1
|
Rodriguez MN, Campetella DM, Carmona NB, Ponce JJ, Parada MN. Microbial mats and their palaeoenvironmental analysis in offshore - shelf facies of the Los Molles Formation (Toarcian - Lower Callovian) in the Chacay Melehue area, Neuquén Basin, Argentina. GEOBIOLOGY 2024; 22:e12580. [PMID: 37990865 DOI: 10.1111/gbi.12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 08/11/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
This contribution presents the first study focused on the analysis of microbial mats in the Los Molles Formation (Toarcian - Early Callovian), Neuquén Basin, Argentina. This unit mainly represents offshore-to-shelf environments affected by storms and density currents. The Los Molles Formation is one of the oldest source rocks in the Neuquén Basin and constitutes an unconventional shale gas reservoir of great economic importance. The aim of this work was to identify the microbial activity from the description and interpretation of microbially induced sedimentary structures (MISS), to determine the paleoenvironmental and paleoecological conditions under which they formed, and to establish a possible relationship between these structures and the trace fossil Trichichnus. Samples from the levels with MISS were analyzed and described from macroscopic and binocular observations, petrographic microscope thin sections, and SEM samples with EDS analyses. The results showed several levels of microbial mats presenting diverse MISS, including biolaminations and Kinneyia-like wrinkles structures that were described at the macroscopic level. In thin sections, biolaminations, filament-like microstructures with different degrees of development, oriented grains and pyrite were observed. SEM images and EDS analyses showed different types of filaments, coccoids and EPS with high concentrations of carbon. These results revealed that the studied levels fulfill the established biogenicity criteria, guaranteeing that they have a bacterial origin. The abundance of the trace fossil Trichichnus sp. throughout the section and the proximity to some Kinneyia-like wrinkle structures levels suggests that the same organisms may have generated them. Furthermore, they revealed that the Los Molles Formation, at the time of its deposition, experienced paleoecological and paleoenvironmental conditions appropriate for the establishment and development of microbial mats. The extensive levels of microbial mats in the study area suggest that they may have been a source of organic matter for the generation of hydrocarbons from the Los Molles Formation.
Collapse
Affiliation(s)
- Maximiliano Nicolás Rodriguez
- Universidad Nacional de Río Negro, Instituto de Investigación en Paleobiología y Geología, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigación en Paleobiología y Geología, Río Negro, Argentina
| | - Débora Mical Campetella
- Universidad Nacional de Río Negro, Instituto de Investigación en Paleobiología y Geología, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigación en Paleobiología y Geología, Río Negro, Argentina
| | - Noelia Beatriz Carmona
- Universidad Nacional de Río Negro, Instituto de Investigación en Paleobiología y Geología, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigación en Paleobiología y Geología, Río Negro, Argentina
| | - Juan José Ponce
- Universidad Nacional de Río Negro (UNRN), Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Negro, Argentina
- Servicio Geológico Minero Argentino (SEGEMAR), Centro General Roca, Río Negro, Argentina
| | - Martín Nazareno Parada
- Universidad Nacional de Río Negro, Instituto de Investigación en Paleobiología y Geología, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigación en Paleobiología y Geología, Río Negro, Argentina
| |
Collapse
|
2
|
Xu N, Guo J, Huang C, Li H, Hou Y, Han Y, Song Y, Zhang D. Effect of ibuprofen (IBU) on the sulfur-based and calcined pyrite-based autotrophic denitrification (SCPAD) systems with two filling modes: Performance and toxic response mechanism. ENVIRONMENTAL RESEARCH 2023; 239:117251. [PMID: 37783323 DOI: 10.1016/j.envres.2023.117251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
To investigate the effect of ibuprofen (IBU) on the sulfur-based and calcined pyrite-based autotrophic denitrification (SCPAD) systems, two individual reactors with the layered filling (L-SCPAD) and mixed filling (M-SCPAD) systems were established via sulfur and calcined pyrite. Effluent NO3--N concentration of the L-SCPAD and M-SCPAD systems was first increased to 6.44, 0.93 mg/L under 0.5 mg/L IBU exposure and gradually decreased to 1.66 mg/L, 0 mg/L under 4.0 mg/L IBU exposure, indicating that NO3--N removal performance of the M-SCPAD system was better than that of the L-SCPAD system. The variation of extracellular polymeric substances (EPS) characteristics demonstrated that more EPS was secreted in the M-SCPAD system compared to the L-SCPAD system, which contributed to forming a more stable biofilm structure and protecting microorganisms against the toxicity of IBU in the M-SCPAD system. Moreover, the increased electron transfer impedance and decreased cytochrome c implied that IBU inhibited the electron transfer efficiency of the L-SCPAD and M-SCPAD systems. The decreased adenosine triphosphate (ATP) and electron transfer system activity (ETSA) content showed that IBU inhibited metabolic activity, but the M-SCPAD system exhibited higher metabolic activity compared to the L-SCPAD system. In addition, the analysis of the bacterial community indicated a more stable abundance of nitrogen removal function bacteria (Bacillus) in the M-SCPAD system compared to the L-SCPAD system, which was conducive to maintaining a stable denitrification performance. The toxic response mechanism based on the biogeobattery effect was proposed in the SCPAD systems under IBU exposure. This study provided an important reference for the long-term toxic effect of IBU on the SCPAD systems.
