1
|
Abdi-Moghadam Z, Mazaheri Y, Rezagholizade-shirvan A, Mahmoudzadeh M, Sarafraz M, Mohtashami M, Shokri S, Ghasemi A, Nickfar F, Darroudi M, Hossieni H, Hadian Z, Shamloo E, Rezaei Z. The significance of essential oils and their antifungal properties in the food industry: A systematic review. Heliyon 2023; 9:e21386. [PMID: 37954273 PMCID: PMC10637975 DOI: 10.1016/j.heliyon.2023.e21386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Essential oils (EOs) are natural products called volatile oils or aromatic and ethereal oils derived from various parts of plants. They possess antioxidant and antimicrobial properties, which offer natural protection against a variety of pathogens and spoilage microorganisms. Studies conducted in the last decade have demonstrated the unique applications of these compounds in the fields of the food industry, agriculture, and skin health. This systematic article provides a summary of recent data pertaining to the effectiveness of EOs and their constituents in combating fungal pathogens through diverse mechanisms. Antifungal investigations involving EOs were conducted on multiple academic platforms, including Google Scholar, Science Direct, Elsevier, Springer, Scopus, and PubMed, spanning from April 2000 to October 2023. Various combinations of keywords, such as "essential oil," "volatile oils," "antifungal," and "Aspergillus species," were used in the search. Numerous essential oils have demonstrated both in vitro and in vivo antifungal activity against different species of Aspergillus, including A. niger, A. flavus, A. parasiticus, A. fumigatus, and A. ochraceus. They have also exhibited efficacy against other fungal species, such as Penicillium species, Cladosporium, and Alternaria. The findings of this study offer novel insights into inhibitory pathways and suggest the potential of essential oils as promising agents with antifungal and anti-mycotoxigenic properties. These properties could make them viable alternatives to conventional preservatives, thereby enhancing the shelf life of various food products.
Collapse
Affiliation(s)
- Zohreh Abdi-Moghadam
- Department of Food Science and Nutrition, Faculty of Medicine Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Yeganeh Mazaheri
- Department of Environmental Health Engineering, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Mahmoudzadeh
- Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mansour Sarafraz
- School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahnaz Mohtashami
- Department of Biology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Samira Shokri
- Department of Environmental Health Engineering, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ghasemi
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Farshid Nickfar
- University of Applied Science and Technology, Center of Cheshme noshan khorasan (Alis), Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hedayat Hossieni
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Hadian
- Research Department of Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Shamloo
- Department of Food Science and Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Zeinab Rezaei
- University of Applied Science and Technology, Center of Cheshme noshan khorasan (Alis), Iran
| |
Collapse
|
2
|
Hlebová M, Foltinová D, Vešelényiová D, Medo J, Šramková Z, Tančinová D, Mrkvová M, Hleba L. The Vapor Phase of Selected Essential Oils and Their Antifungal Activity In Vitro and In Situ against Penicillium commune, a Common Contaminant of Cheese. Foods 2022; 11:3517. [PMID: 36360130 PMCID: PMC9655813 DOI: 10.3390/foods11213517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 10/13/2023] Open
Abstract
This study aimed to determine the in vitro and in situ antifungal activity of (14) selected essential oils (EOS), namely clove, thyme, red thyme, litsea, eucalyptus, niaouli, fennel, anise, cumin, basil, rosemary, sage, bergamot mint, and marjoram, by vapor contact against the growth of two strains of Penicillium commune (KMi-183 and KMi-402). Furthermore, to exclude the negative effect of EOs on the lactic acid bacteria (LABs) (Streptococcus spp.) on cheeses, their influence was monitored. Next, the sensory evaluation of cheese treated by EOs was evaluated. The results show that litsea and clove EOs were the most effective in the vapor phase against both tested strains. These EOs were characterized by the highest amount of α- (40.00%) and β-Citral (34.35%) in litsea and eugenol (85.23%) in clove. The antitoxicogenic activity of less effective (in growth inhibition) EOs on cyclopiazonic acid (CPA) production by the tested strains was also observed. The growth of Streptococcus spp. (ranging from 8.11 to 9.69 log CFU/g) was not affected by the EOs in treated cheese. Even though the evaluators recognized some EOs in sensory evaluation by the triangle test, they did not have a negative effect on the taste and smell of the treated cheeses and were evaluated as edible. The antifungal activity of EOs against several types of microscopic fungi and their effect on the sensory properties of treated foods needs to be further tested to achieve the most effective protection of foods from their direct contaminants.
