1
|
Cosio PL, Moreno-Simonet L, Mechó S, de Blas Foix X, Lloret M, Padulles X, Padulles JM, Farran-Codina A, Rodas G, Cadefau JA. Neuromuscular and biochemical responses of the hamstrings to a Flywheel Russian belt Deadlift in women and men. J Sports Sci 2025:1-12. [PMID: 39905784 DOI: 10.1080/02640414.2025.2461939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
The purpose of the study was to analyze hamstrings muscle damage and recovery after a novel Flywheel Russian belt Deadlift (FRBD) exercise using neuromuscular tests and associated biochemical markers of structural damage. Maximal voluntary isometric contraction (MVIC) torque and rate of force development (RFD) over several time-intervals by the 90ºhip:20ºknee test (standing isometric test for the hamstrings) and range of motion (ROM) Jurdan test (combination of active knee extension test and modified Thomas test), together with serum biomarkers of muscle damage and oxidative stress, were tested at baseline and +24h, +48h and +72h in healthy, untrained and physically active 15 females (age= 21.5±3.4 years) and 15 males (age= 21.4±1.9 years). FRBD-induced muscle damage was observed as a reduction in MVIC torque and RFD at all time-intervals until +72h. Also, hamstrings neuromuscular capacity reductions were associated with serum biomarkers of structural and oxidative damage. However, only males showed ROM changes. Overall, the FRBD triggered a decrease in hamstrings neuromuscular capacities, and an upregulation of biochemical markers of structural and oxidative damage until +72h. The 90ºhip:20ºknee test provides an adequate reliability to screen hamstrings recovery in both women and men after flywheel training, through MVIC torque and both early and late RFD.
Collapse
Affiliation(s)
- Pedro Luis Cosio
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Lia Moreno-Simonet
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Sandra Mechó
- Department of Radiology, Hospital of Barcelona, SCIAS, Barcelona, Spain
| | - Xavier de Blas Foix
- Faculty of Psychology, Education Sciences and Sport Blanquerna, Universitat Ramon Llull, Barcelona, Spain
| | - Mario Lloret
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Xavier Padulles
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Josep Maria Padulles
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Andreu Farran-Codina
- Department of Nutrition, Food Science, and Gastronomy, INSA-UB, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Barcelona, Spain
| | - Gil Rodas
- Medical Department, Medical Department of Futbol Club Barcelona (FIFA Medical Center of Excellence) and Barça Innovation Hub, Barcelona, Spain
| | - Joan Aureli Cadefau
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
- Department of Biomedicine, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
2
|
Colonna S, Casacci F. Myofascial System and Physical Exercise: A Narrative Review on Stiffening (Part II). Cureus 2024; 16:e76295. [PMID: 39850177 PMCID: PMC11755199 DOI: 10.7759/cureus.76295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
In the past two decades, interest in the fascial system has exponentially increased, particularly manual treatment and stretching exercises. The fascia's fundamental role remains the transmission of tensions, although this function can be impaired due to excessive or reduced stiffness. This second part of the work outlines the basic principles concerning the importance of appropriate and balanced fascial stiffness for correct postural and functional maintenance of the human body. Additionally, the limited studies available in the literature are reviewed, with a focus on therapeutic exercises aimed at increasing fascial system stiffness. The article addresses how fascia develops the ability to contract to maintain a physiological tension referred to as human resting myofascial tone. Additionally, it discusses the most recognized tools for assessing fascial tension: myotonometry and shear wave elastography. The final section is dedicated to presenting the current literature on the relationship between physical exercise and fascial stiffness.
