1
|
Suriya-Arunroj L, Chimngam M, Chamnongpakdee C, Sing-Ayudthaya T, Linchekhaw C, Kongsombat N, Suttisan N. Behavioral Training in First-Generation Long-Tailed Macaques ( Macaca fascicularis) for Improved Husbandry and Veterinary Procedures. Animals (Basel) 2024; 14:2369. [PMID: 39199903 PMCID: PMC11350816 DOI: 10.3390/ani14162369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Owing to their similarities to humans in various aspects, non-human primates (NHPs) serve as valuable translational models that has greatly contributed to scientific advancements. However, working with untrained NHPs can cause stress and increase the risk of injuries to both animals and care staff, compromising both animal welfare and occupational safety. Behavioral training, that benefits from animals' learning abilities to gain their cooperation during husbandry and veterinary procedures, is a well-established method to mitigate these risks. Cynomolgus monkeys, in particular, are known for being despotic, fearful, and challenging to train. Moreover, our first-generation breeders were wild-sourced from human-macaque conflict areas in Thailand. These macaque populations are accustomed with human contact; hence, their prior experience can either work for or against behavioral shaping plans. Establishing a training program with realistic expectations would benefit both the animals and trainers. In this study, six cynomolgus monkeys were selected based on temperament, then underwent a pilot training program that included basic husbandry and veterinary procedures. Over 256 training sessions with gradual shaping plans, all six monkeys went through all training steps, with progress varying considerably among individuals. Cortisol levels were measured to monitor stress responses, revealing a notable sex difference: female monkeys generally complied more easily with the trainer but exhibited a stronger cortisol increase compared to males. This study proposed a behavioral training program grounded in three essential components: temperament assessment, behavioral shaping plans, and the cortisol-based criteria for evaluating training success.
Collapse
|
2
|
Brando S, Norman M. Handling and Training of Wild Animals: Evidence and Ethics-Based Approaches and Best Practices in the Modern Zoo. Animals (Basel) 2023; 13:2247. [PMID: 37508025 PMCID: PMC10375971 DOI: 10.3390/ani13142247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
There is an ethical responsibility to provide all animals living in human care with optimal and positive well-being. As animals living in zoos and aquariums frequently interact with their human caregivers as part of their daily care routines, it is both relevant and essential to consider the impact of these interactions on animal well-being. Allowing animals to have choice and control in multiple areas of their lives, such as by providing opportunities for them to voluntarily participate in their own care through, for example, positive reinforcement training, is an essential component of good animal well-being programs. This review aims to describe evidence-based approaches, ethics, and best practices in the handling and training of the many taxa held in zoos and aquariums worldwide, drawing from work in related animal care fields such as laboratories, farms, rescue, and sanctuaries. The importance of ongoing animal well-being assessments is discussed, with a particular focus on the need for continued review and refinement of processes and procedures pertaining to animal training and handling specifically. Review, enquiry, assessment, evaluation, and refinement will aim to dynamically support positive well-being for all animals.
Collapse
|
3
|
Swan J, Boyer S, Westlund K, Bengtsson C, Nordahl G, Törnqvist E. Decreased levels of discomfort in repeatedly handled mice during experimental procedures, assessed by facial expressions. Front Behav Neurosci 2023; 17:1109886. [PMID: 36873771 PMCID: PMC9978997 DOI: 10.3389/fnbeh.2023.1109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Mice are the most commonly used laboratory animal, yet there are limited studies which investigate the effects of repeated handling on their welfare and scientific outcomes. Furthermore, simple methods to evaluate distress in mice are lacking, and specialized behavioral or biochemical tests are often required. Here, two groups of CD1 mice were exposed to either traditional laboratory handling methods or a training protocol with cup lifting for 3 and 5 weeks. The training protocol was designed to habituate the mice to the procedures involved in subcutaneous injection, e.g., removal from the cage, skin pinch. This protocol was followed by two common research procedures: subcutaneous injection and tail vein blood sampling. Two training sessions and the procedures (subcutaneous injection and blood sampling) were video recorded. The mouse facial expressions were then scored, focusing on the ear and eye categories of the mouse grimace scale. Using this assessment method, trained mice expressed less distress than the control mice during subcutaneous injection. Mice trained for subcutaneous injection also had reduced facial scores during blood sampling. We found a clear sex difference as female mice responded to training faster than the male mice, they also had lower facial scores than the male mice when trained. The ear score appeared to be a more sensitive measure of distress than the eye score, which may be more indicative of pain. In conclusion, training is an important refinement method to reduce distress in mice during common laboratory procedures and this can best be assessed using the ear score of the mouse grimace scale.
