-01132-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 02/21/2024]
Abstract
OBJECTIVE Conventional single-echo spin-echo T2 mapping used for liver iron quantification is too long for breath-holding. This study investigated a short TR (~100 ms) single-echo spin-echo T2 mapping technique wherein each image (corresponding to a single TE) could be acquired in ~17 s-short enough for a breath-hold. TE images were combined for T2 fitting. To avoid T1 bias, each TE acquisition incremented TR to maintain a constant TR-TE. MATERIALS AND METHODS Experiments at 1.5T validated the technique's accuracy in phantoms, 9 healthy volunteers, and 5 iron overload patients. In phantoms and healthy volunteers, the technique was compared to the conventional approach of constant TR for all TEs. Iron overload results were compared to FerriScan. RESULTS In phantoms, the constant TR-TE technique provided unbiased estimates of T2, while the conventional constant TR approach underestimated it. In healthy volunteers, there was no significant discrepancy at the 95% confidence level between constant TR-TE and reference T2 values, whereas there was for constant TR scans. In iron overload patients, there was a high correlation between constant TR-TE and FerriScan T2 values (r2 = 0.95), with a discrepancy of 0.6+/- 1.4 ms. DISCUSSION The short-TR single-echo breath-hold spin-echo technique provided unbiased estimates of T2 in phantoms and livers.
Collapse
Affiliation(s)
- Marshall S Sussman
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital, and Women's College Hospital, University of Toronto, 585 University Avenue, Room NUW-1-141D, Toronto, ON, M5G 2N2, Canada.
| | - Kartik S Jhaveri
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital, and Women's College Hospital, University of Toronto, 585 University Avenue, Room NUW-1-141D, Toronto, ON, M5G 2N2, Canada
| |
Collapse
|
7
|
Meloni A, Carnevale A, Gaio P, Positano V, Passantino C, Pepe A, Barison A, Todiere G, Grigoratos C, Novani G, Pistoia L, Giganti M, Cademartiri F, Cossu A. Liver T1 and T2 mapping in a large cohort of healthy subjects: normal ranges and correlation with age and sex. MAGMA (NEW YORK, N.Y.) 2024; 37:93-100. [PMID: 38019376 DOI: 10.1007/s10334-023-01135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023]
Abstract
OBJECTIVE We established normal ranges for native T1 and T2 values in the human liver using a 1.5 T whole-body imager (General Electric) and we evaluated their variation across hepatic segments and their association with age and sex. MATERIALS AND METHODS One-hundred healthy volunteers aged 20-70 years (50% females) underwent MRI. Modified Look-Locker inversion recovery and multi-echo fast-spin-echo sequences were used to measure hepatic native global and segmental T1 and T2 values, respectively. RESULTS T1 and T2 values exhibited good intra- and inter-observer reproducibility (coefficient of variation < 5%). T1 value over segment 4 was significantly lower than the T1 values over segments 2 and 3 (p < 0.0001). No significant regional T2 variability was detected. Segmental and global T1 values were not associated with age or sex. Global T2 values were independent from age but were significantly lower in males than in females. The lower and upper limits of normal for global T1 values were, respectively, 442 ms and 705 ms. The normal range for global T2 values was 35 ms-54 ms in males and 39 ms-54 ms in females. DISCUSSION Liver T1 and T2 mapping is feasible and reproducible and the provided normal ranges may help to establish diagnosis and progression of various liver diseases.
Collapse
Affiliation(s)
- Antonella Meloni
- Radiology Department, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1-56124, Pisa, Italy
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Aldo Carnevale
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Paolo Gaio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Vincenzo Positano
- Radiology Department, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1-56124, Pisa, Italy
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | | | - Alessia Pepe
- Institute of Radiology, University of Padua, Padua, Italy
| | - Andrea Barison
- Division of Cardiology and Cardiovascular Medicine, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Giancarlo Todiere
- Division of Cardiology and Cardiovascular Medicine, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Chrysanthos Grigoratos
- Division of Cardiology and Cardiovascular Medicine, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Giovanni Novani
- Radiology Department, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1-56124, Pisa, Italy
| | - Laura Pistoia
- Radiology Department, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1-56124, Pisa, Italy
- U.O.S.V.D. Ricerca Clinica, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | | | - Filippo Cademartiri
- Radiology Department, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1-56124, Pisa, Italy.