Collapse
Affiliation(s)
- Saverio Colonna
- Rehabilitation Medicine, Spine Center, Bologna, ITA
- Research and Development, Osteopathic Spine Center Education, Bologna, ITA
| | - Fabio Casacci
- Rehabilitation Medicine, Spine Center, Bologna, ITA
- Research and Development, Osteopathic Spine Center Education, Bologna, ITA
| |
Collapse
|
3
|
Warneke K, Rabitsch T, Dobert P, Wilke J. The effects of static and dynamic stretching on deep fascia stiffness: a randomized, controlled cross-over study. Eur J Appl Physiol 2024; 124:2809-2818. [PMID: 38689040 PMCID: PMC11365840 DOI: 10.1007/s00421-024-05495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
AIM Previous stretching studies mostly investigated effects on the skeletal muscle but comprehensive explorations regarding the role of the connective tissue are scarce. Since the deep fascia has been demonstrated to be sensitive to mechanical tension, it was hypothesized that the fascia would also respond to stretching, contributing to enhanced range of motion (ROM). METHODS Forty (40) recreationally active participants (male: n = 25, female: n = 15) were included in the randomized controlled cross-over trial and allocated to different groups performing 5 min static (STAT) or dynamic (DYN) plantar flexor stretching or control condition (CC) in a random order. Pre- and immediately post-intervention, muscle and fascia stiffness, as well as muscle and fascia thickness were measured using high-resolution ultrasound and strain elastography. ROM was assessed in the ankle joint via the knee to wall test (KtW) and goniometer. RESULTS STAT reduced both, muscle and fascia stiffness (d = 0.78 and 0.42, p < 0.001, respectively), while DYN did not reduce stiffness compared to the control condition (p = 0.11-0.41). While both conditions showed significant increases in the KtW (d = 0.43-0.46, p = 0.02-0.04), no significant differences to the CC were observed for the isolated ROM testing (p = 0.09 and 0.77). There was a small correlation between fascia stiffness decreases and ROM increases (r = - 0.25, p = 0.006) but no association was found between muscle stiffness decreases and ROM increases (p = 0.13-0.40). CONCLUSION Our study is the first to reveal stretch-induced changes in fascia stiffness. Changes of fascia`s but not muscle`s mechanical properties may contribute to increased ROM following stretching.
Collapse
Affiliation(s)
- Konstantin Warneke
- Institute of Human Movement Science, Sport and Health, University of Graz, 8020, Graz, Austria.
- Institute of Sport Science, Alpen-Adria University Klagenfurt, 9020, Klagenfurt am Wörthersee, Austria.
| | - Thomas Rabitsch
- Institute of Sport Science, Alpen-Adria University Klagenfurt, 9020, Klagenfurt am Wörthersee, Austria
| | - Patrik Dobert
- Institute of Sport Science, Alpen-Adria University Klagenfurt, 9020, Klagenfurt am Wörthersee, Austria
| | - Jan Wilke
- Institute of Sport Science, Alpen-Adria University Klagenfurt, 9020, Klagenfurt am Wörthersee, Austria
- Department of Neuromotorics and Movement, University of Bayreuth, 95447, Bayreuth, Germany
| |
Collapse
|
4
|
Brandl A, Keiner M, Wilke J, Egner C, Schleip R, Schmidt T. Effects of a Manual Treatment on Lumbar Microcirculation and Tissue Stiffness Following Submaximal Eccentric Trunk Extensor Exercise: A Randomized Controlled Trial. J Sports Sci Med 2024; 23:581-592. [PMID: 39228780 PMCID: PMC11366855 DOI: 10.52082/jssm.2024.581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/08/2024] [Indexed: 09/05/2024]
Abstract
Recent studies have shown that the extramuscular connective tissue (ECT) is thickened and stiffened in delayed onset muscle soreness (DOMS). However, contrarily to the normal population, severe DOMS is rare in athletes or highly trained individuals. The present randomized, controlled trial therefore aimed to investigate pain as well as microcirculation and stiffness of the ECT and the erector spinae muscle following submaximal eccentric trunk extension exercise not causing DOMS. The effect of manual treatment by a therapist (myofascial release; MFR) on these parameters was to be studied. Trained healthy participants (n = 21; 31.3 ± 9.6 years; > 4 h exercise per week) performed submaximal eccentric exercise of the trunk extensors. One group was manually treated (n = 11), while the other group (n = 10) received placebo treatment with sham laser therapy. Stiffness of the ECT and the erector spinae muscle (shear wave elastography), microcirculation (white light and laser Doppler spectroscopy), palpation pain (100 mm visual analogue scale, VAS) and pressure pain threshold (indentometry, PPT) were assessed before (t0), 24 h (t24) and 48 h (t48) after conditions. Erector spinae muscle stiffness increased after eccentric exercise from t0 to t24 (0.875 m/s) and from t0 to t48 (0.869 m/s). After MFR, erector spinae muscle stiffness decreased in contrast to placebo treatment at t24 (-0.66 m/s), while ECT stiffness remained unchanged. Oxygen saturation increased (17-20.93%) and relative haemoglobin decreased (-9.1 - -12.76 AU) after eccentric exercise and MFR differed from placebo treatment at t48 (-3.71 AU). PPT differed after MFR from placebo treatment at t48 (20.69 N/mm), while VAS remained unchanged. Multiple linear regression showed that ECT stiffness and group membership predicted erector spinae muscle stiffness. MFR could have a positive effect on pain, microcirculation and muscle stiffness after submaximal eccentric exercise, suggesting better recovery, which needs to be confirmed by future work.