Collapse
Affiliation(s)
- Julia Swan
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Scott Boyer
- Chemotargets SL, Barcelona, Spain.,Global Safety Assessment, AstraZeneca R&D, Södertälje, Sweden
| | | | - Camilla Bengtsson
- Global Safety Assessment, AstraZeneca R&D, Södertälje, Sweden.,Independant Consultant, Strömsund, Sweden
| | | | - Elin Törnqvist
- Global Safety Assessment, AstraZeneca R&D, Södertälje, Sweden.,Department of Animal Health and Antimicrobial Strategies, Swedish National Veterinary Institute (SVA), Uppsala, Sweden.,Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
4
|
O'Malley CI, Hubley R, Moody C, Turner PV. Use of nonaversive handling and training procedures for laboratory mice and rats: Attitudes of American and Canadian laboratory animal professionals. Front Vet Sci 2022; 9:1040572. [PMID: 36570505 PMCID: PMC9780379 DOI: 10.3389/fvets.2022.1040572] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Nonaversive or low stress handling techniques can reduce fear and stress in research rodents, ultimately improving study data quality. Uptake of low stress handling has been slow in the USA and Canada. In this study we explored the understanding, experience, and attitudes toward low stress handling of rats and mice in laboratory animal professionals from the USA (US) and Canada (CA). Participants (n = 40) were recruited for a standardized interview and job categories were divided into veterinary/PhD level roles (doctoral level; DL) and non-veterinary/non-PhD level roles (non-doctoral level, NDL) (US: 23, DL: 9, NDL: 14; CA: 17, DL: 8, and NDL: 9). Interviews were transcribed and analyzed using NVIVO. Two research assistants independently coded themes for each question and consolidated responses based on commonality. Laboratory animal professionals understood the benefits of low stress handling and training techniques with rats and mice, stating reduced stress, better data, and improved welfare, with CA participants more likely to mention animal welfare as a benefit, and DL more likely to mention improved research data and reduced stress. Participants across demographic groups indicated improved job satisfaction and decreased stress as the positive impacts low stress handling would have on their positions. The primary perceived barriers to low stress handling implementation were researcher attitudes, the time needed to implement and use these techniques, and training personnel to use the techniques properly and consistently. To promote refinement of handling of rats and mice, more educational opportunities on the benefits and implementation of low stress handling techniques need to be provided to laboratory animal professionals, as well as to researchers.