| | - Alberto Cossu
- University Radiology Unit, University of Ferrara, Ferrara, Italy
| |
Collapse
|
8
|
Barazesh M, Jalili S, Akhzari M, Faraji F, Khorramdin E. Recent Progresses on Pathophysiology, Diagnosis, Therapeutic Modalities,
and Management of Non-alcoholic Fatty Liver Disorder. CURRENT DRUG THERAPY 2024; 19:20-48. [DOI: 10.2174/1574885518666230417111247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 01/03/2025]
Abstract
Abstract:
Non-alcoholic fatty liver disease (NAFLD) is currently the utmost common chronic liver
disorder that happens through all age groups and is identified to occur in 14%-30% of the general
population, demonstrating a critical and grossing clinical issue because of the growing incidence of
obesity and overweight. From the histological aspect, it looks like alcoholic liver damage, but it happens in patients who avoid remarkable alcohol usage. NAFLD comprises a broad spectrum, ranging
from benign hepatocellular steatosis to inflammatory nonalcoholic steatohepatitis (NASH), different
levels of fibrosis, and cirrhosis. Patients with NASH are more susceptible to more rapid progression to
cirrhosis and hepatocellular carcinoma. There is no single factor that drives proceeding from simple
steatosis to NASH. However, a combination of multi parameters such as genetic background, gut microflora, intake of high fat/ fructose dietary contents or methionine/choline-deficient diet, and consequently accumulated hepatocellular lipids mainly including triglycerides and also other bio-analytes,
such as free fatty acids, cholesterol, and phospholipids display a crucial role in disease promotion.
NAFLD is related to overweight and insulin resistance (IR) and is regarded as the hepatic presentation
of the metabolic syndrome, an amalgamation of medical statuses such as hyperlipidemia, hypertension, type 2 diabetes, and visceral obesity. Despite the increasing prevalence of this disease, which
imposes a remarkable clinical burden, most affected patients remain undiagnosed in a timely manner,
largely related to the asymptomatic entity of NAFLD patients and the unavailability of accurate and
efficient noninvasive diagnostic tests. However, liver biopsy is considered a gold standard for NAFLD
diagnosis, but due to being expensive and invasiveness is inappropriate for periodic disease screening.
Some noninvasive monitoring approaches have been established recently for NAFLD assessment. In
addition to the problem of correct disease course prediction, no effective therapeutic modalities are
approved for disease treatment. Imaging techniques can commonly validate the screening and discrimination of NAFLD; nevertheless, staging the disease needs a liver biopsy. The present therapeutic approaches depend on weight loss, sports activities, and dietary modifications, although different insulin-sensitizing drugs, antioxidants, and therapeutic agents seem hopeful. This review aims to focus on
the current knowledge concerning epidemiology, pathogenesis, and different biochemical experiments
and imaging modalities applied to diagnose the different grades of NAFLD and its management, as
well as new data about pharmacological therapies for this disorder.
Collapse
Affiliation(s)
- Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Sajad Jalili
- Department of Orthopedics, School of
Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of
Medical Sciences, Larestan, Iran
| | - Fouzieyeh Faraji
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Ebrahim Khorramdin
- Department of Orthopedics, School of
Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Pavlides M, Mózes FE, Akhtar S, Wonders K, Cobbold J, Tunnicliffe EM, Allison M, Godfrey EM, Aithal GP, Francis S, Romero-Gomez M, Castell J, Fernandez-Lizaranzu I, Aller R, González RS, Agustin S, Pericàs JM, Boursier J, Aube C, Ratziu V, Wagner M, Petta S, Antonucci M, Bugianesi E, Faletti R, Miele L, Geier A, Schattenberg JM, Tilman E, Ekstedt M, Lundberg P, Berzigotti A, Huber AT, Papatheodoridis G, Yki-Järvinen H, Porthan K, Schneider MJ, Hockings P, Shumbayawonda E, Banerjee R, Pepin K, Kalutkiewicz M, Ehman RL, Trylesinksi A, Coxson HO, Martic M, Yunis C, Tuthill T, Bossuyt PM, Anstee QM, Neubauer S, Harrison S. Liver Investigation: Testing Marker Utility in Steatohepatitis (LITMUS): Assessment & validation of imaging modality performance across the