1
|
Lippert M, Dumont KA, Birkeland S, Nainamalai V, Solvin H, Suther KR, Bendz B, Elle OJ, Brun H. Cardiac anatomic digital twins: findings from a single national centre. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2024; 5:725-734. [PMID: 39563912 PMCID: PMC11570384 DOI: 10.1093/ehjdh/ztae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 11/21/2024]
Abstract
Aims New three-dimensional cardiac visualization technologies are increasingly employed for anatomic digital twins in pre-operative planning. However, the role and influence of extended reality (virtual, augmented, or mixed) within heart team settings remain unclear. We aimed to assess the impact of mixed reality visualization of the intracardiac anatomy on surgical decision-making in patients with complex heart defects. Methods and results Between September 2020 and December 2022, we recruited 50 patients and generated anatomic digital twins and visualized them in mixed reality. These anatomic digital twins were presented to the heart team after initial decisions were made using standard visualization methods. Changes in the surgical strategy were recorded. Additionally, heart team members rated their mixed reality experience through a questionnaire, and post-operative outcomes were registered. Anatomic digital twins changed the initially decided upon surgical strategies for 68% of cases. While artificial intelligence facilitated the rapid creation of digital anatomic twins, manual corrections were always necessary. Conclusion In conclusion, mixed reality anatomic digital twins added information to standard visualization methods and significantly influenced surgical planning, with evidence that these strategies can be implemented safely without additional risk.
Collapse
Affiliation(s)
- Matthias Lippert
- The Intervention Centre, Division for Technology and Innovation, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, Oslo 0424, Norway
- Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, Oslo 0450, Norway
| | - Karl-Andreas Dumont
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Sigurd Birkeland
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Varatharajan Nainamalai
- The Intervention Centre, Division for Technology and Innovation, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, Oslo 0424, Norway
| | - Håvard Solvin
- The Intervention Centre, Division for Technology and Innovation, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, Oslo 0424, Norway
- Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, Oslo 0450, Norway
| | - Kathrine Rydén Suther
- Department of Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Bjørn Bendz
- Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, Oslo 0450, Norway
- Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Ole Jakob Elle
- The Intervention Centre, Division for Technology and Innovation, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, Oslo 0424, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Henrik Brun
- The Intervention Centre, Division for Technology and Innovation, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, Oslo 0424, Norway
- Department for Pediatric Cardiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Sakai AKF, Cestari IN, de Sales E, Mazzetto M, Cestari IA. Metamaterial design for aortic aneurysm simulation using 3D printing. 3D Print Med 2024; 10:29. [PMID: 39110290 PMCID: PMC11304610 DOI: 10.1186/s41205-024-00219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/18/2024] [Indexed: 08/10/2024] Open
Abstract
INTRODUCTION The use of three-dimensional (3D) printed anatomic models is steadily increasing in research and as a tool for clinical decision-making. The mechanical properties of polymers and metamaterials were investigated to evaluate their application in mimicking the biomechanics of the aortic vessel wall. METHODOLOGY Uniaxial tensile tests were performed to determine the elastic modulus, mechanical stress, and strain of 3D printed samples. We used a combination of materials, designed to mimic biological tissues' properties, the rigid VeroTM family, and the flexible Agilus30™. Metamaterials were designed by tessellating unit cells that were used as lattice-reinforcement to tune their mechanical properties. The lattice-reinforcements were based on two groups of patterns, mainly responding to the movement between links/threads (chain and knitted) or to deformation (origami and diamond crystal). The mechanical properties of the printed materials were compared with the characteristics of healthy and aneurysmal aortas. RESULTS Uniaxial tensile tests showed that the use of a lattice-reinforcement increased rigidity and may increase the maximum stress generated. The pattern and material of the lattice-reinforcement may increase or reduce the strain at maximum stress, which is also affected by the base material used. Printed samples showed max stress ranging from 0.39 ± 0.01 MPa to 0.88 ± 0.02 MPa, and strain at max stress ranging from 70.44 ± 0.86% to 158.21 ± 8.99%. An example of an application was created by inserting a metamaterial designed as a lattice-reinforcement on a model of the aorta to simulate an abdominal aortic aneurysm. CONCLUSION The maximum stresses obtained with the printed models were similar to those of aortic tissue reported in the literature, despite the fact that the models did not perfectly reproduce the biological tissue behavior.