Collapse
Affiliation(s)
- Nengyao Xu
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China; School of Civil Engineering and Architecture, Taizhou University, Taizhou, 318000, Zhejiang, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Cong Huang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China.
| | - Yanan Hou
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Yi Han
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China
| | - Yuanyuan Song
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China
| | - Daohong Zhang
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China
| |
Collapse
|
3
|
Baucon A, Neto de Carvalho C, Briguglio A, Piazza M, Felletti F. A predictive model for the ichnological suitability of the Jezero crater, Mars: searching for fossilized traces of life-substrate interactions in the 2020 Rover Mission Landing Site. PeerJ 2021; 9:e11784. [PMID: 34631304 PMCID: PMC8466086 DOI: 10.7717/peerj.11784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/24/2021] [Indexed: 11/20/2022] Open
Abstract
Ichnofossils, the fossilized products of life-substrate interactions, are among the most abundant biosignatures on Earth and therefore they may provide scientific evidence of potential life that may have existed on Mars. Ichnofossils offer unique advantages in the search for extraterrestrial life, including the fact that they are resilient to processes that obliterate other evidence for past life, such as body fossils, as well as chemical and isotopic biosignatures. The goal of this paper is evaluating the suitability of the Mars 2020 Landing Site for ichnofossils. To this goal, we apply palaeontological predictive modelling, a technique used to forecast the location of fossil sites in uninvestigated areas on Earth. Accordingly, a geographic information system (GIS) of the landing site is developed. Each layer of the GIS maps the suitability for one or more ichnofossil types (bioturbation, bioerosion, biostratification structures) based on an assessment of a single attribute (suitability factor) of the Martian environment. Suitability criteria have been selected among the environmental attributes that control ichnofossil abundance and preservation in 18 reference sites on Earth. The goal of this research is delivered through three predictive maps showing which areas of the Mars 2020 Landing Site are more likely to preserve potential ichnofossils. On the basis of these maps, an ichnological strategy for the Perseverance rover is identified, indicating (1) 10 sites on Mars with high suitability for bioturbation, bioerosion and biostratification ichnofossils, (2) the ichnofossil types, if any, that are more likely to be present at each site, (3) the most efficient observation strategy for detecting eventual ichnofossils. The predictive maps and the ichnological strategy can be easily integrated in the existing plans for the exploration of the Jezero crater, realizing benefits in life-search efficiency and cost-reduction.