Collapse
Affiliation(s)
- Miroslava Hlebová
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia
| | - Denisa Foltinová
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, SK-94976 Nitra, Slovakia
| | - Dominika Vešelényiová
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia
| | - Juraj Medo
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, SK-94976 Nitra, Slovakia
| | - Zuzana Šramková
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia
| | - Dana Tančinová
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, SK-94976 Nitra, Slovakia
| | - Michaela Mrkvová
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia
| | - Lukáš Hleba
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, SK-94976 Nitra, Slovakia
| |
Collapse
|
3
|
Heat-denatured and alcalase-hydrolyzed protein films/coatings containing marjoram essential oil and thyme extract. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Hlebová M, Hleba L, Medo J, Uzsakova V, Kloucek P, Bozik M, Haščík P, Čuboň J. Antifungal and Antitoxigenic Effects of Selected Essential Oils in Vapors on Green Coffee Beans with Impact on Consumer Acceptability. Foods 2021; 10:2993. [PMID: 34945545 PMCID: PMC8701977 DOI: 10.3390/foods10122993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
The main objective of this study is to evaluate the effect of selected essential oils thyme chemotype linalool (Thymus zygis L.), thyme chemotype tymol (Thymus vulgaris L.), eucalyptus (Eucalyptus globulus Labill.), lavender (Lavandula angustifolia Mill.), mint (Mentha piperita L.), almond (Prunbus dulcis Mill.), cinnamon bark (Cinnamomum zeylanicum Nees), litsea (Litsea cubeba Lour. Pers), lemongrass (Cympogon citrati L. Stapf), and ginger (Zingiber officinalis Rosc.) in the vapor phase on growth, sporulation, and mycotoxins production of two Aspergillus strains (Aspergillus parasiticus CGC34 and Aspergillus ochraceus CGC87), important postharvest pathogens of green and roasted coffee beans. Moreover, the effect of the essential oils (EOs) on the sensory profile of the coffee samples treated with EOs was evaluated. The major components of tested EOs were determined by gas chromatography and mass spectrometry (GC-MS) and gas chromatography with flame ionization detector (GC-FID). The results showed that almond, cinnamon bark, lemongrass, and litsea EOs are able to significantly inhibit the growth, sporulation, and mycotoxins production by toxigenic fungi. Sensory evaluation of coffee beans treated with EOs before and after roasting showed that some EOs (except lemongrass and litsea) do not adversely affect the taste and aroma of coffee beverages. Thus, application of the vapors of almond and cinnamon EOs appears to be an effective way that could serve to protect coffee during its transport and storage from toxigenic fungi.
Collapse
Affiliation(s)
- Miroslava Hlebová
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, 917 01 Trnava, Slovakia
| | - Lukas Hleba
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (L.H.); (J.M.); (V.U.)
| | - Juraj Medo
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (L.H.); (J.M.); (V.U.)
| | - Viktoria Uzsakova
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (L.H.); (J.M.); (V.U.)
| | - Pavel Kloucek
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague–Suchdol, Czech Republic; (P.K.); (M.B.)
| | - Matej Bozik
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague–Suchdol, Czech Republic; (P.K.); (M.B.)