Collapse
Affiliation(s)
- Arthur K F Sakai
- Electrical Engineering Graduate Program, Telecommunications and Control Engineering Department, Polytechnic School, University of São Paulo, São Paulo, Brazil
| | - Ismar N Cestari
- Laboratório de Bioengenharia, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Eraldo de Sales
- Laboratório de Bioengenharia, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Mazzetto
- Laboratório de Bioengenharia, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Idágene A Cestari
- Electrical Engineering Graduate Program, Telecommunications and Control Engineering Department, Polytechnic School, University of São Paulo, São Paulo, Brazil.
- Laboratório de Bioengenharia, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Odemis E, AKA İB, Ali MHA, Gumus T, Pekkan K. Optimizing percutaneous pulmonary valve implantation with patient-specific 3D-printed pulmonary artery models and hemodynamic assessment. Front Cardiovasc Med 2024; 10:1331206. [PMID: 38259310 PMCID: PMC10800937 DOI: 10.3389/fcvm.2023.1331206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Background Percutaneous pulmonary valve implantation (PPVI) has emerged as a less invasive alternative for treating severe pulmonary regurgitation after tetralogy of Fallot (TOF) repair in patients with a native right ventricular outflow tract (RVOT). However, the success of PPVI depends on precise patient-specific valve sizing, the avoidance of oversizing complications, and optimal valve performance. In recent years, innovative adaptations of commercially available cardiovascular mock loops have been used to test conduits in the pulmonary position. These models are instrumental in facilitating accurate pulmonic valve sizing, mitigating the risk of oversizing, and providing insight into the valve performance before implantation. This study explored the utilization of custom-modified mock loops to implant patient-specific 3D-printed pulmonary artery geometries, thereby advancing PPVI planning and execution. Material and Methods Patient-specific 3D-printed pulmonary artery geometries of five patients who underwent PPVI using Pulsta transcatheter heart valve (THV) ® were tested in a modified ViVitro pulse duplicator system®. Various valve sizes were subjected to 10 cycles of testing at different cardiac output levels. The transpulmonary systolic and regurgitation fractions of the valves were also recorded and compared. Results A total of 39 experiments were conducted using five different patient geometries and several different valve sizes (26, 28, 30, and 32 mm) at 3, 4, and 5 L/min cardiac output at heart rates of 70 beats per minute (bpm) and 60/40 systolic/diastolic ratios. The pressure gradients and regurgitation fractions of the tested valve sizes in the models were found to be similar to the pressure gradients and regurgitation fractions of valves used in real procedures. However, in two patients, different valve sizes showed better hemodynamic values than the actual implanted valves. Discussion The use of 3D printing technology, electromagnetic flow meters, and the custom-modified ViVitro pulse duplicator system® in conjunction with patient-specific pulmonary artery models has enabled a comprehensive assessment of percutaneous pulmonic valve implantation performance. This approach allows for accurate valve sizing, minimization of oversizing risks, and valuable insights into hemodynamic behavior before implantation. The data obtained from this experimental setup will contribute to advancing PPVI procedures and offer potential benefits in improving patient outcomes and safety.
Collapse
Affiliation(s)
- Ender Odemis
- Congenital Heart Disease Research Laboratory, Kuttam, Koç University Hospital, Istanbul, Türkiye
- Department of Pediatric Cardiology, Faculty of Medicine, Koç University, Istanbul, Türkiye
| | - İbrahim Basar AKA
- Department of Mechatronics Engineering, Faculty of Engineering and Natural Sciences, İstanbul Bilgi University, Istanbul, Türkiye
| | - Mhd Homam Alhaj Ali
- Biomedical Engineering, Faculty of Engineering and Natural Sciences, İstanbul Medipol University, Istanbul, Türkiye
| | - Terman Gumus
- Department of Radiology, Faculty of Medicine, Koç University, Istanbul, Türkiye
| | - Kerem Pekkan
- Department of Mechanical Engineering, Faculty of Engineering, Koç University, Istanbul, Türkiye
| |
Collapse
|
4
|
Suzuki M, Miyaji K, Matoba K, Abe T, Nakamaru Y, Watanabe R, Suzuki T, Nakazono A, Konno A, Hinder D, Psaltis AJ, Wormald PJ, Homma A. Mental workload during endoscopic sinus surgery is associated with surgeons' skill levels. Front Med (Lausanne) 2023; 10:1090743. [PMID: 37168266 PMCID: PMC10165102 DOI: 10.3389/fmed.2023.1090743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Surgeons' mental workload during endoscopic sinus surgery (ESS) has not been fully evaluated. The assessment was challenging due to the great diversity of each patient's anatomy and the consequence variety of surgical difficulties. In this study, we examined the mental workload of surgeons with various surgical skill levels during ESS under the standardized condition provided by novel-designed 3D sinus models. Materials and methods Forty-seven participants performed a high-fidelity ESS simulation with 3D-printed sinus models. Surgeons' mental workload was assessed with the national aeronautics and