1
|
Siburian R, Fadillah R, Altobaishat O, Umar TP, Dilawar I, Nugroho DT. Remote ischemic preconditioning and cognitive dysfunction following coronary artery bypass grafting: A systematic review and meta-analysis of randomized controlled trials. Saudi J Anaesth 2024; 18:187-193. [PMID: 38654856 PMCID: PMC11033882 DOI: 10.4103/sja.sja_751_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 04/26/2024] Open
Abstract
Introduction Postoperative cognitive dysfunction (POCD) is a common neurological issue following cardiopulmonary bypass (CPB)-assisted heart surgery. Remote ischemic preconditioning (RIPC) increases the tolerance of vital organs to ischemia/reperfusion injury, leading to reduced brain injury biomarkers and improved cognitive control. However, the exact mechanisms underlying RIPC's neuroprotective effects remain unclear. This systematic review aimed to explore the hypothesis that RIPC lowers neurocognitive dysfunction in patients undergoing CPB surgery. Method All relevant studies were searched in PubMed, ScienceDirect, EBSCOhost, Google Scholar, Semantic Scholar, Scopus, and Cochrane Library database. Assessment of study quality was carried out by two independent reviewers individually using the Cochrane Risk of Bias (RoB-2) tool. Meta-analysis was performed using a fixed-effect model due to low heterogeneity among studies, except for those with substantial heterogeneity. Results A total of five studies with 1,843 participants were included in the meta-analysis. RIPC was not associated with reduced incidence of postoperative cognitive dysfunction (five RCTs, odds ratio [OR:] 0.79, 95% confidence interval [CI]: 0.56-1.11) nor its improvement (three RCTs, OR: 0.80, 95% CI: 0.50-1.27). In addition, the analysis of the effect of RIPC on specific cognitive function tests found that pooled SMD for RAVLT 1-3 and RAVLT LT were -0.07 (95% CI: -0.25,012) and -0.04 (95% CI: -0.25-0.12), respectively, and for VFT semantic and phonetic were -0.15 (95% CI: -0.33-0.04) and 0.11 (95% CI: -0.40-0.62), respectively. Conclusion The effect of RIPC on cognitive performance in CABG patients remained insignificant. Results from previous studies were unable to justify the use of RIPC as a neuroprotective agent in CABG patients.
Collapse
Affiliation(s)
| | - Rizki Fadillah
- Department of Medical Profession, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Obieda Altobaishat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Tungki Pratama Umar
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Ismail Dilawar
- Division of Cardiothoracic Surgery, Jakarta Heart Center, Jakarta, Indonesia
| | - Dimas Tri Nugroho
- Division of Cardiothoracic Surgery, Jakarta Heart Center, Jakarta, Indonesia
| |
Collapse
|
2
|
Liu R, Luo S, Zhang YS, Tsang CK. Plasma metabolomic profiling of patients with transient ischemic attack reveals positive role of neutrophils in ischemic tolerance. EBioMedicine 2023; 97:104845. [PMID: 37890369 PMCID: PMC10630611 DOI: 10.1016/j.ebiom.2023.104845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Transient ischemic attack (TIA) induces ischemic tolerance that can reduce the subsequent ischemic damage and improve prognosis of patients with stroke. However, the underlying mechanisms remain elusive. Recent advances in plasma metabolomics analysis have made it a powerful tool to investigate human pathophysiological phenotypes and mechanisms of diseases. In this study, we aimed to identify the bioactive metabolites from the plasma of patients with TIA for determination of their prophylactic and therapeutic effects on protection against cerebral ischemic stroke, and the mechanism of TIA-induced ischemic tolerance against subsequent stroke. METHODS Metabolomic profiling using liquid chromatography-mass spectrometry was performed to identify the TIA-induced differential bioactive metabolites in the plasma samples of 20 patients at day 1 (time for basal metabolites) and day 7 (time for established chronic ischemic tolerance-associated metabolites) after onset of TIA. Mouse middle cerebral artery occlusion (MCAO)-induced stroke model was used to verify their prophylactic and therapeutic potentials. Transcriptomics changes in circulating neutrophils of patients with TIA were determined by RNA-sequencing. Multivariate statistics and integrative analysis of metabolomics and transcriptomics were performed to elucidate the potential mechanism of TIA-induced ischemic tolerance. FINDINGS Plasma metabolomics analysis identified five differentially upregulated metabolites associated with potentially TIA-induced ischemic tolerance, namely all-trans 13,14 dihydroretinol (atDR), 20-carboxyleukotriene B4, prostaglandin B2, cortisol and 9-KODE. They were associated with the metabolic pathways of retinol, arachidonic acid, and neuroactive ligand-receptor interaction. Prophylactic treatment of MCAO mice with these five metabolites significantly improved neurological functions. Additionally, post-stroke treatment with atDR or 9-KODE significantly reduced the cerebral infarct size and enhanced sensorimotor functions, demonstrating the therapeutic potential of these bioactive metabolites. Mechanistically, we found in patients with TIA that these metabolites were positively correlated with circulating neutrophil counts. Integrative analysis of plasma metabolomics and neutrophil transcriptomics further revealed that TIA-induced metabolites are significantly correlated with specific gene expression in circulating neutrophils which showed prominent enrichment in FoxO signaling pathway and upregulation of the anti-inflammatory cytokine IL-10. Finally, we demonstrated that the protective effect of atDR-pretreatment on MCAO mice was abolished when circulating neutrophils were depleted. INTERPRETATION TIA-induced potential ischemic tolerance is associated with upregulation of plasma bioactive metabolites which can protect against cerebral ischemic damage and improve neurological functions through a positive role of circulating neutrophils. FUNDING National Natural Science Foundation of China (81974210), Science and Technology Planning Project of Guangdong Province, China (2020A0505100045), Natural Science Foundation of Guangdong Province (2019A1515010671), Science and Technology Program of Guangzhou, China (2023A03J0577), and Natural Science Foundation of Jiangxi, China(20224BAB216043).