Collapse
Affiliation(s)
- Andreas Brandl
- Faculty for Psychology and Human Movement Science, Institute for Human Movement Science, Department of Sports Medicine, University of Hamburg, Hamburg, Germany
- Department of Sport and Health Sciences, Conservative and Rehabilitative Orthopedics, Technical University of Munich, Munich, Germany
- Department for Medical Professions, Diploma Hochschule, Bad Sooden-Allendorf, Germany
- Department of Training and Exercise Science, German University of Health & Sport, Ismaning, Germany
| | - Michael Keiner
- Department of Training and Exercise Science, German University of Health & Sport, Ismaning, Germany
| | - Jan Wilke
- Department of Neuromotorics and Movement, University of Bayreuth, Bayreuth, Germany
| | - Christoph Egner
- Department for Medical Professions, Diploma Hochschule, Bad Sooden-Allendorf, Germany
| | - Robert Schleip
- Department of Sport and Health Sciences, Conservative and Rehabilitative Orthopedics, Technical University of Munich, Munich, Germany
- Department for Medical Professions, Diploma Hochschule, Bad Sooden-Allendorf, Germany
| | - Tobias Schmidt
- Osteopathic Research Institute, Osteopathie Schule Deutschland, Hamburg, Germany
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
5
|
Dones VC, Serra MAB, Tangcuangco LPD, Orpilla VB. Superficial fascia displacement in cervical flexion: differentiating myofascial pain syndrome, a cross-sectional study. J Osteopath Med 2024; 124:353-363. [PMID: 38444081 DOI: 10.1515/jom-2023-0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024]
Abstract
CONTEXT Myofascial pain syndrome (MPS) is primarily characterized by myofascial trigger points related to fascial adhesions. MPS hinders fascial flexibility and mobility, leading to myofascial limitations, dysfunctional movement, and limitation of motion (LOM). OBJECTIVES This study determined the association of age, sex, type of work, symptom chronicity, symptom laterality, cervical LOM, altered direction of fascial displacement, and magnitude of superficial fascial displacement during active cervical flexion with the clinical diagnosis of MPS. METHODS A cross-sectional study selectively included MPS and non-MPS participants from different workplaces from January to October 2019. The MPS group exhibited clinical symptoms like tender spots, recognized pain patterns, and local twitch response upon palpation, often accompanied by cervical LOM. The non-MPS group lacked these symptoms, and those with certain pre-existing conditions or recent physiotherapy were not part of the study. Participants performed cervical active range of motion (AROM) while a sonographer recorded superficial fascial displacement utilizing ultrasound, which was later analyzed by three physiotherapists with the Tracker. Aiming for a multiple regression R-squared of 0.2, the target was 384 participants to account for a 20 % dropout, resulting in 307 participants after attrition. To explore the relationships between MPS and various factors, logistic regression models, rigorously tested for reliability and validity, were utilized. RESULTS In the study, there were 192 participants with MPS and 137 without MPS. The median ages were 33 years for the non-MPS group and 38 years for the MPS group. The adjusted model found significant links for sex (odds ratio [OR]=2.63, p<0.01), symptom chronicity (OR=8.28, p<0.01), and cervical LOM (OR=3.77, p=0.01). However, age and the presence of nodules/taut bands were not statistically significant (p>0.05). Also, the type of work, the direction of fascial displacement, and the difference in superficial fascial displacement during cervical flexion did not show a significant association with the clinical diagnosis of MPS (p>0.05). The adjusted model had a sensitivity of 73.80 % and a specificity of 81.34 %, correctly identifying 84.66 % of positive cases and 68.99 % of negative ones, resulting in an overall accuracy of 76.95 % in predicting MPS. CONCLUSIONS We provided an in-depth examination of MPS, identifying sex, duration of symptoms, and cervical LOM as significant predictive factors in its diagnosis. The study emphasizes the critical role of these variables in the accurate diagnosis of MPS, while delineating the comparatively minimal diagnostic value of other factors such as age, type of occupation, presence of nodules or taut bands, and variations in fascial displacement. This study underscores the imperative for further scholarly inquiry into the role of fascial involvement in musculoskeletal disorders, with the objective of enhancing both the theoretical understanding and diagnostic practices in this medical domain.