NAFLD spectrum in a prospectively recruited cohort study (the LITMUS imaging study): Study protocol. Contemp Clin Trials 2023; 134:107352. [PMID: 37802221 DOI: 10.1016/j.cct.2023.107352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Accepted: 10/01/2023] [Indexed: 10/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the liver manifestation of the metabolic syndrome with global prevalence reaching epidemic levels. Despite the high disease burden in the population only a small proportion of those with NAFLD will develop progressive liver disease, for which there is currently no approved pharmacotherapy. Identifying those who are at risk of progressive NAFLD currently requires a liver biopsy which is problematic. Firstly, liver biopsy is invasive and therefore not appropriate for use in a condition like NAFLD that affects a large proportion of the population. Secondly, biopsy is limited by sampling and observer dependent variability which can lead to misclassification of disease severity. Non-invasive biomarkers are therefore needed to replace liver biopsy in the assessment of NAFLD. Our study addresses this unmet need. The LITMUS Imaging Study is a prospectively recruited multi-centre cohort study evaluating magnetic resonance imaging and elastography, and ultrasound elastography against liver histology as the reference standard. Imaging biomarkers and biopsy are acquired within a 100-day window. The study employs standardised processes for imaging data collection and analysis as well as a real time central monitoring and quality control process for all the data submitted for analysis. It is anticipated that the high-quality data generated from this study will underpin changes in clinical practice for the benefit of people with NAFLD. Study Registration: clinicaltrials.gov: NCT05479721.
Collapse
Affiliation(s)
- Michael Pavlides
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK; Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust and the University of Oxford, Oxford, UK.
| | - Ferenc E Mózes
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Salma Akhtar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Kristy Wonders
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Jeremy Cobbold
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK; Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust and the University of Oxford, Oxford, UK
| | - Elizabeth M Tunnicliffe
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust and the University of Oxford, Oxford, UK
| | - Michael Allison
- Liver Unit, Department of Medicine, Cambridge NIHR Biomedical Research Centre, Cambridge University NHS Foundation Trust, UK
| | - Edmund M Godfrey
- Department of Radiology, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - Guruprasad P Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Susan Francis
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Manuel Romero-Gomez
- Digestive Diseases Unit, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Javier Castell
- Radiodiagnosis Clinical Management Unit, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | | | - Rocio Aller
- Department of Gastroenterology, Clinic University Hospital, Medical School, University of Valladolid, CIBERINFEC, Valladolid, Spain
| | - Rebeca Sigüenza González
- Department of Radiology, Clinic University Hospital, Medical School, University of Valladolid, Valladolid, Spain
| | - Salvador Agustin
- Liver Unit, Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Hospital, Centros de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Juan M Pericàs
- Liver Unit, Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Hospital, Centros de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Jerome Boursier
- Centre Hospitalier Universitaire d'Angers, Angers, France; & Laboratoire HIFIH UPRES EA3859, Université d'Angers, Angers, France
| | - Christophe Aube
- Department of Radiology, Centre Hospitalier Universitaire d'Angers, Angers, France; & Laboratoire HIFIH UPRES EA3859, Université d'Angers, Angers, France
| | - Vlad Ratziu
- Sorbonne Université, Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Mathilde Wagner
- Radiology department, AP-HP.6, GH Pitié Salpêtrière - Charles Foix Sorbonne Université, Paris, France
| | - Salvatore Petta
- Section of Gastroenterology, PROMISE, University of Palermo, Italy
| | - Michela Antonucci