Collapse
Affiliation(s)
- Rongrong Liu
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Siwei Luo
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Yu-Sheng Zhang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China.
| | - Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Li H, Liu P, Ma HY, Hua WL, Zhang YX, Zhang L, Zhang YW, Hong B, Yang PF, Liu JM. Novel predictors and a predictive model of cerebrovascular atherosclerotic ischemic stroke based on clinical databases. Neurol Res 2022; 45:391-399. [PMID: 36413433 DOI: 10.1080/01616412.2022.2149185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND PURPOSE Early identification of cerebrovascular atherosclerotic ischemic stroke is necessary for accurate treatment and clinical research. AIMS To identify novel predictors and build a predictive model of ischemic strokes due to cerebrovascular atherosclerosis. METHOD MIMIC-IV database was used to search for clinical data of patients with ischemic stroke. Included patients were divided into two groups according to their etiologies. Univariate and multivariate logistic regressions were used to build the predictive model, and the model reliability parameters were calculated. The cut-off value for the model was selected according to the Youden index. Clinical data from the Neurovascular Center of Changhai Hospital were used to verify the predictive model. RESULTS Logistical regressions showed a positive correlation between advanced age, peripheral atherosclerosis, history of transient ischemia, and the diagnosis of ischemic strokes due to cerebrovascular atherosclerosis. The history of atrial fibrillation, levels of the National Institutes of Health Stroke Scale, serum potassium, and activated partial thromboplastin time were negatively correlated to the diagnosis of cerebrovascular atherosclerotic ischemic stroke. The predictive model was constructed from logistic regression results, and the area under the curve was 0.764. The cut-off value for the model was set at 0.089 to achieve the highest Youden index, with sensitivity and specificity of 75.9% and 64.1%. Clinical verification of the model revealed that the sensitivity and specificity of the model were 52.5% and 93.0% respectively. CONCLUSION The efficacy of the predictive model was acceptable as an aid in predicting cerebrovascular atherosclerotic ischemic stroke.
Collapse
Affiliation(s)
- He Li
- Emergency Department, Naval Hospital of Eastern Theater, Zhoushan, China
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Pei Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hong-Yu Ma
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wei-Long Hua
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yong-Xin Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yong-Wei Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Bo Hong
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Peng-Fei Yang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jian-Min Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Li H, Luo Y, Liu P, Liu P, Hua W, Zhang Y, Zhang L, Li Z, Xing P, Zhang Y, Hong B, Yang P, Liu J. Exosomes containing miR-451a is involved in the protective effect of cerebral ischemic preconditioning against cerebral ischemia and reperfusion injury. CNS Neurosci Ther 2021; 27:564-576. [PMID: 33533575 PMCID: PMC8025619 DOI: 10.1111/cns.13612] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
Aim To study the role of exosomes in the protective effect of cerebral ischemic preconditioning (cerebral‐IPC) against cerebral I/R injury. Method Mouse models of cerebral‐IPC and MCAO/R were established as described previously, and their behavioral, pathological, and proteomic changes were analyzed. Neuro‐2a subjected to OGD/R were treated with exosomes isolated from the plasma of sham‐operated and cerebral‐IPC mice. The differentially expressed miRNAs between exosomes derived from sham‐operated (S‐exosomes) and preconditioned (IPC‐exosomes) mice were identified through miRNA array, and their targets were identified through database search. The control and OGD/R cells were treated with the IPC‐exosomes, miRNA mimic or target protein inhibitor, and their viability, oxidative, stress and apoptosis rates were measured. The activated pathways were identified by analyzing the levels of relevant proteins. Results Cerebral‐IPC mitigated the cerebral injury following ischemia and reperfusion, and increased the number of plasma exosomes. IPC‐exosomes increased the survival of Neuro‐2a cells after OGD/R. The miR‐451a targeting Rac1 was upregulated in the IPC‐exosomes relative to S‐exosomes. The miR‐451a mimic and the Rac1 inhibitor NSC23766 reversed OGD/R‐mediated activation of Rac1 and its downstream pathways. Conclusion Cerebral‐IPC ameliorated cerebral I/R injury by inducing the release of exosomes containing miR‐451a.
Collapse
Affiliation(s)
- He Li
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Yin Luo
- Department of neurosurgery, Changhai Hospital, Shanghai, China.,Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Liu
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Pei Liu
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Weilong Hua
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Yongxin Zhang
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Lei Zhang
- Stroke Center, Changhai Hospital, Shanghai, China
| | - Zifu Li
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Pengfei Xing
- Stroke Center, Changhai Hospital, Shanghai, China
| | | | - Bo Hong
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Pengfei Yang
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| | - Jianmin Liu
- Stroke Center, Changhai Hospital, Shanghai, China.,Department of neurosurgery, Changhai Hospital, Shanghai, China
| |
Collapse
|
5
|
Chauhan R, Panda N, Bhagat H, Bharti N, Luthra A, Soni SL, Kaloria N, Salunke P, Bhaire V, Bloria SD. Comparison of Propofol and Sevoflurane on Cerebral Oxygenation Using Juglar Venous Oximetery (SjVo 2) in Patients Undergoing Surgery for Traumatic Brain Injury. Asian J Neurosurg 2020; 15:614-619. [PMID: 33145215 PMCID: PMC7591162 DOI: 10.4103/ajns.ajns_348_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/25/2019] [Accepted: 03/11/2020] [Indexed: 02/03/2023] Open
Abstract
Background: Traumatic brain injury (TBI) induces major insult to the normal cerebral physiology. The anesthetic agents may infrequently produce deleterious effects and further aggravate damage to the injured brain. This study was conducted to evaluate the effects of propofol and sevoflurane on cerebral oxygenation, brain relaxation, systemic hemodynamic parameters and levels of interleukin-6 (IL-6) in patients with severe TBI undergoing decompressive craniectomy. Methods: A prospective randomized comparative study was conducted on 42 patients undergoing surgery for severe TBI. Patients were randomized into two groups, Group P received propofol and Group S received sevoflurane for maintenance of anesthesia. All patients were induced with fentanyl, propofol, and vecuronium. The effect of these agents on cerebral oxygenation was assessed by jugular venous oxygen saturation (SjVO2). Hemodynamic changes and quality of intraoperative brain relaxation were also assessed. The serum levels of IL-6 were quantitated using enzyme-linked immunosorbent assay technique. Results: SjVO2 values were comparable and mean arterial pressure (MAP) was found to be significantly lower in Group P as compared to those in Group S (P < 0.05). Brain relaxation scores were comparable between the groups. The level of IL-6 decreased significantly at the end of surgery compared to baseline in patients receiving sevoflurane (P = 0.040). Conclusions: Cerebral oxygenation measured by SjVO2 was comparable when anesthesia was maintained with propofol or sevoflurane. However, significant reduction in MAP by propofol needs attention in patients with severe TBI. The decrease in IL-6 level reflects anti-inflammatory effect and probable neuroprotective potential of propofol and sevoflurane.