Collapse
Affiliation(s)
- Valentin C Dones
- Center for Health Research and Movement Science, 37572 University of Santo Tomas , Manila, Philippines
| | - Mark Angel B Serra
- Center for Health Research and Movement Science, 37572 University of Santo Tomas , Manila, Philippines
| | | | - Vergel B Orpilla
- College of Rehabilitation Sciences, 37572 University of Santo Tomas , Manila, Philippines
| |
Collapse
|
6
|
Ryskalin L, Morucci G, Soldani P, Gesi M. Do the fasciae of the soleus have a role in plantar fasciitis? Clin Anat 2024; 37:413-424. [PMID: 37539773 DOI: 10.1002/ca.24102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/21/2023] [Accepted: 07/16/2023] [Indexed: 08/05/2023]
Abstract
Plantar fasciitis is a chronic, self-limiting, and painful disabling condition affecting the inferomedial aspect of the heel, usually extending toward the metatarsophalangeal joints. There is compelling evidence for a strong correlation between Achilles tendon (AT) loading and plantar aponeurosis (PA) tension. In line with this, tightness of the AT is found in almost 80% of patients affected by plantar fasciitis. A positive correlation has also been reported between gastrocnemius-soleus tightness and heel pain severity in this condition. Despite its high prevalence, the exact etiology and pathological mechanisms underlying plantar heel pain remain unclear. Therefore, the aim of the present paper is to discuss the anatomical and biomechanical substrates of plantar fasciitis with special emphasis on the emerging, though largely neglected, fascial system. In particular, the relationship between the fascia, triceps surae muscle, AT, and PA will be analyzed. We then proceed to discuss how structural and biomechanical alterations of the muscle-tendon-fascia complex due to muscle overuse or injury can create the conditions for the onset of PA pathology. A deeper knowledge of the possible molecular mechanisms underpinning changes in the mechanical properties of the fascial system in response to altered loading and/or muscle contraction could help healthcare professionals and clinicians refine nonoperative treatment strategies and rehabilitation protocols for plantar fasciitis.
Collapse
Affiliation(s)
- Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Center for Rehabilitative Medicine "Sport and Anatomy", University of Pisa, Pisa, Italy
| | - Gabriele Morucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Center for Rehabilitative Medicine "Sport and Anatomy", University of Pisa, Pisa, Italy
| | - Paola Soldani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Center for Rehabilitative Medicine "Sport and Anatomy", University of Pisa, Pisa, Italy
| | - Marco Gesi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Center for Rehabilitative Medicine "Sport and Anatomy", University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Brandl A, Wilke J, Egner C, Schmidt T, Schilder A, Schleip R. Pain quality patterns in delayed onset muscle soreness of the lower back suggest sensitization of fascia rather than muscle afferents: a secondary analysis study. Pflugers Arch 2024; 476:395-405. [PMID: 38102488 PMCID: PMC10847203 DOI: 10.1007/s00424-023-02896-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Delayed onset muscle soreness (DOMS) of the lower back is considered a surrogate for acute low back pain (aLBP) in experimental studies. Of note, it is often unquestioningly assumed to be muscle pain. To date, there has not been a study analyzing lumbar DOMS in terms of its pain origin, which was the aim of this study. Sixteen healthy individuals (L-DOMS) were enrolled for the present study and matched to participants from a previous study (n = 16, L-PAIN) who had undergone selective electrical stimulation of the thoracolumbar fascia and the multifidus muscle. DOMS was induced in the lower back of the L-DOMS group using eccentric trunk extensions performed until exhaustion. On subsequent days, pain on palpation (100-mm analogue scale), pressure pain threshold (PPT), and the Pain Sensation Scale (SES) were used to examine the sensory characteristics of DOMS. Pain on palpation showed a significant increase 24 and 48 h after eccentric training, whereas PPT was not affected (p > 0.05). Factor analysis of L-DOMS and L-PAIN sensory descriptors (SES) yielded a stable three-factor solution distinguishing superficial thermal ("heat pain ") from superficial mechanical pain ("sharp pain") and "deep pain." "Heat pain " and "deep pain" in L-DOMS were almost identical to sensory descriptors from electrical stimulation of fascial tissue (L-PAIN, all p > 0.679) but significantly different from muscle pain (all p < 0.029). The differences in sensory description patterns as well as in PPT and self-reported DOMS for palpation pain scores suggest that DOMS has a fascial rather than a muscular origin.