| | - Peter Haščík
- Institute of Food science, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Juraj Čuboň
- Institute of Food science, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| |
Collapse
|
5
|
Hlebová M, Hleba L, Medo J, Kováčik A, Čuboň J, Ivana C, Uzsáková V, Božik M, Klouček P. Antifungal and synergistic activities of some selected essential oils on the growth of significant indoor fungi of the genus Aspergillus. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1335-1346. [PMID: 34705616 DOI: 10.1080/10934529.2021.1994801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The study aimed to assess the antifungal activity of twenty-five essential oils (EOs) and the potential synergistic activity of the most effective EOs against significant indoor fungi of the genus Aspergillus [A. fumigatus (KBio-122), A. flavus (KBio-134), A. terreus (KBio-145) and A. niger (KBio-202)]. The chemical composition of all EOs was evaluated by the gas chromatography coupled with mass spectrometry (GC/MS) and gas chromatography with flame ionization detector (GC-FID) analysis. The antifungal susceptibility of EOs was evaluated by using the broth microdilution method. The most effective EOs were selected to determine the minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs) at a concentration range from 256 to 0.125 μg/mL. For the synergistic activities, the most effective EOs were tested using the chessboard pattern. The most sensitive strain to treatments with essential oils alone and in the combination of EOs was A. flavus (KBio-134). The chessboard assay showed that combinations of lemongrass and thyme EOs proved the most potent synergistic antifungal activity (FICI = 0.1875) against A. fumigatus (KBio-122). The synergy displayed by a combination of some EOs may be used to control fungal growth or increasing resistance to available synthetic antifungals, consequently permitting the reduction of their most active doses.
Collapse
Affiliation(s)
- Miroslava Hlebová
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovak Republic
| | - Lukas Hleba
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Juraj Medo
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Anton Kováčik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Juraj Čuboň
- Institute of Food Science, Faculty of Biotechnology and Food Sciences, Nitra, Slovak Republic
| | - Charousová Ivana
- Clinical Microbiology Laboratory, UNILABS SLOVENSKO, s.r.o., Likavka, Slovak Republic
| | - Viktória Uzsáková
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovak Republic
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Matej Božik
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague 6 - Suchdol, Czech Republic
| | - Pavel Klouček
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague 6 - Suchdol, Czech Republic
| |
Collapse
|
6
|
Tančinová D, Foltínová D, Mašková Z, Štefániková J, Árvay J. Effect of essential oils of Myrtaceae plants on the Penicillium commune. POTRAVINARSTVO 2019. [DOI: 10.5219/1106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this research was to determine the inhibitory effect of vapor phase of five essential oils (EOs) on the growth of seven strains of Penicillium commune isolated from moldy milk products. Another objective was to determine the minimum inhibitory doses (in vitro and probit analyses) of EOs, which at concentration 625 μL.L-1 of air completely inhibited the growth of all strains. The antifungal activity was evaluated by the micro-atmosphere method. The essential oils used in this study were extract of plants from family Myrtaceae. Only one essential oil – clove (from Syzygium aromaticum L.; leaves) completely inhibited the growth of all strains during cultivation at 25 °C and 5 °C. Eucalyptus essential oil (from Eucaliptus globulus; leaves), tea tree essential oil (from Melaleuca alternifolia Cheel; leaves), cajeput essential oil (from Melaleuca leucadendra L.; leaves and twigs), niaouli essential oil (from Melaleuca quinquenervia (Cav.) S.T.Blake; leaves) have different effects on the growth of P. commune strains. The order of tested essential oils according to the inhibition effect on the growth of the strains of P. commune (from the strongest to the weakest effect) was: clove > tea tree > cajeput > niaouli > eucalyptus. Clove EO that completely inhibited the growth of all strains was used to determine minimum inhibitory doses (MIDs). The MIDs were 125 µL.L-1 of air for two strains of P. commune and 250 µL.L-1 of air for five strains of P. commune on the 7th and 14th day of cultivation, also. Using probit analysis, predicted MIDs90 and MIDs50 were calculated. The MIDs90 were determined from 104.93 to 301.37 µL.L-1 of air.