Collapse
Affiliation(s)
- Rajeev Chauhan
- Department of Anesthesia and Intensive Care, PGIMER, Chandigarh, India
| | - Nidhi Panda
- Department of Anesthesia and Intensive Care, PGIMER, Chandigarh, India
| | - Hemant Bhagat
- Department of Anesthesia and Intensive Care, PGIMER, Chandigarh, India
| | - Neerja Bharti
- Department of Anesthesia and Intensive Care, PGIMER, Chandigarh, India
| | - Ankur Luthra
- Department of Anesthesia and Intensive Care, PGIMER, Chandigarh, India
| | - Shiv Lal Soni
- Department of Anesthesia and Intensive Care, PGIMER, Chandigarh, India
| | - Narender Kaloria
- Department of Anesthesia and Intensive Care, AIIMS, Jodhpur, Rajasthan, India
| | | | - Vishwanath Bhaire
- Department of Anesthesia and Intensive Care, PGIMER, Chandigarh, India
| | - Summit Dev Bloria
- Department of Anesthesia and Intensive Care, PGIMER, Chandigarh, India
| |
Collapse
|
6
|
Hao Y, Xin M, Feng L, Wang X, Wang X, Ma D, Feng J. Review Cerebral Ischemic Tolerance and Preconditioning: Methods, Mechanisms, Clinical Applications, and Challenges. Front Neurol 2020; 11:812. [PMID: 33071923 PMCID: PMC7530891 DOI: 10.3389/fneur.2020.00812] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Stroke is one of the leading causes of morbidity and mortality worldwide, and it is increasing in prevalence. The limited therapeutic window and potential severe side effects prevent the widespread clinical application of the venous injection of thrombolytic tissue plasminogen activator and thrombectomy, which are regarded as the only approved treatments for acute ischemic stroke. Triggered by various types of mild stressors or stimuli, ischemic preconditioning (IPreC) induces adaptive endogenous tolerance to ischemia/reperfusion (I/R) injury by activating a multitude cascade of biomolecules, for example, proteins, enzymes, receptors, transcription factors, and others, which eventually lead to transcriptional regulation and epigenetic and genomic reprogramming. During the past 30 years, IPreC has been widely studied to confirm its neuroprotection against subsequent I/R injury, mainly including local ischemic preconditioning (LIPreC), remote ischemic preconditioning (RIPreC), and cross preconditioning. Although LIPreC has a strong neuroprotective effect, the clinical application of IPreC for subsequent cerebral ischemia is difficult. There are two main reasons for the above result: Cerebral ischemia is unpredictable, and LIPreC is also capable of inducing unexpected injury with only minor differences to durations or intensity. RIPreC and pharmacological preconditioning, an easy-to-use and non-invasive therapy, can be performed in a variety of clinical settings and appear to be more suitable for the clinical management of ischemic stroke. Hoping to advance our understanding of IPreC, this review mainly focuses on recent advances in IPreC in stroke management, its challenges, and the potential study directions.
Collapse
Affiliation(s)
| | | | | | | | | | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Turovskaya MV, Zinchenko VP, Babaev AA, Epifanova EA, Tarabykin VS, Turovsky EA. Mutation in the Sip1 transcription factor leads to a disturbance of the preconditioning of AMPA receptors by episodes of hypoxia in neurons of the cerebral cortex due to changes in their activity and subunit composition. The protective effects of interleukin-10. Arch Biochem Biophys 2018; 654:126-135. [PMID: 30056076 DOI: 10.1016/j.abb.2018.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
The Sip1 mutation plays the main role in pathogenesis of the Mowat-Wilson syndrome, which is characterized by the pronounced epileptic symptoms. Cortical neurons of homozygous mice with Sip1 mutation are resistant to AMPA receptor activators. Disturbances of the excitatory signaling components are also observed on such a phenomenon of neuroplasticity as hypoxic preconditioning. In this work, the mechanisms of loss of the AMPA receptor's ability to precondition by episodes of short-term hypoxia were investigated on cortical neurons derived from the Sip1 homozygous mice. The preconditioning effect was estimated by the level of suppression of the AMPA receptors activity with hypoxia episodes. Using fluorescence microscopy, we have shown that cortical neurons from the Sip1fl/fl mice are characterized by the absence of hypoxic preconditioning effect, whereas the amplitude of Ca2+-responses to the application of the AMPA receptor agonist, 5-Fluorowillardiine, in neurons from the Sip1 mice brainstem is suppressed by brief episodes of hypoxia. The mechanism responsible for this process is hypoxia-induced desensitization of the AMPA receptors, which is absent in the cortex neurons possessing the Sip1 mutation. However, the appearance of preconditioning in these neurons can be induced by phosphoinositide-3-kinase activation with a selective activator or an anti-inflammatory cytokine interleukin-10.
Collapse
Affiliation(s)
| | | | - Alexei A Babaev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Ekaterina A Epifanova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Victor S Tarabykin
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Egor A Turovsky
- Institute of Cell Biophysics, Russian Academy of Sciences, Russia.
| |
Collapse
|
8
|
Zhou XB, Zou DX, Gu W, Wang D, Feng JS, Wang JY, Zhou JL. An Experimental Study on Repeated Brief Ischemia in Promoting Sciatic Nerve Repair and Regeneration in Rats. World Neurosurg 2018; 114:e11-e21. [PMID: 29374605 DOI: 10.1016/j.wneu.2018.01.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Research has shown that ischemic preconditioning reduced the severity of ischemia-reperfusion injury in brain in rats, we have a hypothesis that repeated brief ischemia has positive effects on peripheral nerve damage. This study was conducted to investigate the potential protective effects of repeated brief ischemia on peripheral nerve regeneration using a rat model of experimental sciatic nerve transection injury. METHODS Treatment groups (groups A-D) received repeated, brief ischemia every 1 day/2 days/3 days/7 days. After surgery for 4, 8, 12 weeks, we evaluated sciatic functional index test, gastrocnemius muscle wet mass, axon and nerve fiber diameter, density, G-ratio, immunohistochemistry of S-100, vascular endothelial growth factor (VEGF), and the ultrastructure of the nerves. RESULTS Sciatic functional index test and muscle wet mass were improved on the repeated brief ischemia groups. Ischemia treatment resulted in a significant increase in axon and nerve fiber density as well as S-100 and VEGF-positive cell, which indicated that repeated brief ischemia promotes Schwann cell proliferation and reconstruction. CONCLUSIONS This study exhibits the positive effects of repeated brief ischemia in sciatic nerve transection injury, possibly in part because it can improve VEGF and the physiologic state of Schwann cells in the ischemic environment and then accelerate the ability of neurite outgrow.