Collapse
Affiliation(s)
- Carly I. O'Malley
- Global Animal Welfare and Training, Charles River Laboratories, Wilmington, MA, United States
| | - Raina Hubley
- Global Animal Welfare and Training, Charles River Laboratories, Wilmington, MA, United States
| | - Carly Moody
- Global Animal Welfare and Training, Charles River Laboratories, Wilmington, MA, United States
| | - Patricia V. Turner
- Global Animal Welfare and Training, Charles River Laboratories, Wilmington, MA, United States,Department of Pathobiology, University of Guelph, Guelph, ON, Canada,*Correspondence: Patricia V. Turner
| |
Collapse
|
5
|
Cabrera-Moreno J, Jeanson L, Jeschke M, Calapai A. Group-based, autonomous, individualized training and testing of long-tailed macaques ( Macaca fascicularis) in their home enclosure to a visuo-acoustic discrimination task. Front Psychol 2022; 13:1047242. [PMID: 36524199 PMCID: PMC9745322 DOI: 10.3389/fpsyg.2022.1047242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/08/2022] [Indexed: 09/10/2023] Open
Abstract
In recent years, the utility and efficiency of automated procedures for cognitive assessment in psychology and neuroscience have been demonstrated in non-human primates (NHP). This approach mimics conventional shaping principles of breaking down a final desired behavior into smaller components that can be trained in a staircase manner. When combined with home-cage-based approaches, this could lead to a reduction in human workload, enhancement in data quality, and improvement in animal welfare. However, to our knowledge, there are no reported attempts to develop automated training and testing protocols for long-tailed macaques (Macaca fascicularis), a ubiquitous NHP model in neuroscience and pharmaceutical research. In the current work, we present the results from 6 long-tailed macaques that were trained using an automated unsupervised training (AUT) protocol for introducing the animals to the basics of a two-alternative choice (2 AC) task where they had to discriminate a conspecific vocalization from a pure tone relying on images presented on a touchscreen to report their response. We found that animals (1) consistently engaged with the device across several months; (2) interacted in bouts of high engagement; (3) alternated peacefully to interact with the device; and (4) smoothly ascended from step to step in the visually guided section of the procedure, in line with previous results from other NHPs. However, we also found (5) that animals' performance remained at chance level as soon as the acoustically guided steps were reached; and (6) that the engagement level decreased significantly with decreasing performance during the transition from visual to acoustic-guided sections. We conclude that with an autonomous approach, it is possible to train long-tailed macaques in their social group using computer vision techniques and without dietary restriction to solve a visually guided discrimination task but not an acoustically guided task. We provide suggestions on what future attempts could take into consideration to instruct acoustically guided discrimination tasks successfully.
Collapse
Affiliation(s)
- Jorge Cabrera-Moreno
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
- Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate CenterLeibniz-Institute for Primate Research, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Lena Jeanson
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
- Cognitive Neuroscience Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| | - Marcus Jeschke
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate CenterLeibniz-Institute for Primate Research, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Göttingen, Germany
| | - Antonino Calapai
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate CenterLeibniz-Institute for Primate Research, Göttingen, Germany
- Cognitive Neuroscience Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Göttingen, Germany
| |
Collapse
|
6
|
Palmer S, Oppler SH, Graham ML. Behavioral Management as a Coping Strategy for Managing Stressors in Primates: The Influence of Temperament and Species. BIOLOGY 2022; 11:biology11030423. [PMID: 35336797 PMCID: PMC8945664 DOI: 10.3390/biology11030423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 05/28/2023]
Abstract
Primates involved in biomedical research experience stressors related to captivity, close contact with caregivers, and may be exposed to various medical procedures while modeling clinical disease or interventions under study. Behavioral management is used to promote behavioral flexibility in less complex captive environments and train coping skills to reduce stress. How animals perceive their environment and interactions is the basis of subjective experience and has a major impact on welfare. Certain traits, such as temperament and species, can affect behavioral plasticity and learning. This study investigated the relationship between these traits and acquisition of coping skills in 83 macaques trained for cooperation with potentially aversive medical procedures using a mixed-reinforcement training paradigm. All primates successfully completed training with no significant differences between inhibited and exploratory animals, suggesting that while temperament profoundly influences behavior, training serves as an important equalizer. Species-specific differences in learning and motivation manifested in statistically significant faster skill acquisition in rhesus compared with cynomolgus macaques, but this difference was not clinically relevant. Despite unique traits, primates were equally successful in learning complex tasks and displayed effective coping. When animals engage in coping behaviors, their distress decreases, improving welfare and reducing inter- and intra- subject variability to enhance scientific validity.
Collapse
Affiliation(s)
- Sierra Palmer
- Department of Surgery, University of Minnesota, Minneapolis, MN 55108, USA; (S.P.); (S.H.O.)