Collapse
|
7
|
Wińska K, Mączka W, Łyczko J, Grabarczyk M, Czubaszek A, Szumny A. Essential Oils as Antimicrobial Agents-Myth or Real Alternative? Molecules 2019; 24:molecules24112130. [PMID: 31195752 PMCID: PMC6612361 DOI: 10.3390/molecules24112130] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Herbs and the essential oils derived from them have been used from the beginning of human history for different purposes. Their beneficial properties have been applied to mask unpleasant odors, attract the attention of other people, add flavor and aroma properties to prepared dishes, perfumes, and cosmetics, etc. Herbs and essential oils (EOs) have also been used in medicine because of their biological properties, such as larvicidal action, analgesic and anti-inflammatory properties, antioxidant, fungicide, and antitumor activities, and many more. Many EOs exhibit antimicrobial properties, which is extremely important in fields of science and industry, such as medicine, agriculture, or cosmetology. Among the 250 EOs which are commercially available, about a dozen possess high antimicrobial potential. According to available papers and patents, EOs seem to be a potential alternative to synthetic compounds, especially because of the resistance that has been increasingly developed by pathogenic microorganisms. In this review we summarize the latest research studies about the most-active EOs that are known and used because of their antimicrobial properties. Finally, it is noteworthy that the antimicrobial activities of EOs are not preeminent for all strains. Further investigations should, thus, focus on targeting EOs and microorganisms.
Collapse
Affiliation(s)
- Katarzyna Wińska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Wanda Mączka
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Jacek Łyczko
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Małgorzata Grabarczyk
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Anna Czubaszek
- Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37/41, 51-630 Wrocław, Poland.
| | - Antoni Szumny
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| |
Collapse
|
8
|
Tančinová D, Mašková Z, Denisa Foltinová D, Štefániková J, Árvay J. Effect of essential oils of Lamiaceae plants on the Rhizopus spp. POTRAVINARSTVO 2018. [DOI: 10.5219/921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to evaluate the fungicidal effect of eleven essential oils against six isolates of the genus Rhizopus. Isolates were obtained from various moldy foods (chestnut, bread, strawberry, nectarine, blackberry and cherry tomatoes). The essential oils used in this study were extracts of basil (Oscimum basilicum L.), hyssop (Hyssopus officinalis L.), lavender (Lavandula angustifolia MILLER.), marjoram (Origanum majorana L.), mint (Mentha piperita L.), oregano (Origanum vulgare L.), rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.), summer savory (Satureja hortensis L.), thyme (Thymus vulgaris L.) and wild thyme (Thymus serpyllum L.). Semi-quantitative composition of the essential oil samples was determined by gas chromatography coupled with mass spectrometry (GC-MS). The GC-MS analyses of the essential oils led to identification of 139 compounds, of which 49 were presented in ≥1% amount in at least one essential oil. The antifungal activity of essential oils against the Rhizopus spp. was determined, using micro-atmosphere method (0.625 μL.ml-1 of air), during 7 days. Seven essential oils: thyme, mint, summer savory, lavender, marjoram, oregano and wild thyme completely inhibited the growth of all isolates. Other essential oils have different effects on the growth of isolates. Basil essential oil stimulated growth of two isolates on the second day of cultivation. The growth of other isolates was, by contrast, inhibited by this essential oil in the same time of cultivation. Hyssop essential oil completely inhibited growth of two isolates, other 4 isolates were inhibited to fourth day of cultivation. In conclusion, certain essential oils are highly effective in vapour phase and can be used in another test of their antifungal activity and could be used in control of Rhizopus spp. or other fungal pathogens.
Collapse
|
9
|
Shelepova O, Vinogradova Y, Zaitchik B, Ruzhitsky A, Grygorieva O, Brindza J. Constituents of the essential oil in Solidago canadensis L. from Eurasia. POTRAVINARSTVO 2018. [DOI: 10.5219/847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydro distilled essential oils in air-dry samples of aerial parts of Solidago canadensis L., (Asteraceae) from eight local invasive populations were investigated by GC-MS analysis. A comparative study on quantity and composition of the essential oils obtained from plants, growing in different ecological and climatic conditions, ontogenesis phase and different plant organs was carried out The major compounds detected in oil samples of S. canadensis were α-pinene (1.3 - 61.27%), limonene (0.5 - 22.5%), bornyl acetat (3.4 - 29.8%) and germacrene D (1.8 - 39.2%). Samples from inflorescences contained the maximal percentage of monoterpene hydrocarbons, while the leaves' samples showed the maximal cumulative percentage of sesquiterpene and monoterpene hydrocarbons. Data obtained from our studies confirm the availability of alien invasive species Solidago canadensis for medicine and many other purposes. The variability of the qualitative and quantitative composition of essential oils in different geographical locations will allow futher selection of form containing the maximum amount of active substances.