Collapse
Affiliation(s)
- Xiao-Bin Zhou
- Department of Orthopedics, The Third Hospital of Shi Jia-Zhuang, Hebei, People's Republic of China; Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - De-Xin Zou
- Department of Spine Surgery, YanTai-Shan Hospital, Shandong, People's Republic of China
| | - Wei Gu
- Department of Ophthalmology, The Third Hospital of Shi Jia-Zhuang, Hebei, People's Republic of China
| | - Dong Wang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jian-Shu Feng
- Department of Orthopedics, The Third Hospital of Shi Jia-Zhuang, Hebei, People's Republic of China
| | - Jiang-Yong Wang
- Department of Orthopedics, The Third Hospital of Shi Jia-Zhuang, Hebei, People's Republic of China
| | - Jun-Lin Zhou
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
9
|
Kumas M, Altintas O, Karatas E, Kocyigit A. Protective Effect of Ischemic Preconditioning on Myocardium Against Remote Tissue Injury Following Transient Focal Cerebral Ischemia in Diabetic Rats. Arq Bras Cardiol 2017; 109:516-526. [PMID: 29160389 PMCID: PMC5783432 DOI: 10.5935/abc.20170164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/31/2017] [Indexed: 12/22/2022] Open
Abstract
Background Remote ischemic preconditioning (IPreC) could provide tissue-protective
effect at a remote site by anti-inflammatory, neuronal, and humoral
signaling pathways. Objectives The aim of the study was to investigate the possible protective effects of
remote IPreC on myocardium after transient middle cerebral artery occlusion
(MCAo) in streptozotocin- induced diabetic (STZ) and non-diabetic rats. Methods 48 male Spraque Dawley rats were divided into eight groups: Sham, STZ, IPreC,
MCAo, IPreC+MCAo, STZ+IPreC, STZ+MCAo and STZ+IPreC+MCAo groups. We induced
transient MCAo seven days after STZ-induced diabetes, and performed IPreC 72
hours before transient MCAo. Remote myocardial injury was investigated
histopathologically. Bax, Bcl2 and caspase-3 protein levels were measured by
Western blot analysis. Total antioxidant status (TAS), total oxidant status
(TOS) of myocardial tissue were measured by colorimetric assay. Oxidative
stress index(OSI) was calculated as TOS-to-TAS ratio. For all statistical
analysis, p values < 0.05 were considered significant. Results We observed serious damage including necrosis, congestion and mononuclear
cell infiltration in myocardial tissue of the diabetic and ischemic groups.
In these groups TOS and OSI levels were significantly higher; TAS levels
were lower than those of IPreC related groups (p < 0.05). IPreC had
markedly improved histopathological alterations and increased TAS levels in
IPreC+MCAo and STZ+IPreC+MCAo compared to MCAo and STZ+MCAo groups (p <
0.05). In non-diabetic rats, MCAo activated apoptotic cell death via
increasing Bax/Bcl2 ratio and caspase-3 levels. IPreC reduced apoptotic cell
death by suppressing pro-apoptotic proteins. Diabetes markedly increased
apoptotic protein levels and the effect did not reversed by IPreC. Conclusions We could suggest that IPreC attenuates myocardial injury via ameliorating
histological findings, activating antioxidant mechanisms, and inducing
antiapoptotic activity in diabetic rats.
Collapse
Affiliation(s)
- Meltem Kumas
- BezmiAlem Vakif University - Vocational School of Health Services - Medical Laboratory Techniques; - Turquia
| | - Ozge Altintas
- Kirklareli State Hospital, Neurology Clinic; - Turquia
| | - Ersin Karatas
- Gebze Technical University, Department of Molecular Biology and Genetics;- Turquia
| | - Abdurrahim Kocyigit
- Bezmialem Vakif University - Medical Faculty - Medical Biochemistry Department - Turquia
| |
Collapse
|
10
|
Ravingerová T, Farkašová V, Griecsová L, Muráriková M, Carnická S, Lonek L, Ferko M, Slezak J, Zálešák M, Adameova A, Khandelwal VKM, Lazou A, Kolar F. Noninvasive approach to mend the broken heart: Is "remote conditioning" a promising strategy for application in humans? Can J Physiol Pharmacol 2017; 95:1204-1212. [PMID: 28683229 DOI: 10.1139/cjpp-2017-0200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Currently, there are no satisfactory interventions to protect the heart against the detrimental effects of ischemia-reperfusion injury. Although ischemic preconditioning (PC) is the most powerful form of intrinsic cardioprotection, its application in humans is limited to planned interventions, due to its short duration and technical requirements. However, many organs/tissues are capable of producing "remote" PC (RPC) when subjected to brief bouts of ischemia-reperfusion. RPC was first described in the heart where brief ischemia in one territory led to protection in other area. Later on, RPC started to be used in patients with acute myocardial infarction, albeit with ambiguous results. It is hypothesized that the connection between the signal triggered in remote organ and protection induced in the heart can be mediated by humoral and neural pathways, as well as via systemic response to short sublethal ischemia. However, although RPC has a potentially important clinical role, our understanding of the mechanistic pathways linking the local stimulus to the remote organ remains incomplete. Nevertheless, RPC appears as a cost-effective and easily performed intervention. Elucidation of protective mechanisms activated in the remote organ may have therapeutic and diagnostic implications in the management of myocardial ischemia and lead to development of pharmacological RPC mimetics.
Collapse
Affiliation(s)
- Táňa Ravingerová
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Veronika Farkašová
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Griecsová
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Muráriková
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Slavka Carnická
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - L'ubomír Lonek
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Ferko
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Slezak
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Zálešák
- a Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Adriana Adameova
- b Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | | | - Antigone Lazou
- d School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Frantisek Kolar
- e Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
11
|
Abstract
Preconditioning is a paradigm in which sublethal stress-prior to a more injurious insult-induces protection against injury. In the central nervous system (CNS), preconditioning against ischemic stroke is induced by short durations of ischemia, brief seizures, exposure to anesthetics, and other stresses. Increasing evidence supports the contribution of microRNAs (miRNAs) to the pathogenesis of cerebral ischemia and ischemic tolerance induced by preconditioning. Studies investigating miRNA changes induced by preconditioning have to date identified 562 miRNAs that change expression levels after preconditioning, and 15% of these changes were reproduced in at least one additional study. Of miRNAs assessed as changed by preconditioning in more than one study, about 40% changed in the same direction in more than one study. Most of the studies to assess the role of specific miRNAs in the neuroprotective mechanism of preconditioning were performed in vitro, with fewer studies manipulating individual miRNAs in vivo. Thus, while many miRNAs change in response to preconditioning stimuli, the mechanisms underlying their effects are not well understood. The data does suggest that miRNAs may play significant roles in preconditioning-induced neuroprotection. This review focuses on the current state of knowledge of the possible role of miRNAs in preconditioning-induced cerebral protection.