- Section of Radiology - Di.Bi.Me.F., University of Palermo, Palermo, Italy
| | - Elisabetta Bugianesi
- Division of Gastroenterology, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Riccardo Faletti
- Department of Diagnostic and Interventional Radiology, University of Turin, Turin, Italy
| | - Luca Miele
- Department of Translational Medicine and Surgery, Medical School, Università Cattolica del S. Cuore and Fondazione Pol. Gemelli IRCCS Hospital, Rome, Italy
| | - Andreas Geier
- Department of Hepatology, University of Würzburg, Würzburg, Germany
| | - Jörn M Schattenberg
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Centre, Mainz, Germany
| | - Emrich Tilman
- Department of Diagnostic and Interventional Radiology, University Medical Center of Johannes-Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Mattias Ekstedt
- Department of Health, Medicine and Caring Sciences, and Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Department of Radiation Physics, and Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Annalisa Berzigotti
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian T Huber
- Department of Diagnostic, Interventional and Paediatric Radiology (DIPR), Bern University Hospital, University of Bern, Bern, Switzerland
| | - George Papatheodoridis
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, General Hospital of Athens "Laiko", Athens, Greece
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kimmo Porthan
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | | | | | | | | | | | | | - Aldo Trylesinksi
- ADVANZPHARMA, Capital House, 1st Floor, 85 King William Street, London EC4N 7BL, United Kingdom
| | | | - Miljen Martic
- Novartis AG, Translational Medicine, Clinical and Precision Medicine Imaging, Basel, Switzerland
| | - Carla Yunis
- Clinical Development and Operations, Pfizer Inc., Lake Mary, FL, USA
| | - Theresa Tuthill
- Clinical Development and Operations, Pfizer Inc., Lake Mary, FL, USA
| | - Patrick M Bossuyt
- Department of Epidemiology & Data Science, Amsterdam Public Health, Amsterdam University Medical Centres, University of Amsterdam, the Netherlands
| | - Quentin M Anstee
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust and the University of Oxford, Oxford, UK
| | - Stephen Harrison
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Li J, Lu X, Zhu Z, Kalutkiewicz KJ, Mounajjed T, Therneau TM, Venkatesh SK, Sui Y, Glaser KJ, Hoodeshenas S, Manduca A, Shah VH, Ehman RL, Allen AM, Yin M. Head-to-head comparison of magnetic resonance elastography-based liver stiffness, fat fraction, and T1 relaxation time in identifying at-risk NASH. Hepatology 2023; 78:1200-1208. [PMID: 37080558 PMCID: PMC10521779 DOI: 10.1097/hep.0000000000000417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND AND AIMS The presence of at-risk NASH is associated with an increased risk of cirrhosis and complications. Therefore, noninvasive identification of at-risk NASH with an accurate biomarker is a critical need for pharmacologic therapy. We aim to explore the performance of several magnetic resonance (MR)-based imaging parameters in diagnosing at-risk NASH. APPROACH AND RESULTS This prospective clinical trial (NCT02565446) includes 104 paired MR examinations and liver biopsies performed in patients with suspected or diagnosed NAFLD. Magnetic resonance elastography-assessed liver stiffness (LS), 6-point Dixon-derived proton density fat fraction (PDFF), and single-point saturation-recovery acquisition-calculated T1 relaxation time were explored. Among all predictors, LS showed the significantly highest accuracy in diagnosing at-risk NASH [AUC LS : 0.89 (0.82, 0.95), AUC PDFF : 0.70 (0.58, 0.81), AUC T1 : 0.72 (0.61, 0.82), z -score test z >1.96 for LS vs any of others]. The optimal cutoff value of LS to identify at-risk NASH patients was 3.3 kPa (sensitivity: 79%, specificity: 82%, negative predictive value: 91%), whereas the optimal cutoff value of T1 was 850 ms (sensitivity: 75%, specificity: 63%, and negative predictive value: 87%). PDFF had the highest performance in diagnosing NASH with any fibrosis stage [AUC PDFF : 0.82 (0.72, 0.91), AUC LS : 0.73 (0.63, 0.84), AUC T1 : 0.72 (0.61, 0.83), |z| <1.96 for all]. CONCLUSION Magnetic resonance elastography-assessed LS alone outperformed PDFF, and T1 in identifying patients with at-risk NASH for therapeutic trials.