Collapse
Affiliation(s)
- Andreas Brandl
- Department of Sports Medicine, Institute for Human Movement Science, Faculty for Psychology and Human Movement Science, University of Hamburg, 20148, Hamburg, Germany.
- Conservative and Rehabilitative Orthopedics, Department of Sport and Health Sciences, Technical University of Munich, 80992, Munich, Germany.
- Vienna School of Osteopathy, 1130, Vienna, Austria.
| | - Jan Wilke
- Department of Movement Sciences, University of Klagenfurt, 9020, Klagenfurt, Austria
| | - Christoph Egner
- Department for Medical Professions, Diploma Hochschule, 37242, Bad Sooden-Allendorf, Germany
| | - Tobias Schmidt
- Osteopathic Research Institute, Osteopathie Schule Deutschland, 22297, Hamburg, Germany
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, 20457, Hamburg, Germany
| | - Andreas Schilder
- Department of Orthopaedics and Trauma Surgery, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Robert Schleip
- Department of Movement Sciences, University of Klagenfurt, 9020, Klagenfurt, Austria
- Conservative and Rehabilitative Orthopedics, Department of Sport and Health Sciences, Technical University of Munich, 80992, Munich, Germany
| |
Collapse
|
8
|
Fu C, Xia Y, Wang B, Zeng Q, Pan S. MRI T2 mapping and shear wave elastography for identifying main pain generator in delayed-onset muscle soreness: muscle or fascia? Insights Imaging 2024; 15:67. [PMID: 38424366 PMCID: PMC10904698 DOI: 10.1186/s13244-024-01619-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/06/2023] [Indexed: 03/02/2024] Open
Abstract
INTRODUCTION The main generator of delayed onset muscle soreness (DOMS) is still unknown. This study aimed to clarify the main generator of DOMS. METHODS Twelve participants performed eccentric exercise (EE) on lower legs. MRI and ultrasound were used to assess changes of calf muscle and deep fascia before and after EE. These results were then compared to the muscle pain level. RESULTS Compared to baseline, muscle pain peaked at 24-48 h after EE (downstairs 22.25 ± 6.196, 57.917 ± 9.298, F = 291.168, p < 0.01; resting 5.833 ± 1.899, 5.083 ± 2.429, F = 51.678, p < 0.01). Shear wave speed (SWE) of the deep fascia and T2 values of the gastrocnemius muscle and deep fascia all increased and peaked at 48 h after EE (1.960 ± 0.130, F = 22.293; 50.237 ± 2.963, F = 73.172; 66.328 ± 2.968, F = 231.719, respectively, p < 0.01). These measurements were positively correlated with DOMS (downstairs: r = 0.46, 0.76, 0.87, respectively, p < 0.001; resting: r = 0.42, 0.70, 0.77, respectively, p < 0.001). There was a significant positive correlation between SWE and T2 values of deep fascia (r = 0.54, p < 0.01). CONCLUSION DOMS is a common result of muscle and fascia injuries. Deep fascia edema and stiffness play a crucial role in DOMS, which can be effectively evaluated MR-T2 and SWE. CRITICAL RELEVANCE STATEMENT Delayed-onset muscle soreness is a common result of muscle and deep fascia injuries, in which the edema and stiffness of the deep fascia play a crucial role. Both MRI and shear wave elastography can be effectively used to evaluate soft tissue injuries. KEY POINTS • The deep fascia is the major pain generator of delayed-onset muscle soreness. • There is a significant correlation between fascia injury and delayed-onset muscle soreness. • MRI and shear wave elastography are preferred methods for assessing fascia injuries.