Collapse
Affiliation(s)
- Josh D Bell
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| | - Jang-Eun Cho
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Anesthesiology and Pain Medicine, Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Rona G Giffard
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Anttila V, Haapanen H, Yannopoulos F, Herajärvi J, Anttila T, Juvonen T. Review of remote ischemic preconditioning: from laboratory studies to clinical trials. SCAND CARDIOVASC J 2016; 50:355-361. [PMID: 27595164 DOI: 10.1080/14017431.2016.1233351] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In remote ischemic preconditioning (RIPC) short periods of non-lethal ischemia followed by reperfusion of tissue or organ prepare remote tissue or organ to resist a subsequent more severe ischemia-reperfusion injury. The signaling mechanism of RIPC can be humoral communication, neuronal stimulation, systemic modification of circulating immune cells, and activation of hypoxia inducible genes. Despite promising evidence from experimental studies, the clinical effects of RIPC have been controversial. Heterogeneity of inclusion and exclusion criteria and confounding factors such as comedication, anesthesia, comorbidities, and other risk factors may have influenced the efficacy of RIPC. Although the cardioprotective pathways of RIPC are more widely studied, there is also evidence of benefits in CNS, kidney and liver protection. Future research should explore the potential of RIPC, not only in cardiac protection, but also in patients with threatening ischemia of the brain, organ transplantation of the heart, liver and kidney and extensive cardiovascular surgery. RIPC is generally well-tolerated, safe, effective, and easily feasible. It has a great prospect for ischemic protection of the heart and other organs.
Collapse
Affiliation(s)
- Vesa Anttila
- a Heart Center, Turku University Hospital , Turku , Finland
| | - Henri Haapanen
- b Research Unit of Surgery, Anesthesia and Intensive Care , University of Oulu and MRC Oulu , Oulu , Finland
| | - Fredrik Yannopoulos
- b Research Unit of Surgery, Anesthesia and Intensive Care , University of Oulu and MRC Oulu , Oulu , Finland
| | - Johanna Herajärvi
- b Research Unit of Surgery, Anesthesia and Intensive Care , University of Oulu and MRC Oulu , Oulu , Finland
| | - Tuomas Anttila
- b Research Unit of Surgery, Anesthesia and Intensive Care , University of Oulu and MRC Oulu , Oulu , Finland
| | - Tatu Juvonen
- c Department of Cardiac Surgery , Heart and Lung Center HUCH , Helsinki , Finland
| |
Collapse
|
13
|
Remote ischemic preconditioning protects the spinal cord against ischemic insult: An experimental study in a porcine model. J Thorac Cardiovasc Surg 2016; 151:777-785. [DOI: 10.1016/j.jtcvs.2015.07.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/02/2015] [Accepted: 07/12/2015] [Indexed: 11/19/2022]
|
14
|
Mehrjerdi FZ, Aboutaleb N, Pazoki-Toroudi H, Soleimani M, Ajami M, Khaksari M, Safari F, Habibey R. The Protective Effect of Remote Renal Preconditioning Against Hippocampal Ischemia Reperfusion Injury: Role of KATP Channels. J Mol Neurosci 2015; 57:554-60. [DOI: 10.1007/s12031-015-0636-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/28/2015] [Indexed: 12/23/2022]
|
15
|
Saad M, Abdelsalam R, Kenawy S, Attia A. Ischemic preconditioning and postconditioning alleviates hippocampal tissue damage through abrogation of apoptosis modulated by oxidative stress and inflammation during transient global cerebral ischemia–reperfusion in rats. Chem Biol Interact 2015; 232:21-9. [DOI: 10.1016/j.cbi.2015.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/25/2015] [Accepted: 03/09/2015] [Indexed: 02/02/2023]
|
16
|
Wang PF, Xiong XY, Chen J, Wang YC, Duan W, Yang QW. Function and mechanism of toll-like receptors in cerebral ischemic tolerance: from preconditioning to treatment. J Neuroinflammation 2015; 12:80. [PMID: 25928750 PMCID: PMC4422156 DOI: 10.1186/s12974-015-0301-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/13/2015] [Indexed: 01/13/2023] Open
Abstract
Increasing evidence suggests that toll-like receptors (TLRs) play an important role in cerebral ischemia-reperfusion injury. The endogenous ligands released from ischemic neurons activate the TLR signaling pathway, resulting in the production of a large number of inflammatory cytokines, thereby causing secondary inflammation damage following cerebral ischemia. However, the preconditioning for minor cerebral ischemia or the preconditioning with TLR ligands can reduce cerebral ischemic injury by regulating the TLR signaling pathway following ischemia in brain tissue (mainly, the inhibition of the TLR4/NF-κB signaling pathway and the enhancement of the interferon regulatory factor-dependent signaling), resulting in TLR ischemic tolerance. Additionally, recent studies found that postconditioning with TLR ligands after cerebral ischemia can also reduce ischemic damage through the regulation of the TLR signaling pathway, showing a significant therapeutic effect against cerebral ischemia. These studies suggest that the ischemic tolerance mediated by TLRs can serve as an important target for the prevention and treatment of cerebral ischemia. On the basis of describing the function and mechanism of TLRs in mediating cerebral ischemic damage, this review focuses on the mechanisms of cerebral ischemic tolerance induced by the preconditioning and postconditioning of TLRs and discusses the clinical application of TLRs for ischemic tolerance.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China. .,Department of Neurology, Weihai municipal Hospital, Weihai, 264200, China.