Collapse
Affiliation(s)
- Jiahui Li
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Xin Lu
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Zhu
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Taofic Mounajjed
- Division of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Terry M. Therneau
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Yi Sui
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kevin J. Glaser
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Armando Manduca
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Alina M. Allen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Meng Yin
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Liu CY, Noda C, van der Geest RJ, Triaire B, Kassai Y, Bluemke DA, Lima JAC. Sex-specific associations in multiparametric 3 T MRI measurements in adult livers. Abdom Radiol (NY) 2023; 48:3072-3078. [PMID: 37378865 DOI: 10.1007/s00261-023-03981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND MRI relaxometry mapping and proton density fat fraction (PDFF) have been proposed for the evaluation of hepatic fibrosis. However, sex-specific relationships of age and body fat with these MRI parameters have not been studied in detail among adults without clinically manifest hepatic disease. We aimed to determine the sex-specific correlation of multiparametric MRI parameters with age and body fat and to evaluate their interplay associations. METHODS 147 study participants (84 women, mean age 48±14 years, range 19-85 years) were prospectively enrolled. 3 T MRI including T1, T2 and T1ρ mapping and PDFF and R2* map were acquired. Visceral and subcutaneous fat were measured on the fat images from Dixon water-fat separation sequence. RESULTS All MRI parameters demonstrated sex difference except for T1ρ. PDFF was more related to visceral than subcutaneous fat. Per 100 ml gain of visceral or subcutaneous fat is associated with 1 or 0.4% accretion of liver fat, respectively. PDFF and R2* were higher in men (both P = 0.01) while T1 and T2 were higher in women (both P < 0.01). R2* was positively but T1 and T2 were negatively associated with age in women (all P < 0.01), while T1ρ was positively related to age in men (P < 0.05). In all studies, R2* was positively and T1ρ was negatively associated with PDFF (both P <0.0001). CONCLUSION Visceral fat plays an essential role in the elevated liver fat. When using MRI parametric measures for liver disease evaluation, the interplay between these parameters should be considered.
Collapse
Affiliation(s)
| | - Chikara Noda
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rob J van der Geest
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - David A Bluemke
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - João A C Lima
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Higashi M, Tanabe M, Yamane M, Keerthivasan MB, Imai H, Yonezawa T, Nakamura M, Ito K. Impact of fat on the apparent T1 value of the liver: assessment by water-only derived T1 mapping. Eur Radiol 2023; 33:6844-6851. [PMID: 37552261 DOI: 10.1007/s00330-023-10052-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 08/09/2023]
Abstract
OBJECTIVES To determine the impact of fat on the apparent T1 value of the liver using water-only derived T1 mapping. METHODS 3-T MRI included 2D Look-Locker T1 mapping and proton density fat fraction (PDFF) mapping. T1 values of the liver were compared among T1 maps obtained by in-phase (IP), opposed-phase (OP), and Dixon water sequences using paired t-test. The correlation between T1 values of the liver on each T1 map and PDFF was assessed using Spearman correlation coefficient. The absolute differences between T1 value of the liver on Dixon water images and that on IP or OP images were also correlated with PDFF. RESULTS One hundred sixty-two patients (median age, 70 [range, 24-91] years, 90 men) were retrospectively evaluated. The T1 values of the liver on each T1 map were significantly different (p < 0.001). The T1 value of the liver on IP images was significantly negatively correlated with PDFF (r = - 0.438), while the T1 value of the liver on OP images was slightly positively correlated with PDFF (r = 0.164). The T1 value of the liver on Dixon water images was slightly negatively correlated with PDFF (r = - 0.171). The absolute differences between T1 value of the liver on Dixon water images and that on IP or OP images were significantly correlated with PDFF (r = 0.606, 0.722; p < 0.001). CONCLUSION Fat correction for the apparent T1 value by water-only derived T1 maps will be helpful for accurately evaluating the T1 value of the liver. CLINICAL RELEVANCE STATEMENT Fat-corrected T1 mapping of the liver with the water component only obtained from the 2D Dixon Look-Locker sequence could be useful for accurately evaluating the T1 value of the liver without the impact of fat in daily clinical practice. KEY POINTS • The T1 values of the liver on the conventional T1 maps are significantly affected by the presence of fat. • The apparent T1 value of the liver on water-only derived T1 maps would be slightly impacted by the presence of fat. • Fat correction for the apparent T1 values is necessary for the accurate assessment of the T1 values of the liver.