Collapse
Affiliation(s)
- Congcong Fu
- Department of Magnetic Resonance Imaging, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yu Xia
- Department of Medical Ultrasonic, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
| | - Bingshan Wang
- Department of Magnetic Resonance Imaging, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qiang Zeng
- Department of Magnetic Resonance Imaging, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Shinong Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
9
|
Martínez-Aranda LM, Sanz-Matesanz M, García-Mantilla ED, González-Fernández FT. Effects of Self-Myofascial Release on Athletes' Physical Performance: A Systematic Review. J Funct Morphol Kinesiol 2024; 9:20. [PMID: 38249097 PMCID: PMC10801590 DOI: 10.3390/jfmk9010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Therapists and strength and conditioning specialists use self-myofascial release (SMR) as an intervention tool through foam rollers or massage rollers for soft tissue massage, with the purpose of improving mobility in the muscular fascia. Moreover, the use of SMR by professional and amateur athletes during warm-ups, cool downs, and workouts can have significant effects on their physical performance attributes, such as range of motion (ROM) and strength. The purpose of this study was to analyse the literature pertaining to these types of interventions and their effects found in different physical performance attributes for athletes. A systematic search was carried out using the following databases: PUBMED, ISI Web of Science, ScienceDirect, and Cochrane, including articles up to September 2023. A total of 25 articles with 517 athletes were studied in depth. SMR seems to have acute positive effects on flexibility and range of motion, without affecting muscle performance during maximal strength and power actions, but favouring recovery perception and decreasing delayed-onset muscle soreness. Some positive effects on agility and very short-range high-speed actions were identified, as well. In conclusion, although there is little evidence of its method of application due to the heterogeneity in that regard, according to our findings, SMR could be used as an intervention to improve athletes' perceptual recovery parameters, in addition to flexibility and range of motion, without negatively affecting muscle performance.
Collapse
Affiliation(s)
- Luis Manuel Martínez-Aranda
- Physical and Sports Performance Research Centre, Faculty of Sports Sciences, Pablo de Olavide University, 41013 Seville, Spain
- SEJ-680: Science-Based Training (SBT) Research Group, Faculty of Sports Sciences, Pablo de Olavide University, 41013 Seville, Spain
| | - Manuel Sanz-Matesanz
- Faculty of Sport, Catholic University of Murcia, Guadalupe, 30107 Murcia, Spain; (M.S.-M.); (E.D.G.-M.)
| | | | - Francisco Tomás González-Fernández
- Department of Physical Education and Sports, Faculty of Education and Sport Sciences, Campus of Melilla, University of Granada, 52006 Melilla, Spain;
| |
Collapse
|
10
|
Katayama H, Watanabe A, Machida T. A new perspective on tissue gliding dysfunction bordered by deep fascia as an indicator of delayed onset muscle soreness: A case report. J Bodyw Mov Ther 2023; 36:251-255. [PMID: 37949568 DOI: 10.1016/j.jbmt.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/19/2023] [Accepted: 06/13/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION The deep fascia, especially its thickness and stiffness, plays an important role in the mechanism of delayed onset muscle soreness (DOMS). Here, we present a patient with DOMS associated with a tissue gliding dysfunction bordered by the deep fascia. CASE PRESENTATION A 25-year-old woman developed DOMS of the left upper arm. We confirmed the tissue gliding dysfunction during manual skin traction by ultrasound imaging and treated with acupuncture aimed at stimulating the deep fascia. Tissue gliding between subcutaneous and muscle tissues bordered by the deep fascia was analyzed qualitatively and quantitatively, i.e., phases and distance of displacement. At the initial examination, the tissue gliding phases were in the same direction synchronously and the distance of displacement was 0.66mm. After the DOMS symptoms improved with direct acupuncture to the deep fascia, the phases changed independently in opposite directions and their displacement was 7.04mm. CONCLUSIONS In this patient, tissue gliding played an important role in the symptoms of DOMS. This case report focusing on tissue gliding provides a new perspective on understanding the pathogenesis of DOMS.
Collapse
Affiliation(s)
- Hinako Katayama
- Department of Rehabilitation, Machida Orthopaedics, Kochi, Japan
| | - Akihisa Watanabe
- Department of Rehabilitation, Machida Orthopaedics, Kochi, Japan.