| | - Xiao-Yi Xiong
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| | - Jing Chen
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| | - Yan-Chun Wang
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| | - Wei Duan
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| |
Collapse
|
17
|
Bhuiyan M, Kim JC, Hwang SN, Lee MY, Kim S. Ischemic tolerance is associated with VEGF-C and VEGFR-3 signaling in the mouse hippocampus. Neuroscience 2015; 290:90-102. [DOI: 10.1016/j.neuroscience.2015.01.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
|
18
|
Wang PF, Fang H, Chen J, Lin S, Liu Y, Xiong XY, Wang YC, Xiong RP, Lv FL, Wang J, Yang QW. Polyinosinic-polycytidylic acid has therapeutic effects against cerebral ischemia/reperfusion injury through the downregulation of TLR4 signaling via TLR3. THE JOURNAL OF IMMUNOLOGY 2014; 192:4783-94. [PMID: 24729619 DOI: 10.4049/jimmunol.1303108] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent reports have shown that preconditioning with the TLR3 ligand polyinosinic-polycytidylic acid (poly(I:C)) protects against cerebral ischemia/reperfusion (I/R) injury. However, it is unclear whether poly(I:C) treatment after cerebral I/R injury is also effective. We used mouse/rat middle cerebral artery occlusion and cell oxygen-glucose deprivation models to evaluate the therapeutic effects and mechanisms of poly(I:C) treatment. Poly(I:C) was i.p. injected 3 h after ischemia (treatment group). Cerebral infarct volumes and brain edemas were significantly reduced, and neurologic scores were significantly increased. TNF-α and IL-1β levels were markedly decreased, whereas IFN-β levels were greatly increased, in the ischemic brain tissues, cerebral spinal fluid, and serum. Injuries to hippocampal neurons and mitochondria were greatly reduced. The numbers of TUNEL-positive and Fluoro-Jade B(+) cells also decreased significantly in the ischemic brain tissues. Poly(I:C) treatment increased the levels of Hsp27, Hsp70, and Bcl2 and decreased the level of Bax in the ischemic brain tissues. Moreover, poly(I:C) treatment attenuated the levels of TNF-α and IL-1β in serum and cerebral spinal fluid of mice stimulated by LPS. However, the protective effects of poly(I:C) against cerebral ischemia were abolished in TLR3(-/-) and TLR4(-/-)mice. Poly(I:C) downregulated TLR4 signaling via TLR3. Poly(I:C) treatment exhibited obvious protective effects 14 d after ischemia and was also effective in the rat permanent middle cerebral artery occlusion model. The results suggest that poly(I:C) exerts therapeutic effects against cerebral I/R injury through the downregulation of TLR4 signaling via TLR3. Poly(I:C) is a promising new drug candidate for the treatment of cerebral infarcts.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 40037, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhao JH, Meng XL, Zhang J, Li YL, Li YJ, Fan ZM. Oxygen glucose deprivation post-conditioning protects cortical neurons against oxygen-glucose deprivation injury: role of HSP70 and inhibition of apoptosis. ACTA ACUST UNITED AC 2014; 34:18-22. [PMID: 24496673 DOI: 10.1007/s11596-014-1225-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 01/20/2014] [Indexed: 01/11/2023]
Abstract
In the present study, we examined the effect of oxygen glucose deprivation (OGD) post-conditioning (PostC) on neural cell apoptosis in OGD-PostC model and the protective effect on primary cortical neurons against OGD injury in vitro. Four-h OGD was induced by OGD by using a specialized and humidified chamber. To initiate OGD, culture medium was replaced with de-oxygenated and glucose-free extracellular solution-Locke's medium. After OGD treatment for 4 h, cells were then allowed to recover for 6 h or 20 h. Then lactate dehydrogenase (LDH) release assay, Western blotting and flow cytometry were used to detect cell death, protein levels and apoptotic cells, respectively. For the PostC treatment, three cycles of 15-min OGD, followed by 15 min normal cultivation, were applied immediately after injurious 4-h OGD. Cells were then allowed to recover for 6 h or 20 h, and cell death was assessed by LDH release assay. Apoptotic cells were flow cytometrically evaluated after 4-h OGD, followed by re-oxygenation for 20 h (O4/R20). In addition, Western blotting was used to examine the expression of heat-shock protein 70 (HSP70), Bcl-2 and Bax. The ratio of Bcl-2 expression was (0.44±0.08)% and (0.76±0.10)%, and that of Bax expression was (0.51±0.05)% and (0.39±0.04)%, and that of HSP70 was (0.42±0.031)% and (0.72±0.045)% respectively in OGD group and PostC group. After O4/R6, the rate of neuron death in PostC group and OGD groups was (28.96±3.03)% and (37.02±4.47)%, respectively. Therefore, the PostC treatment could up-regulate the expression of HSP70 and Bcl-2, but down-regulate Bax expression. As compared with OGD group, OGD-induced neuron death and apoptosis were significantly decreased in PostC group (P<0.05). These findings suggest that PostC inhibited OGD-induced neuron death. This neuro-protective effect is likely achieved by anti-apoptotic mechanisms and is associated with over-expression of HSP70.
Collapse
Affiliation(s)
- Jian-Hua Zhao
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
| | - Xian-Li Meng
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Jian Zhang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Yong-Li Li
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Yue-Juan Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Zhe-Ming Fan
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| |
Collapse
|
20
|
Joung KW, Rhim JH, Chin JH, Kim WJ, Choi DK, Lee EH, Hahm KD, Sim JY, Choi IC. Effect of remote ischemic preconditioning on cognitive function after off-pump coronary artery bypass graft: a pilot study. Korean J Anesthesiol 2013; 65:418-24. [PMID: 24363844 PMCID: PMC3866337 DOI: 10.4097/kjae.2013.65.5.418] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/22/2013] [Accepted: 04/30/2013] [Indexed: 02/08/2023] Open
Abstract
Background Several studies have shown in animal models that remote ischemic preconditioning (rIPC) has a neuroprotective effect. However, a randomized controlled trial in human subjects to investigate the neuroprotective effect of rIPC after cardiac surgery has not yet been reported. Therefore, we performed this pilot study to determine whether rIPC reduced the occurrence of postoperative cognitive dysfunction in patients who underwent off-pump coronary artery bypass graft (OPCAB) surgery. Methods Seventy patients who underwent OPCAB surgery were assigned to either the control or the rIPC group using a computer-generated randomization table. The application of rIPC consisted of four cycles of 5 min ischemia and 5 min reperfusion on an upper limb using a blood pressure cuff inflating 200 mmHg before coronary artery anastomosis. The cognitive function tests were performed one day before surgery and again on postoperative day 7. We defined postoperative cognitive dysfunction as decreased postoperative test values more than 20% of the baseline values in more than two of the six cognitive function tests that were performed. Results In the cognitive function tests, there were no significant differences in the results obtained during the preoperative and postoperative periods for all tests and there were no mean differences observed in the preoperative and postoperative scores. The incidences of postoperative cognitive dysfunction in the control and rIPC groups were 28.6% (10 patients) and 31.4% (11 patients), respectively. Conclusions rIPC did not reduce the incidence of postoperative cognitive dysfunction after OPCAB surgery during the immediate postoperative period.