Collapse
Affiliation(s)
- Mayumi Higashi
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Masahiro Tanabe
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Masatoshi Yamane
- Department of Radiological Technology, Yamaguchi University Hospital, Yamaguchi, Japan
| | | | - Hiroshi Imai
- MR Research and Collaboration, Siemens Healthcare K.K., Tokyo, Japan
| | - Teppei Yonezawa
- Department of Radiological Technology, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Michihiro Nakamura
- Department of Organ Anatomy & NANOMEDICINE, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Katsuyoshi Ito
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
13
|
Oka H, Nakau K, Nakagawa S, Imanishi R, Shimada S, Mikami Y, Fukao K, Iwata K, Takahashi S. Liver T1/T2 values with cardiac MRI during respiration. Cardiol Young 2023; 33:1859-1865. [PMID: 36281881 DOI: 10.1017/s1047951122003274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Assessing the hepatic status of children with CHD is very important in the post-operative period. This study aimed to assess the usefulness of paediatric liver T1/T2 values and to evaluate the impact of respiration on liver T1/T2 values. METHODS Liver T1/T2 values were evaluated in 69 individuals who underwent cardiac MRI. The mean age of the participants was 16.2 ± 9.8 years. Two types of imaging with different breathing methods were possible in 34 participants for liver T1 values and 10 participants for liver T2 values. RESULTS The normal range was set at 620-830 msec for liver T1 and 25-40 ms for liver T2 based on the data obtained from 17 healthy individuals. The liver T1/T2 values were not significantly different between breath-hold and free-breath imaging (T1: 769.4 ± 102.8 ms versus 763.2 ± 93.9 ms; p = 0.148, T2: 34.9 ± 4.0 ms versus 33.6 ± 2.4 ms; p = 0.169). Higher liver T1 values were observed in patients who had undergone Fontan operation, tetralogy of Fallot operation, or those with chronic viral hepatitis. There was a trend toward correlation between liver T1 values and liver stiffness (R = 0.65, p = 0.0004); and the liver T1 values showed a positive correlation with the shear wave velocity (R = 0.62, p = 0.0006). CONCLUSIONS Liver T1/T2 values were not affected by breathing patterns. Because liver T1 values tend to increase with right heart overload, evaluation of liver T1 values during routine cardiac MRI may enable early detection of future complications.
Collapse
Affiliation(s)
- Hideharu Oka
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Kouichi Nakau
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Sadahiro Nakagawa
- Section of Radiological Technology, Department of Medical Technology, Asahikawa Medical University Hospital, Hokkaido, Japan
| | - Rina Imanishi
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Sorachi Shimada
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Yuki Mikami
- Section of Radiological Technology, Department of Medical Technology, Asahikawa Medical University Hospital, Hokkaido, Japan
| | - Kazunori Fukao
- Section of Radiological Technology, Department of Medical Technology, Asahikawa Medical University Hospital, Hokkaido, Japan
| | - Kunihiro Iwata
- Section of Radiological Technology, Department of Medical Technology, Asahikawa Medical University Hospital, Hokkaido, Japan
| | - Satoru Takahashi
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| |
Collapse
|
14
|
Fotaki A, Velasco C, Prieto C, Botnar RM. Quantitative MRI in cardiometabolic disease: From conventional cardiac and liver tissue mapping techniques to multi-parametric approaches. Front Cardiovasc Med 2023; 9:991383. [PMID: 36756640 PMCID: PMC9899858 DOI: 10.3389/fcvm.2022.991383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023] Open
Abstract
Cardiometabolic disease refers to the spectrum of chronic conditions that include diabetes, hypertension, atheromatosis, non-alcoholic fatty liver disease, and their long-term impact on cardiovascular health. Histological studies have confirmed several modifications at the tissue level in cardiometabolic disease. Recently, quantitative MR methods have enabled non-invasive myocardial and liver tissue characterization. MR relaxation mapping techniques such as T1, T1ρ, T2 and T2* provide a pixel-by-pixel representation of the corresponding tissue specific relaxation times, which have been shown to correlate with fibrosis, altered tissue perfusion, oedema and iron levels. Proton density fat fraction mapping approaches allow measurement of lipid tissue in the organ of interest. Several studies have demonstrated their utility as early diagnostic biomarkers and their potential to bear prognostic implications. Conventionally, the quantification of these parameters by MRI relies on the acquisition of sequential scans, encoding and mapping only one parameter per scan. However, this methodology is time inefficient and suffers from the confounding effects of the relaxation parameters in each single map, limiting wider clinical and research applications. To address these limitations, several novel approaches have been proposed that encode multiple tissue parameters simultaneously, providing co-registered multiparametric information of the tissues of interest. This review aims to describe the multi-faceted myocardial and hepatic tissue alterations in cardiometabolic disease and to motivate the application of relaxometry and proton-density cardiac and liver tissue mapping techniques. Current approaches in myocardial and liver tissue characterization as well as latest technical developments in multiparametric quantitative MRI are included. Limitations and challenges of these novel approaches, and recommendations to facilitate clinical validation are also discussed.