Collapse
|
10
|
Ozcakmak S, Gul O. Inhibition kinetics of Penicillium verrucosum using different essential oils and application of predictive inactivation models. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1308953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sibel Ozcakmak
- Samsun Directorate of Provincial Food Agriculture and Livestock, Samsun, Turkey
| | - Osman Gul
- Yeşilyurt Demir–Çelik Vocational School, Department of Food Processing, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
11
|
Foltinová D, Tančinová D, Císarová M. Influence of essential oils on the growth of aspergillus flavus. POTRAVINARSTVO 2017. [DOI: 10.5219/725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This paper was focused on the determination of the inhibitory effect of selected essential oils on growth of ten isolates of Aspergillus flavus and their potential ability to produce mycotoxins in vitro by TLC method. The isolates were obtained from moldy bread of domestic origin. We followed the impact of five essential oils at 100% concentration - lemon, eucalyptus, oregano, sage and thyme. The effect of the essential oils we tested the gaseous diffusion method. We isolates grown on CYA (Czapek yeast extract agar), in the dark at 25 ±1 °C, 14 days. The diameter of colonies grown we continuously measured on the 3rd, 7th, 11th, and 14th day of cultivation. The results of the paper suggest that oregano and thyme essential oil had 100% inhibited the growth of all tested isolates of Aspergillus flavus. Lemon, eucalyptus and sage essential oil had not significant inhibitory effects on tested isolates Aspergillus flavus, but affected the growth of colonies throughout the cultivation. In addition to the inhibitory effect we witnessed the stimulative effect of lemon, eucalyptus and sage essential oil to some isolates. Together with the antifungal effect of essential oils, we monitored the ability of Aspergillus flavus isolates to produce mycotoxins - aflatoxin B1 (AFB1) and cyclopiazonic acid (CPA) in the presence of essential oils. Production mycotoxins we have seen in the last (14th) day of cultivation. Lemon and eucalyptus essential oil did not affect the production of mycotoxins. In the case of sage essential oil we were recorded cyclopiazonic acid production in three of the ten isolates from the all three repetitions, while neither isolate did not produced aflatoxin B1. The production of secondary metabolites was detected in all control samples. From the results we can say that oregano and thyme essential oil could be used as a natural preservative useful in the food industry.
Collapse
|
12
|
Ozcakmak S, Gul O, Dervisoglu M, Yilmaz A, Sagdic O, Arici M. Comparison of the Effect of Some Essential Oils on the Growth ofPenicillium verrucosumand its Ochratoxin a Production. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.13006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sibel Ozcakmak
- Directorate of Provincial Food Agriculture and Livestock; Samsun Turkey
| | - Osman Gul
- Department of Food Processing, Yeşilyurt Demir-Çelik Vocational School; Ondokuz Mayis University; Samsun Turkey
| | - Muhammet Dervisoglu
- Department of Food Engineering, Engineering Faculty; Ondokuz Mayis University; Samsun Turkey
| | - Azime Yilmaz
- Department of Bioengineering, Chemical and Metallurgical Engineering Faculty; Yildiz Technical University; Istanbul Turkey
| | - Osman Sagdic
- Department of Food Engineering, Chemical and Metallurgical Engineering Faculty; Yildiz Technical University; Istanbul Turkey
| | - Muhammet Arici
- Department of Food Engineering, Chemical and Metallurgical Engineering Faculty; Yildiz Technical University; Istanbul Turkey
| |
Collapse
|