Collapse
Affiliation(s)
- Andrea Baucon
- DISTAV, University of Genoa, Genova, Italy.,Geology Office of Idanha-a-Nova, Naturtejo UNESCO Global Geopark, Idanha-a-Nova, Portugal
| | - Carlos Neto de Carvalho
- Geology Office of Idanha-a-Nova, Naturtejo UNESCO Global Geopark, Idanha-a-Nova, Portugal.,Instituto D. Luiz, Faculdade de Ciências da Universidade de Lisboa, University of Lisbon, Lisbon, Portugal
| | | | | | - Fabrizio Felletti
- Dipartimento di Scienze della Terra 'Ardito Desio', University of Milan, Milan, Italy
| |
Collapse
|
4
|
Bosio G, Collareta A, Di Celma C, Lambert O, Marx FG, de Muizon C, Gioncada A, Gariboldi K, Malinverno E, Malca RV, Urbina M, Bianucci G. Taphonomy of marine vertebrates of the Pisco Formation (Miocene, Peru): Insights into the origin of an outstanding Fossil-Lagerstätte. PLoS One 2021; 16:e0254395. [PMID: 34264979 PMCID: PMC8282071 DOI: 10.1371/journal.pone.0254395] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
The Miocene Pisco Formation, broadly exposed in the Ica Desert of southern Peru, is among the most outstanding Cenozoic marine Fossil-Lagerstätten worldwide. It is renowned for its exceptional preservation and abundance of vertebrate fossils, including a rich assemblage of whales and dolphins (Cetacea). Here, we integrate taphonomic data on 890 marine vertebrate fossils, gathered through 16 different localities. Our observations range from the taxonomic distribution, articulation, completeness, disposition and orientation of skeletons, to the presence of bite marks, associations with shark teeth and macro-invertebrates, bone and soft tissue preservation, and the formation of attendant carbonate concretions and sedimentary structures. We propose that the exceptional preservation characterising many Pisco vertebrates, as well as their exceptionally high abundance, cannot be ascribed to a single cause like high sedimentation rates (as proposed in the past), but rather to the interplay of several favourable factors including: (i) low levels of dissolved oxygen at the seafloor (with the intervention of seasonal anoxic events); (ii) the early onset of mineralisation processes like apatite dissolution/recrystallisation and carbonate mineral precipitation; (iii) rapid burial of carcasses in a soupy substrate and/or a novel mechanism involving scour-induced self-burial; and (iv) original biological richness. Collectively, our observations provide a comprehensive overview of the taphonomic processes that shaped one of South America's most important fossil deposits, and suggest a model for the formation of other marine vertebrate Fossil-Lagerstätten.
Collapse
Affiliation(s)
- Giulia Bosio
- Dipartimento di Scienze dell’Ambiente e della Terra, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Alberto Collareta
- Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
| | - Claudio Di Celma
- Scuola di Scienze e Tecnologie, Università di Camerino, Camerino, Italy
| | - Olivier Lambert
- D.O. Terre et Histoire de la Vie, Institut Royal des Sciences Naturelles de Belgique, Bruxelles, Belgium
| | - Felix G. Marx
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
- Department of Geology, University of Otago, Dunedin, New Zealand
| | - Christian de Muizon
- Département Origines et Evolution, CR2P UMR 7207, (MNHN, CNRS, UPMC, Sorbonne-Université), Muséum national d’Histoire naturelle, Paris, France
| | - Anna Gioncada
- Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
| | - Karen Gariboldi
- Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
| | - Elisa Malinverno
- Dipartimento di Scienze dell’Ambiente e della Terra, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Rafael Varas Malca
- Departamento de Paleontologia de Vertebrados, Museo de Historia Natural-UNMSM, Lima, Peru
| | - Mario Urbina
- Departamento de Paleontologia de Vertebrados, Museo de Historia Natural-UNMSM, Lima, Peru
| | - Giovanni Bianucci
- Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
| |
Collapse
|
5
|
Exploring computed tomography in ichnological analysis of cores from modern marine sediments. Sci Rep 2020; 10:201. [PMID: 31932652 PMCID: PMC6957742 DOI: 10.1038/s41598-019-57028-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/22/2019] [Indexed: 12/01/2022] Open
Abstract
Ichnological analysis is considered a very useful tool in several disciplines of Earth Sciences, including palaeoenvironmental studies and hydrocarbon exploration. Sediment cores provide excellent records, despite difficulties encountered during study runs due to specific core features. Previous studies using 2D images have proven the benefits of high-resolution image treatment in improving the visibility of ichnological features, but with limitations. 3D computed tomography (CT) techniques were applied to palaeoichnological studies in lithified cores and other disciplines of palaeontology to solve these limitations, but not used for ichnological studies in unconsolidated sediments due to the low density contrast between host sediment and trace fossils. In this study, a CT processing technique, previously tested in coral research, is applied to facilitate the characterisation of the ichnological signature of cores from modern marine soft sediments. This technique allows for the first time the isolation of burrows within these kinds of sediments and the differentiation of intervals based on burrow orientation. Data obtained from the technique are complemented with the ichnological information from conventional core description, thus providing a more complete characterisation of the trace fossil assemblage with additional ichnological properties such as burrow orientation and branching. This will improve palaeoenvironmental interpretations related to changes in energy or oxygenation, and the analysis of reservoir quality given the impact of burrows on porosity and permeability. Therefore, adopting CT to complement visual core description in the ichnological analysis of soft modern marine cores is a very informative approach.