Collapse
Affiliation(s)
- Anastasia Fotaki
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom,*Correspondence: Anastasia Fotaki,
| | - Carlos Velasco
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom,School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile,Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile,Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| | - René M. Botnar
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom,School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile,Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile,Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| |
Collapse
|
15
|
Li YW, Jiao Y, Chen N, Gao Q, Chen YK, Zhang YF, Wen QP, Zhang ZM. How to select the quantitative magnetic resonance technique for subjects with fatty liver: A systematic review. World J Clin Cases 2022; 10:8906-8921. [PMID: 36157636 PMCID: PMC9477046 DOI: 10.12998/wjcc.v10.i25.8906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/25/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Early quantitative assessment of liver fat content is essential for patients with fatty liver disease. Mounting evidence has shown that magnetic resonance (MR) technique has high accuracy in the quantitative analysis of fatty liver, and is suitable for monitoring the therapeutic effect on fatty liver. However, many packaging methods and postprocessing functions have puzzled radiologists in clinical applications. Therefore, selecting a quantitative MR imaging technique for patients with fatty liver disease remains challenging.
AIM To provide information for the proper selection of commonly used quantitative MR techniques to quantify fatty liver.
METHODS We completed a systematic literature review of quantitative MR techniques for detecting fatty liver, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol. Studies were retrieved from PubMed, Embase, and Cochrane Library databases, and their quality was assessed using the Quality Assessment of Diagnostic Studies criteria. The Reference Citation Analysis database (https://www.referencecitationanalysis.com) was used to analyze citation of articles which were included in this review.
RESULTS Forty studies were included for spectroscopy, two-point Dixon imaging, and multiple-point Dixon imaging comparing liver biopsy to other imaging methods. The advantages and disadvantages of each of the three techniques and their clinical diagnostic performances were analyzed.
CONCLUSION The proton density fat fraction derived from multiple-point Dixon imaging is a noninvasive method for accurate quantitative measurement of hepatic fat content in the diagnosis and monitoring of fatty liver progression.
Collapse
Affiliation(s)
- You-Wei Li
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Yang Jiao
- Department of Rehabilitation Psychology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Na Chen
- Department of Otorhinolaryngology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Qiang Gao
- Department of Gastroenterology and Hepatology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Yu-Kun Chen
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Yuan-Fang Zhang
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Qi-Ping Wen
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Zong-Ming Zhang
- Department of General Surgery, Beijing Electric Power Hospital, State Grid Corporation of China, Capital Medical University, Beijing 100073, China
| |
Collapse
|
16
|
Ghavamian A, Liu C, Kang B, Yuan X, Wang X, Gao L, Zhao X. Liver T1 relaxation time of the 'normal liver' in healthy Asians: measurement with MOLLI and B 1-corrected VFA methods at 3T. Br J Radiol 2022; 95:20211008. [PMID: 35324344 PMCID: PMC10993984 DOI: 10.1259/bjr.20211008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Liver T1 is a potential magnetic resonance imaging biomarker for liver diseases. This study aimed to determine the T1 relaxation time of the normal liver (PDFF<5%) in healthy Asian volunteers using modified look-locker inversion recovery (MOLLI) and B1 inhomogeneity-corrected variable flip angle (B1-corrected VFA). METHODS 60 healthy Asian volunteers without focal or diffuse liver disease underwent a liver scan at 3T magnetic resonance. Proton density fat fraction (PDFF) and liver stiffness measurements were applied for the quantification of liver fat and fibrosis. T1 mapping was performed with MOLLI and B1-corrected VFA sequences. Bland-Altman, linear regression, Student t-test, and one-way analysis of variance were used for statistical analysis. RESULTS The mean T1 relaxation times of the whole liver were 901 ± 34 ms by MOLLI, and 948 ± 29 ms by B1-corrected VFA in healthy volunteers. There was a strong correlation (r = 0.86, p < 0.0001) for liver T1 between two T1 mapping methods. There were significant differences between the right and left lobes in liver T1 relaxation times using both methods (p < 0.05). Gender and Asian ethnic disparities had no impact on liver T1 relaxation times. CONCLUSION T1 relaxation times of the normal liver (PDFF<5%) in healthy volunteers were established by MOLLI and B1-corrected VFA T1 mapping methods at 3T. It may provide suitable and robust baseline values for the assessment of liver diseases. ADVANCES IN KNOWLEDGE Gender and Asian ethnic disparities do not impact liver T1 relaxation time measurements.