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Scott Hunter Oppler
- Department of Surgery, University of Minnesota, Minneapolis, MN 55108, USA; (S.P.); (S.H.O.)
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Melanie L. Graham
- Department of Surgery, University of Minnesota, Minneapolis, MN 55108, USA; (S.P.); (S.H.O.)
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
7
|
Opportunities for Refinement of Non-Human Primate Vaccine Studies. Vaccines (Basel) 2021; 9:vaccines9030284. [PMID: 33808708 PMCID: PMC8003535 DOI: 10.3390/vaccines9030284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Non-human primates (NHPs) are used extensively in the development of vaccines and therapeutics for human disease. High standards in the design, conduct, and reporting of NHP vaccine studies are crucial for maximizing their scientific value and translation, and for making efficient use of precious resources. A key aspect is consideration of the 3Rs principles of replacement, reduction, and refinement. Funders of NHP research are placing increasing emphasis on the 3Rs, helping to ensure such studies are legitimate, ethical, and high-quality. The UK's National Centre for the 3Rs (NC3Rs) and the Coalition for Epidemic Preparedness Innovations (CEPI) have collaborated on a range of initiatives to support vaccine developers to implement the 3Rs, including hosting an international workshop in 2019. The workshop identified opportunities to refine NHP vaccine studies to minimize harm and improve welfare, which can yield better quality, more reproducible data. Careful animal selection, social housing, extensive environmental enrichment, training for cooperation with husbandry and procedures, provision of supportive care, and implementation of early humane endpoints are features of contemporary good practice that should and can be adopted more widely. The requirement for high-level biocontainment for some pathogens imposes challenges to implementing refinement but these are not insurmountable.
Collapse
|
8
|
Pritchett-Corning KR. Environmental Complexity and Research Outcomes. ILAR J 2020; 60:239-251. [PMID: 32559304 DOI: 10.1093/ilar/ilaa007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 11/14/2022] Open
Abstract
Environmental complexity is an experimental paradigm as well as a potential part of animals' everyday housing experiences. In experimental uses, researchers add complexity to stimulate brain development, delay degenerative brain changes, elicit more naturalistic behaviors, and test learning and memory. Complexity can exacerbate or mitigate behavioral problems, give animals a sense of control, and allow for expression of highly driven, species-typical behaviors that can improve animal welfare. Complex environments should be designed thoughtfully with the animal's natural behaviors in mind, reported faithfully in the literature, and evaluated carefully for unexpected effects.
Collapse
Affiliation(s)
- Kathleen R Pritchett-Corning
- Office of Animal Resources, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts.,Department of Comparative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
9
|
Plesker R, Berger J. Unintended importation of tropical jumping spiders (Salticidae) into a laboratory monkey colony via banana supply. Primate Biol 2020; 7:13-17. [PMID: 32964100 PMCID: PMC7500170 DOI: 10.5194/pb-7-13-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/03/2020] [Indexed: 11/11/2022] Open
Abstract
This report describes a case of unintended importation of tropical baby jumping spiders to a laboratory monkey colony. The spiders were detected in a cocoon attached to a banana for monkey consumption. In identifying the family of spiders as jumping spiders (Salticidae), it turned out that these spiders would not have been venomous to humans and they most likely would not have had the potential to establish a new spider colony in the facility.