Collapse
|
6
|
Kulkarni KG, Panchang R. New Insights into Polychaete Traces and Fecal Pellets: Another Complex Ichnotaxon? PLoS One 2015; 10:e0139933. [PMID: 26439262 PMCID: PMC4595207 DOI: 10.1371/journal.pone.0139933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/18/2015] [Indexed: 11/18/2022] Open
Abstract
Neoichnological observations help refine paleoichnological records. The present study reports extensive observations on the distribution, morphology, occurrence and association of burrows and fecal pellets of the polychaete Nereis diversicolor in the Kundalika Estuary on the west coast of India. Our holistic study of these modern-day traces suggests it to be a complex trace arising from domichnial, fodinichnial and possibly pascichnial behavior of polychaetes. The study for the first time reports extensive fecal pellet production, distribution and their preservation as thick stacks in modern estuarine environment. These observations testify the fossilization potential of pellets and provide an explanation to their origin in the geological record. Their occurrence as strings associated with mounds not only suggests pascichnial behaviour of polychaetes but also allows the assignment of post-Paleozoic Tomaculum to the activity of polychaete worms. The production of fecal pellets in such large quantities plays a major role in increasing the average grain size of the substrate of these estuarine tidal flats, thereby improving aeration within the substrate.
Collapse
Affiliation(s)
- Kantimati G. Kulkarni
- Biodiversity and Palaeobiology Group, Agharkar Research Institute (MACS-ARI), Pune, Maharashtra, India
| | - Rajani Panchang
- Biodiversity and Palaeobiology Group, Agharkar Research Institute (MACS-ARI), Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
7
|
Seddighi M, Briguglio A, Hohenegger J, Papazzoni CA. New results on the hydrodynamic behaviour of fossil Nummulites tests from two nummulite banks from the Bartonian and Priabonian of northern Italy. BOLLETTINO DELLA SOCIETA PALEONTOLOGICA ITALIANA. SOCIETA PALEONTOLOGICA ITALIANA 2015; 54:103-116. [PMID: 26681827 PMCID: PMC4678592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Settling velocities of 58 well-preserved tests of fossil Nummulites were experimentally determined using a settling tube. The tests were collected from the nummulite banks of Pederiva di Grancona (A forms of N. lyelli and N. striatus, Middle Eocene) and San Germano dei Berici (A and B forms of N. fabianii, Late Eocene), both in the Berici Mts. (Veneto, northern Italy). The data were compared with estimated settling velocities that the same specimens might have had in life conditions. This was done by reconstructing their densities simulating water-filled condition and, to simulate post-diagenetic effects, under calcite-filled condition. These simulations show that A and B forms, even if they greatly diverge in shape, volume and size, still possess comparable settling velocities, and that each nummulite bank is characterized by specific hydrodynamic parameters. The use of settling velocity as a parameter to quantify the hydrodynamic behaviour of particles in seawater enables estimation of palaeoenvironmental conditions such as depth, substrate and the energy scenario. Such information is useful in obtaining further insights into the genesis of nummulite banks, the autochthony or allochthony of which is still being debated. Our results point to an autochthonous interpretation.
Collapse
Affiliation(s)
- Mona Seddighi
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, Via Campi 103, I-41125 Modena, Italy;
| | - Antonino Briguglio
- Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam;
| | - Johann Hohenegger
- Institut für Paläontologie, Universität Wien, Geozentrum, Althanstrasse 14, A-1090 Wien, Austria;
| | - Cesare Andrea Papazzoni
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, Via Campi 103, I-41125 Modena, Italy
| |
Collapse
|