Collapse
Affiliation(s)
- Kyoung-Woon Joung
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Ho Rhim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-Hyun Chin
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Wook-Jong Kim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dae-Kee Choi
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun-Ho Lee
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung-Don Hahm
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-Yeon Sim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In-Cheol Choi
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Trefoil factor 3 as an endocrine neuroprotective factor from the liver in experimental cerebral ischemia/reperfusion injury. PLoS One 2013; 8:e77732. [PMID: 24204940 PMCID: PMC3799633 DOI: 10.1371/journal.pone.0077732] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/08/2013] [Indexed: 01/30/2023] Open
Abstract
Cerebral ischemia, while causing neuronal injury, can activate innate neuroprotective mechanisms, minimizing neuronal death. In this report, we demonstrate that experimental cerebral ischemia/reperfusion injury in the mouse causes upregulation of the secretory protein trefoil factor 3 (TFF3) in the hepatocyte in association with an increase in serum TFF3. Partial hepatectomy (~60% liver resection) immediately following cerebral injury significantly lowered the serum level of TFF3, suggesting a contribution of the liver to the elevation of serum TFF3. Compared to wild-type mice, TFF3-/- mice exhibited a significantly higher activity of caspase 3 and level of cell death in the ischemic cerebral lesion, a larger fraction of cerebral infarcts, and a smaller fraction of the injured cerebral hemisphere, accompanied by severer forelimb motor deficits. Intravenous administration of recombinant TFF3 reversed changes in cerebral injury and forelimb motor function due to TFF3 deficiency. These observations suggest an endocrine neuroprotective mechanism involving TFF3 from the liver in experimental cerebral ischemia/reperfusion injury.
Collapse
|
22
|
Marco FD, Romeo S, Nandasena C, Purushothuman S, Adams C, Bisti S, Stone J. The time course of action of two neuroprotectants, dietary saffron and photobiomodulation, assessed in the rat retina. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2013; 2:208-20. [PMID: 24093084 PMCID: PMC3783833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/05/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Dietary saffron and photobiomodulation (low-level infrared radiation, PBM) are emerging as therapeutically promising protectants for neurodegenerative conditions, such as the retinal dystrophies. In animal models, saffron and PBM, given in limited daily doses, protect retina and brain from toxin- or light-induced stress. This study addresses the rate at which saffron and PBM, given in daily doses, induce neuroprotection, using a light damage model of photoreceptor degeneration in Sprague Dawley (SD) rats. RESULTS Rats were raised in dim cyclic (12 h 5 lux, 12 h dark) illumination, treated with saffron or PBM for 2-10 d, and then exposed to bright damaging light (1,000 lux for 24 h). After 1 week survival, the retina was assessed for photoreceptor death (using the TUNEL reaction), for surviving photoreceptor damage (thickness of the outer nuclear layer) and for the expression of a stress-related protein GFAP, using immunohistochemistry. Preconditioning the retina with saffron or PBM reduced photoreceptor death, preserved the population of surviving photoreceptors and reduced the upregulation of GFAP in Müller cells. At the daily dose of saffron used (1 mg/kg), protection was detectable at 2 d, increasing to 10 d. At the daily dose of PBM used (5 J/cm(2) at 670 nm) protection was detectable at 5 d, increasing to 7-10 d. CONCLUSIONS The results provide time parameters for exploration of the mechanisms and durability of the protection provided by saffron and PBM.
Collapse
Affiliation(s)
- Fabiana Di Marco
- Department of Biotechnology and Applied Clinical Science, University of L’AquilaItaly
| | - Stefania Romeo
- Department of Biotechnology and Applied Clinical Science, University of L’AquilaItaly
| | - Charith Nandasena
- Discipline of Physiology and Bosch Institute, University of Sydney and ARC Centre of Excellence in Vision Science, University of SydneyAustralia
| | - Sivaraman Purushothuman
- Discipline of Physiology and Bosch Institute, University of Sydney and ARC Centre of Excellence in Vision Science, University of SydneyAustralia
| | - Charean Adams
- Discipline of Physiology and Bosch Institute, University of Sydney and ARC Centre of Excellence in Vision Science, University of SydneyAustralia
| | - Silvia Bisti
- Department of Biotechnology and Applied Clinical Science, University of L’AquilaItaly
| | - Jonathan Stone
- Discipline of Physiology and Bosch Institute, University of Sydney and ARC Centre of Excellence in Vision Science, University of SydneyAustralia
| |
Collapse
|
23
|
He X, Sandhu HK, Yang Y, Hua F, Belser N, Kim DH, Xia Y. Neuroprotection against hypoxia/ischemia: δ-opioid receptor-mediated cellular/molecular events. Cell Mol Life Sci 2013; 70:2291-303. [PMID: 23014992 PMCID: PMC11113157 DOI: 10.1007/s00018-012-1167-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 09/08/2012] [Accepted: 09/10/2012] [Indexed: 12/24/2022]
Abstract
Hypoxic/ischemic injury remains the most dreaded cause of neurological disability and mortality. Despite the humbling experiences due to lack of promising therapy, our understanding of the complex cascades underlying the neuronal insult has led to advances in basic science research. One of the most noteworthy has been the effect of opioid receptors, especially the delta-opioid receptor (DOR), on hypoxic/ischemic neurons. Our recent studies, and those of others worldwide, present strong evidence that sheds light on DOR-mediated neuroprotection in the brain, especially in the cortex. The mechanisms of DOR neuroprotection are broadly categorized as: (1) stabilization of the ionic homeostasis, (2) inhibition of excitatory transmitter release, (3) attenuation of disrupted neuronal transmission, (4) increase in antioxidant capacity, (5) regulation of intracellular pathways-inhibition of apoptotic signals and activation of pro-survival signaling, (6) regulation of specific gene and protein expression, and (7) up-regulation of endogenous opioid release and/or DOR expression. Depending upon the severity and duration of hypoxic/ischemic insult, the release of endogenous opioids and DOR expression are regulated in response to the stress, and DOR signaling acts at multiple levels to confer neuronal tolerance to harmful insult. The phenomenon of DOR neuroprotection offers a potential clue for a promising target that may have significant clinical implications in our quest for neurotherapeutics.