| | - Takahiro Machida
- Department of Orthopaedic Surgery, Machida Orthopaedics, Kochi, Japan
| |
Collapse
|
11
|
Brandl A, Wilke J, Egner C, Schmidt T, Schleip R. Effects of Maximal Eccentric Trunk Extensor Exercise on Lumbar Extramuscular Connective Tissue: A Matched-Pairs Ultrasound Study. J Sports Sci Med 2023; 22:447-454. [PMID: 37711713 PMCID: PMC10499134 DOI: 10.52082/jssm.2023.447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/31/2023] [Indexed: 09/16/2023]
Abstract
Recently, it has been shown that the extramuscular connective tissue (ECT) is likely involved in delayed onset muscle soreness (DOMS). Therefore, the aim of the present study was to investigate the effects of maximal trunk extension eccentric exercise (EE) on ECT thickness, self-reported DOMS, ECT stiffness, skin temperature, and possible correlations between these outcomes. Healthy adults (n = 16, 29.34 ± 9.87 years) performed fatiguing EE of the trunk. A group of highly active individuals (TR, n = 8, > 14 h of sport per week) was compared with a group of less active individuals (UTR, n = 8, < 2 h of sport per week). Ultrasound measurements of ECT thickness, stiffness with MyotonPro and IndentoPro, skin temperature with infrared thermography, and pain on palpation (100 mm visual analog scale, VAS) as a surrogate for DOMS were recorded before (t0), immediately (t1), 24 h (t24), and 48 h (t48) after EE. ECT thickness increased after EE from t0 to t24 (5.96 mm to 7.10 mm, p = 0.007) and from t0 to t48 (5.96 mm to 7.21 mm, p < 0.001). VAS also increased from t0 to t24 (15.6 mm to 23.8 mm, p < 0.001) and from t0 to t48 (15.6 mm to 22.8 mm, p < 0.001). Skin temperature increased from t1 to t24 (31.6° Celsius to 32.7° Celsius, p = 0.032) and t1 to t48 (31.6° Celsius to 32.9° Celsius, p = 0.003), while stiffness remained unchanged (p > 0.05). Correlation analysis revealed no linear relationship between the outcomes within the 48-hour measurement period. The results may confirm previous findings of possible ECT involvement in the genesis of DOMS in the extremities also for the paraspinal ECT of trunk extensors. Subsequent work should focus on possible interventions targeting the ECT to prevent or reduce DOMS after strenuous muscle EE.
Collapse
Affiliation(s)
- Andreas Brandl
- Department of Sports Medicine, Institute for Human Movement Science, Faculty for Psychology and Human Movement Science, University of Hamburg, Hamburg, Germany
- Department for Medical Professions, Diploma Hochschule, Bad Sooden-Allendorf, Germany
- Vienna School of Osteopathy, Vienna, Austria
| | - Jan Wilke
- Department of Movement Sciences, University of Klagenfurt, Klagenfurt, Austria
| | - Christoph Egner
- Department for Medical Professions, Diploma Hochschule, Bad Sooden-Allendorf, Germany
| | - Tobias Schmidt
- Osteopathic Research Institute, Osteopathie Schule Deutschland, Hamburg, Germany
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Robert Schleip
- Department for Medical Professions, Diploma Hochschule, Bad Sooden-Allendorf, Germany
- Department of Sport and Health Sciences, Conservative and Rehabilitative Orthopedics, Technical University of Munich, Munich, Germany
| |
Collapse
|
12
|
Assessing reliability and validity of different stiffness measurement tools on a multi-layered phantom tissue model. Sci Rep 2023; 13:815. [PMID: 36646734 PMCID: PMC9842673 DOI: 10.1038/s41598-023-27742-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Changes in the mechanical properties (i.e., stiffness) of soft tissues have been linked to musculoskeletal disorders, pain conditions, and cancer biology, leading to a rising demand for diagnostic methods. Despite the general availability of different stiffness measurement tools, it is unclear as to which are best suited for different tissue types and the related measurement depths. The study aimed to compare different stiffness measurement tools' (SMT) reliability on a multi-layered phantom tissue model (MPTM). A polyurethane MPTM simulated the four layers of the thoracolumbar region: cutis (CUT), subcutaneous connective tissue (SCT), fascia profunda (FPR), and erector spinae (ERS), with varying stiffness parameters. Evaluated stiffness measurement tools included Shore Durometer, Semi-Electronic Tissue Compliance Meter (STCM), IndentoPRO, MyotonPRO, and ultrasound imaging. Measurements were made by two independent, blinded examiners. Shore Durometer, STCM, IndentoPRO, and MyotonPRO reliably detected stiffness changes in three of the four MPTM layers, but not in the thin (1 mm thick) layer simulating FPR. With ultrasound imaging, only stiffness changes in layers thicker than 3 mm could be measured reliably. Significant correlations ranging from 0.70 to 0.98 (all p < 0.01) were found. The interrater reliability ranged from good to excellent (ICC(2,2) = 0.75-0.98). The results are encouraging for researchers and clinical practitioners as the investigated stiffness measurement tools are easy-to-use and comparatively affordable.
Collapse
|