space administration-task load index (NASA-TLX). Associations between the total and subscales score of NASA-TLX and surgical skill index, including the board certification status, the number of experienced ESS cases, and the objective structured assessment of technical skills (OSATS), were analyzed. In addition, 10 registrars repeated the simulation surgery, and their NASA-TLX score was compared before and after the repetitive training. Results The total NASA-TLX score was significantly associated with OSATS score (p = 0.0001). Primary component analysis classified the surgeons' mental burden into three different categories: (1) the skill-level-dependent factors (temporal demand, effort, and performance), (2) the skill-level-independent factors (mental and physical demand), and (3) frustration. After the repetitive training, the skill-level-dependent factors were alleviated (temporal demand; z = -2.3664, p = 0.0091, effort; z = -2.1704, p = 0.0346, and performance; z = -2.5992, p = 0.0017), the independent factors were increased (mental demand; z = -2.5992, p = 0.0023 and physical demand; z = -2.2509, p = 0.0213), and frustration did not change (p = 0.3625). Conclusion Some of the mental workload during ESS is associated with surgical skill level and alleviated with repetitive training. However, other aspects remain a burden or could worsen even when surgeons have gained surgical experience. Routine assessment of registrars' mental burdens would be necessary during surgical training to sustain their mental health.
Collapse
Affiliation(s)
- Masanobu Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- *Correspondence: Masanobu Suzuki,
| | - Kou Miyaji
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Kotaro Matoba
- Department of Forensic Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takashige Abe
- Department of Urology, Hokkaido University Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuji Nakamaru
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryosuke Watanabe
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takayoshi Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akira Nakazono
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Atsushi Konno
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Dominik Hinder
- Department of Surgery–Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| | - A. J. Psaltis
- Department of Surgery–Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| | - P. J. Wormald
- Department of Surgery–Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| | - Akihiro Homma
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
5
|
Liang J, Lu B, Zhao X, Wang J, Zhao D, Zhang G, Zhu B, Ma Q, Pan G, Li D. Feasibility analyses of virtual models and 3D printing for surgical simulation of the double-outlet right ventricle. Med Biol Eng Comput 2022; 60:3029-3040. [DOI: 10.1007/s11517-022-02660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/22/2022] [Indexed: 11/30/2022]
|
6
|
Suzuki M, Miyaji K, Watanabe R, Suzuki T, Matoba K, Nakazono A, Nakamaru Y, Konno A, Psaltis AJ, Abe T, Homma A, Wormald P. Repetitive simulation training with novel 3D-printed sinus models for functional endoscopic sinus surgeries. Laryngoscope Investig Otolaryngol 2022; 7:943-954. [PMID: 36000044 PMCID: PMC9392405 DOI: 10.1002/lio2.873] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 11/30/2022] Open
Abstract
Background The purpose of this study was to find a utility of a newly developed 3D-printed sinus model and to evaluate the educational benefit of simulation training with the models for functional endoscopic sinus surgery (FESS). Material and methods Forty-seven otolaryngologists were categorized as experts (board-certified physicians with ≥200 experiences of FESS, n = 9), intermediates (board-certified physicians with <200 experiences of FESS, n = 19), and novices (registrars, n = 19). They performed FESS simulation training on 3D-printed models manufactured from DICOM images of computed tomography (CT) scan of real patients. Their surgical performance was assessed with the objective structured assessment of technical skills (OSATS) score and dissection quality evaluated radiologically with a postdissection CT scan. First we evaluated the face, content, and constructive values. Second we evaluated the educational benefit of the training. Ten novices underwent training (training group) and their outcomes were compared to the remaining novices without training (control group). The training group performed cadaveric FESS surgeries before and after the repetitive training. Results The feedback from experts revealed high face and content value of the 3D-printed models. Experts, intermediates, and novices demonstrated statistical differences in their OSATS scores (74.7 ± 3.6, 58.3 ± 10.1, and 43.1 ± 11.1, respectively, p < .001), and dissection quality (81.1 ± 13.1, 93.7 ± 15.1, and 126.4 ± 25.2, respectively, p < .001). The training group improved their OSATS score (41.1 ± 8.0 to 61.1 ± 6.9, p < .001) and dissection quality (122.1 ± 22.2 to 90.9 ± 10.3, p = .013), while the control group not. After training, 80% of novices with no prior FESS experiences completed surgeries on cadaver sinuses. Conclusion Repeated training using the models revealed an initial learning curve in novices, which was confirmed in cadaveric mock FESS surgeries. Level of evidence N/A.