Collapse
Affiliation(s)
- Xiaozhou He
- The Third Clinical College of Suzhou University, Changzhou, Jiangsu China
| | - Harleen K. Sandhu
- The Vivian L Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, 77030 TX USA
| | - Yilin Yang
- The Third Clinical College of Suzhou University, Changzhou, Jiangsu China
| | - Fei Hua
- The Third Clinical College of Suzhou University, Changzhou, Jiangsu China
| | - Nathalee Belser
- The Vivian L Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, 77030 TX USA
| | - Dong H. Kim
- The Vivian L Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, 77030 TX USA
| | - Ying Xia
- The Vivian L Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, 77030 TX USA
| |
Collapse
|
24
|
Liu X, Ye M, An C, Pan L, Ji L. The effect of cationic albumin-conjugated PEGylated tanshinone IIA nanoparticles on neuronal signal pathways and neuroprotection in cerebral ischemia. Biomaterials 2013; 34:6893-905. [PMID: 23768781 DOI: 10.1016/j.biomaterials.2013.05.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/12/2013] [Indexed: 01/01/2023]
Abstract
Targeted treatment of ischemic stroke remains problem due to the complex pathogenesis of this disease and the difficulty in drug delivery across the blood-brain barrier (BBB). In the present study, the delivery efficiency of cationic bovine serum albumin-conjugated tanshinone IIA PEGylated nanoparticles (CBSA-PEG-TIIA-NPs) in rat brain was investigated. We further explored whether the protective mechanism of CBSA-PEG-TIIA-NPs in cerebral ischemia was associated with modulating neuronal signaling pathways. The experimental cerebral ischemia model was established to evaluate the treatment efficacy of CBSA-PEG-TIIA-NPs. The pharmacokinetics demonstrated that CBSA-PEG-TIIA-NPs could obviously prolong circulation time and increase plasma concentration compared with intravenously administrated TIIA solution. The biodistribution and brain uptake study confirmed that CBSA-PEG-TIIA-NPs possessed better brain delivery efficacy with a high drug accumulation and fluorescence quantitative level in brain. CBSA-PEG-TIIA-NPs effectively reduced infarction volume, neurological dysfunctions, neutrophils infiltration and neuronal apoptosis. Moreover, CBSA-PEG-TIIA-NPs significantly suppressed the expression of pro-inflammatory cytokines TNF-α and IL-8; upregulated the expression of anti-inflammatory cytokines IL-10 and increase TGF-β1 level in the ischemic brain. In addition, treatment with CBSA-PEG-TIIA-NPs markedly inhibited the mRNA expressions of GFAP, MMP-9, COX-2, p38MAPK, ERK1/2 and JNK, downregulated the protein levels of GFAP, MMP-9 and COX-2, as well as decreased the phosphorylation of ERK1/2, p38MAPK and JNK. These results demonstrated that CBSA-PEG-TIIA-NPs displayed remarkable neuroprotective effects on ischemic stroke through modulation of MAPK signal pathways involved in the cascades of neuroinflammation.
Collapse
Affiliation(s)
- Xin Liu
- College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China.
| | | | | | | | | |
Collapse
|
25
|
Yuan D, Huang J, Yuan X, Zhao J, Jiang W. Zinc finger protein 667 expression is upregulated by cerebral ischemic preconditioning and protects cells from oxidative stress. Biomed Rep 2013; 1:534-538. [PMID: 24648981 DOI: 10.3892/br.2013.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/25/2013] [Indexed: 12/14/2022] Open
Abstract
Brain ischemic injury is associated with clinical emergencies such as acute ischemic and hemorrhagic stroke, head trauma, prolonged severe hypotension and cardiac arrest. Ischemic preconditioning (IPC) is the most powerful endogenous mechanism against ischemic injury. However, the majority of IPC treatments are invasive and thus impractical in the clinical setting. Identifying the endogenous neuroprotective mechanism induced by IPC is important for developing new strategies to reduce stroke severity. Zinc finger protein 667 (ZNF667) is a novel zinc finger protein that is upregulated by myocardial IPC. However, its functional role in neuronal ischemia has not been elucidated. In this study, the changes of ZNF667 expression on cerebral IPC and its potential neuroprotective function were investigated. The cerebral ischemia model was established by ameliorated four-vessel occlusion in rats. The northern blot results demonstrated that ZNF667 expression was increased in the hippocampus and cortex at 12 and 24 h after cerebral ischemic pretreatment. To investigate the neuroprotective function of ZNF667, enhanced green fluorescent protein (EGFP)-ZNF667 fusion protein was expressed in C2C12 and brain astrocytoma cells and its subcellular localization was detected by confocal microscopy. EGFP-ZNF667 fusion proteins were localized in the nucleus of C2C12 and brain astrocytoma cells, indicating that ZNF667 may act as a transcription factor in neural cells. To mimic oxidative stress associated with ischemia/reperfusion injury, hydrogen peroxide (H2O2) was used to treat cells. Cell viability was measured by the lactate dehydrogenase (LDH) and WST-1 assays. A decrease in viability was detected in C2C12 and astrocytoma cells following H2O2 treatment, whereas ZNF667 gene overexpression significantly improved cell viability following H2O2 treatment. These results suggested that ZNF667 plays a neuroprotective role by acting as a transcription factor in cerebral IPC.
Collapse
Affiliation(s)
- Dun Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xianrui Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Weixi Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
26
|
Neuroprotective effects of ischemic preconditioning and postconditioning on global brain ischemia in rats through the same effect on inhibition of apoptosis. Int J Mol Sci 2012; 13:6089-6101. [PMID: 22754351 PMCID: PMC3382765 DOI: 10.3390/ijms13056089] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/03/2012] [Accepted: 05/14/2012] [Indexed: 12/22/2022] Open
Abstract
Transient forebrain or global ischemia induces neuronal death in vulnerable CA1 pyramidal cells with many features. A brief period of ischemia, i.e., ischemic preconditioning, or a modified reperfusion such as ischemic postconditioning, can afford robust protection of CA1 neurons against ischemic challenge. Therefore, we investigated the effect of ischemic preconditioning and postconditioning on neural cell apoptosis in rats. The result showed that both ischemic preconditioning and postconditioning may attenuate the neural cell death and DNA fragment in the hippocampal CA1 region. Further western blot study suggested that ischemic preconditioning and postconditioning down-regulates the protein of cleaved caspase-3, caspase-6, caspase-9 and Bax, but up-regulates the protein Bcl-2. These findings suggest that ischemic preconditioning and postconditioning have a neuroprotective role on global brain ischemia in rats through the same effect on inhibition of apoptosis.
Collapse
|
27
|
Possible Involvement of Oxidative Stress and Inflammatory Mediators in the Protective Effects of the Early Preconditioning Window Against Transient Global Ischemia in Rats. Neurochem Res 2011; 37:614-21. [DOI: 10.1007/s11064-011-0651-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/01/2011] [Accepted: 11/04/2011] [Indexed: 01/25/2023]
|
28
|
|