Collapse
Affiliation(s)
- Roland Plesker
- Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Jürgen Berger
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| |
Collapse
|
10
|
Fischer B, Wegener D. Emphasizing the "positive" in positive reinforcement: using nonbinary rewarding for training monkeys on cognitive tasks. J Neurophysiol 2018; 120:115-128. [PMID: 29617217 DOI: 10.1152/jn.00572.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nonhuman primates constitute an indispensable model system for studying higher brain functions at the neurophysiological level. Studies involving these animals elucidated the neuronal mechanisms of various cognitive and executive functions, such as visual attention, working memory, and decision-making. Positive reinforcement training (PRT) constitutes the gold standard for training animals on the cognitive tasks employed in these studies. In the laboratory, PRT is usually based on application of a liquid reward as the reinforcer to strengthen the desired behavior and absence of the reward if the animal's response is wrong. By trial and error, the monkey may adapt its behavior and successfully reduce the number of error trials, and eventually learn even very sophisticated tasks. However, progress and success of the training strongly depend on reasonable error rates. If errors get too frequent, they may cause a drop in the animal's motivation to cooperate or its adaptation to high error rates and poor overall performance. We introduce in this report an alternative training regime to minimize errors and base the critical information for learning on graded rewarding. For every new task rule, the feedback to the animal is provided by different amounts of reward to distinguish the desired, optimal behavior from less optimal behavior. We applied this regime in different situations during training of visual attention tasks and analyzed behavioral performance and reaction times to evaluate its effectiveness. For both simple and complex behaviors, graded rewarding was found to constitute a powerful technique allowing for effective training without trade-off in accessible task difficulty or task performance. NEW & NOTEWORTHY Laboratory training of monkeys usually builds on providing a fixed amount of reward for the desired behavior, and no reward otherwise. We present a nonbinary, graded reward schedule to emphasize the positive, desired behavior and to keep errors on a moderate level. Using data from typical training situations, we demonstrate that graded rewards help to effectively guide the animal by success rather than errors and provide a powerful new tool for positive reinforcement training.
Collapse
Affiliation(s)
- Benjamin Fischer
- Brain Research Institute, Center for Cognitive Sciences, University of Bremen , Bremen , Germany
| | - Detlef Wegener
- Brain Research Institute, Center for Cognitive Sciences, University of Bremen , Bremen , Germany
| |
Collapse
|
11
|
Kemp C, Thatcher H, Farningham D, Witham C, MacLarnon A, Holmes A, Semple S, Bethell EJ. A protocol for training group-housed rhesus macaques ( Macaca mulatta) to cooperate with husbandry and research procedures using positive reinforcement. Appl Anim Behav Sci 2017; 197:90-100. [PMID: 29200543 PMCID: PMC5678497 DOI: 10.1016/j.applanim.2017.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/29/2017] [Accepted: 08/13/2017] [Indexed: 11/27/2022]
Abstract
There has been increased recognition of the 3Rs in laboratory animal management over the last decade, including improvements in animal handling and housing. For example, positive reinforcement is now more widely used to encourage primates to cooperate with husbandry procedures, and improved enclosure design allows housing in social groups with opportunity to escape and avoid other primates and humans. Both practices have become gold standards in captive primate care resulting in improved health and behavioural outcomes. However, training individuals and social housing may be perceived as incompatible, and so it is important to share protocols, their outcomes and suggestions for planning and improvements for future uptake. Here we present a protocol with link to video for training rhesus macaques (Macaca mulatta) housed in single-male - multi-female breeding groups to sit at individual stations in the social enclosure. Our aim was that the monkeys could take part in welfare-related cognitive assessments without the need for removal from the group or interference by group members. To do this we required most individuals in a group to sit by individual stations at the same time. Most of the training was conducted by a single trainer with occasional assistance from a second trainer depending on availability. We successfully trained 61/65 monkeys housed in groups of up to nine adults (plus infants and juveniles) to sit by their individual stationing tools for >30 s. Males successfully trained on average within 30 min (2 training sessions); females trained on average in 1 h 52 min ± 13min (7.44 sessions), with rank (high, mid, low) affecting the number of sessions required. On average, dominant females trained in 1 h 26 min ± 16 min (5.7 sessions), mid ranked females in 1 h 52 min ± 20min (7.45 sessions), and subordinate females took 2 h 44 min ± 36 min (10.9 sessions). Age, group size, reproductive status, temperament, and early maternal separation did not influence the number of sessions a monkey required to reach criterion. We hope this protocol will be useful for facilities worldwide looking to house their animals in naturalistic social groups without impacting on animal husbandry and management.