Collapse
Affiliation(s)
- Masanobu Suzuki
- Department of Otolaryngology‐Head and Neck Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoHokkaidoJapan
| | - Kou Miyaji
- Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
| | - Ryosuke Watanabe
- Department of Otolaryngology‐Head and Neck Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoHokkaidoJapan
| | - Takayoshi Suzuki
- Department of Otolaryngology‐Head and Neck Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoHokkaidoJapan
| | - Kotaro Matoba
- Department of Forensic Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoHokkaidoJapan
| | - Akira Nakazono
- Department of Otolaryngology‐Head and Neck Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoHokkaidoJapan
| | - Yuji Nakamaru
- Department of Otolaryngology‐Head and Neck Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoHokkaidoJapan
| | - Atsushi Konno
- Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
| | - Alkis James Psaltis
- Department of Surgery–Otorhinolaryngology Head and Neck SurgeryCentral Adelaide Local Health Network and the University of AdelaideAdelaideSouth AustraliaAustralia
| | - Takashige Abe
- Department of Urology, Hokkaido University Graduate School of MedicineHokkaido UniversitySapporoHokkaidoJapan
| | - Akihiro Homma
- Department of Otolaryngology‐Head and Neck Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoHokkaidoJapan
| | - Peter‐John Wormald
- Department of Surgery–Otorhinolaryngology Head and Neck SurgeryCentral Adelaide Local Health Network and the University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
7
|
Suzuki M, Vyskocil E, Ogi K, Matoba K, Nakamaru Y, Homma A, Wormald PJ, Psaltis AJ. Remote Training of Functional Endoscopic Sinus Surgery With Advanced Manufactured 3D Sinus Models and a Telemedicine System. Front Surg 2021; 8:746837. [PMID: 34660685 PMCID: PMC8517106 DOI: 10.3389/fsurg.2021.746837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Traditionally, cadaveric courses have been an important tool in surgical education for Functional Endoscopic Sinus Surgery (FESS). The recent COVID-19 pandemic, however, has had a significant global impact on such courses due to its travel restrictions, social distancing regulations, and infection risk. Here, we report the world-first remote (Functional Endoscopic Sinus Surgery) FESS training course between Japan and Australia, utilizing novel 3D-printed sinus models. We examined the feasibility and educational effect of the course conducted entirely remotely with encrypted telemedicine software. Methods: Three otolaryngologists in Hokkaido, Japan, were trained to perform frontal sinus dissections on novel 3D sinus models of increasing difficulty, by two rhinologists located in Adelaide, South Australia. The advanced manufactured sinus models were 3D printed from the Computed tomography (CT) scans of patients with chronic rhinosinusitis. Using Zoom and the Quintree telemedicine platform, the surgeons in Adelaide first lectured the Japanese surgeons on the Building Block Concept for a three Dimensional understanding of the frontal recess. They in real time directly supervised the surgeons as they planned and then performed the frontal sinus dissections. The Japanese surgeons were asked to complete a questionnaire pertaining to their experience and the time taken to perform the frontal dissection was recorded. The course was streamed to over 200 otolaryngologists worldwide. Results: All dissectors completed five frontal sinusotomies. The time to identify the frontal sinus drainage pathway (FSDP) significantly reduced from 1,292 ± 672 to 321 ± 267 s (p = 0.02), despite an increase in the difficulty of the frontal recess anatomy. Image analysis revealed the volume of FSDP was improved (2.36 ± 0.00 to 9.70 ± 1.49 ml, p = 0.014). Questionnaires showed the course's general benefit was 95.47 ± 5.13 in dissectors and 89.24 ± 15.75 in audiences. Conclusion: The combination of telemedicine software, web-conferencing technology, standardized 3D sinus models, and expert supervision, provides excellent training outcomes for surgeons in circumstances when classical surgical workshops cannot be realized.
Collapse
Affiliation(s)
- Masanobu Suzuki
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia.,Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Erich Vyskocil
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| | - Kazuhiro Ogi
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| | - Kotaro Matoba
- Department of Forensic Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuji Nakamaru
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiro Homma
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Peter J Wormald
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| | - Alkis J Psaltis
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|