Collapse
Affiliation(s)
- Armin Ghavamian
- Department of Radiology, Shandong Provincial Hospital, Cheeloo
College of Medicine, Shandong University,
Shandong, China
| | - Cuihong Liu
- Department of Radiology, Shandong Provincial Hospital, Cheeloo
College of Medicine, Shandong University,
Shandong, China
- Shandong Provincial Hospital Affiliated to Shandong First
Medical University, Shandong University,
Shandong, China
| | - Bing Kang
- Shandong Provincial Hospital Affiliated to Shandong First
Medical University, Shandong University,
Shandong, China
| | - Xianshun Yuan
- Shandong Provincial Hospital Affiliated to Shandong First
Medical University, Shandong University,
Shandong, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital, Cheeloo
College of Medicine, Shandong University,
Shandong, China
- Shandong Provincial Hospital Affiliated to Shandong First
Medical University, Shandong University,
Shandong, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital
affiliated to Shandong University, Shandong Clinical Medical Center of
Endocrinology and Metabolism, Institute of Endocrinology and Metabolism,
Shandong Academy of Clinical Medicine,
Shandong, China
| | - Xinya Zhao
- Department of Radiology, Shandong Provincial Hospital, Cheeloo
College of Medicine, Shandong University,
Shandong, China
- Shandong Provincial Hospital Affiliated to Shandong First
Medical University, Shandong University,
Shandong, China
| |
Collapse
|
17
|
Current Techniques and Future Trends in the Diagnosis of Hepatic Steatosis in Liver Donors: A Review. JOURNAL OF LIVER TRANSPLANTATION 2022. [DOI: 10.1016/j.liver.2022.100091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
18
|
Kim SH, Lee SJ, Yu SM. Study of lipid proton difference evaluation via 9.4T MRI analysis of fatty liver induced by exposure to methionine and choline-deficient (MCD) diet and high-fat diet (HFD) in an animal model. Chem Phys Lipids 2021; 242:105164. [PMID: 34906552 DOI: 10.1016/j.chemphyslip.2021.105164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/25/2021] [Accepted: 12/09/2021] [Indexed: 12/20/2022]
Abstract
The selection of an animal model is based on the pathological mechanism appropriate for experimental investigation because the therapeutic effect was low depending on the pathological occurrence mechanism. The purpose of this study is to elucidate the changes in lipid proton concentration in two animal models of nonalcoholic fatty liver disease (NAFLD): methionine and choline-deficient (MCD) diet and high-fat diet (HFD). We calculated the T2 relaxation time of 7 lipid protons (LP) in the 9.4 T MRS phantom experiment. The concentrations of LPs were adjusted for T2 and T2* of MCD, HFD, and CCl4 fatty liver animal models. Multivariate analysis and Pearson correlation were performed to analyze LP concentration, and the difference was investigated via Kendall correlation and independent t-test using LP composition ratio. The T2 relaxation time of each LP was accurately determined using phantom experiments. The in vivo magnetic resonance spectroscopy (MRS) data were obtained by quantifying the t2/t2* corrected LP concentration in the liver of the animal model. In case of MCD and HFD, there was an average difference in all LPs except 0.9 ppm LP, and the MCD and CCl4 groups showed differences in the average of all LPs. However, there was no difference between LP of HFD and CCl4 groups. A higher level of unsaturated fatty acids was found in the MCD fatty liver model than in HFD induced fatty liver.
Collapse
Affiliation(s)
- Sang-Hyeok Kim
- Department of Radiological Science, College of Medical Sciences, Jeonju University, Jeonju city 55069, Republic of Korea
| | - Suk-Jun Lee
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju 360-764, Republic of Korea
| | - Seung-Man Yu
- Department of Radiological Science, College of Medical Sciences, Jeonju University, Jeonju city 55069, Republic of Korea.
| |
Collapse
|