Collapse
Affiliation(s)
- Caralyn Kemp
- Centre for Research in Brain and Behaviour, School of Natural Sciences and Psychology, Liverpool John Moores University, L3 3AF, UK
| | - Harriet Thatcher
- Centre for Research in Brain and Behaviour, School of Natural Sciences and Psychology, Liverpool John Moores University, L3 3AF, UK
| | - David Farningham
- Medical Research Council Harwell Unit, Centre for Macaques, Salisbury, Wiltshire, SP4 0JQ, UK
| | - Claire Witham
- Medical Research Council Harwell Unit, Centre for Macaques, Salisbury, Wiltshire, SP4 0JQ, UK
- Institute of Neuroscience, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Ann MacLarnon
- Centre for Research in Evolutionary, Social and Interdisciplinary Anthropology, University of Roehampton, London, SW15 4JD, UK
| | - Amanda Holmes
- Centre for Research in Evolutionary, Social and Interdisciplinary Anthropology, University of Roehampton, London, SW15 4JD, UK
| | - Stuart Semple
- Centre for Research in Evolutionary, Social and Interdisciplinary Anthropology, University of Roehampton, London, SW15 4JD, UK
| | - Emily J. Bethell
- Centre for Research in Brain and Behaviour, School of Natural Sciences and Psychology, Liverpool John Moores University, L3 3AF, UK
| |
Collapse
|
12
|
Does positive reinforcement training affect the behaviour and welfare of zoo animals? The case of the ring-tailed lemur ( Lemur catta ). Appl Anim Behav Sci 2017. [DOI: 10.1016/j.applanim.2017.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
York A, Matusiewicz J, Padalino B. How to minimise the incidence of transport-related problem behaviours in horses: a review. J Equine Sci 2017; 28:67-75. [PMID: 28955158 PMCID: PMC5608959 DOI: 10.1294/jes.28.67] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/14/2017] [Indexed: 11/29/2022] Open
Abstract
This review aims to provide practical outcomes on how to minimise the incidence of transport-related problem behaviours (TRPBs) in horses. TRPBs are unwanted behaviours occurring during different phases of transport, most commonly, a reluctance to load and scrambling during travelling. TRPBs can result in injuries to horses and horse handlers, horse trailer accidents, disruption of time schedules, inability to attend competitions, and poor performance following travel. Therefore, TRPBs are recognised as both a horse-related risk to humans and a human-related risk to horses. From the literature, it is apparent that TRPBs are common throughout the entire equine industry, and a YouTube keyword search of ‘horse trailer loading’ produced over 67,000 results, demonstrating considerable interest in this topic and the variety of solutions suggested. Drawing upon articles published over the last 35 years, this review summarises current knowledge on TRPBs and provides recommendations on their identification, management, and prevention. It appears that a positive human-horse relationship, in-hand pre-training, systematic training for loading and travelling, appropriate horse handling, and the vehicle driving skills of the transporters are crucial to minimise the incidence of TRPBs. In-hand pre-training based on correct application of the principles of learning for horses and horse handlers, habituation to loading and travelling, and self-loading appear to minimise the risk of TRPBs and are therefore strongly recommended to safeguard horse and horse-handler health and welfare. This review indicates that further research and education with respect to transport management are essential to substantially decrease the incidence of TRPBs in horses.
Collapse
Affiliation(s)
- Amanda York
- School of Animal and Veterinary Sciences, Charles Stuart University, 2650 NSW, Australia
| | - Judith Matusiewicz
- School of Animal and Veterinary Sciences, Charles Stuart University, 2650 NSW, Australia
| | - Barbara Padalino
- School of Animal and Veterinary Sciences, Charles Stuart University, 2650 NSW, Australia.,Department of Veterinary Medicine, University of Bari, Bari 70100, Italy
| |
Collapse
|