1
|
Qian J, Fang Z, Chang S, Zeng Z, Zhang J. Effectiveness and safety study of formula containing probiotics, prebiotics, synbiotics on fullterm infants' growth - a systematic review and meta-analysis of randomized controlled study. Eur J Clin Nutr 2024:10.1038/s41430-024-01506-9. [PMID: 39448812 DOI: 10.1038/s41430-024-01506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND AND OBJECTIVE Probiotics, prebiotics, and synbiotics, are hot topics of research and have been shown to improve the body's disease state and promote health. Analysis of whether infant formula containing probiotcs, prebiotics, synbiotics is beneficial to infant and child growth. METHODS We systematically searched multiple electronic databases (PubMed, Web of Science, The Cochrane Library, Embase) to identify eligible studies published from 1966 to December 25, 2022. Included studies were randomized controlled trials (RCTs) studying the influence of milk powder containing probiotcs, prebiotics, synbiotics on infants and children's growth. RevMan 5.4 was used to analyze the data. RESULTS A total of 55 RCTs with a total sample size of 8868 participants met the inclusion criteria. Milk powder with probiotics, prebiotics, synbiotics does not significantly improve the growth of infants and children (Weight, height, BMI, and Head Circumference); The incidence of minor adverse events (OR 0.88, 95% CI 0.70-1.11 P = 0.28) and serious adverse events (OR 0.92, 95% CI 0.62-1.36 P = 0.67) was also comparable to the control group; The intestinal microbial diversity of infants consuming probiotcs, prebiotics, synbiotics supplemented formula was lower than that of infants consuming formula without probiotcs, prebiotics, synbiotics (SMD -0.88, 95% CI -1.66- -0.1 P = 0.03), but the abundance of individual beneficial flora was increased. (SMD 1.62, 95%CI 0.61-2.62 P = 0.002). In particular, the abundance of Lactobacillus (SMD 1.62, 95% CI 0.61-2.62 P = 0.002). For metabolites, synbiotics increased fecal antibody concentrations (SMD 0.47, 95% CI 0.08-0.86 P = 0.02), but fecal short-chain fatty acid concentrations remained balanced in both groups (SMD 0.05 95% CI -0.17-0.28 P = 0.64). Compared to the control group, infants who consumed formula with prebiotics had softer stools (SMD -1.47, 95% CI -2.23 to -0.7 P = 0.002) and lower stool pH (SMD -0.82, 95% CI -1.15- -0.5 P < 0.00001), there is also more frequency of bowel movements (SMD 0.27, 95% CI 0.09-0.44 P = 0.002). CONCLUSIONS Probiotcs, prebiotics, synbiotics supplemented formulas significantly increased abundance of individual probiotics, alter intestinal antibody secretion, and improve bowel movements. Incidence of adverse reactions did not differ between the two groups. So we can choose formula-supplemented probiotcs, prebiotics, synbiotics to maintain the intestinal health of infants.
Collapse
Affiliation(s)
- Jiafen Qian
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Zongwei Fang
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Sijie Chang
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Zhiwei Zeng
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Jinhua Zhang
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Li Z, Xu Q, Huangfu N, Cui H. The effect and mechanism of inulin on atherosclerosis is mediated by the characteristic intestinal flora and metabolites. Coron Artery Dis 2024; 35:498-508. [PMID: 38767579 DOI: 10.1097/mca.0000000000001377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
BACKGROUND Inflammation and hyperlipidemia can cause atherosclerosis. Prebiotic inulin has been proven to effectively reduce inflammation and blood lipid levels. Utilizing a mouse model induced by a high-fat diet, this study aimed to explore whether the characteristic intestinal flora and its metabolites mediate the effects of inulin intervention on atherosclerosis and to clarify the specific mechanism. METHODS Thirty apolipoprotein E-deficient (ApoE-/-) mice were randomly divided into three groups. They were fed with a normal diet, a high-fat diet or an inulin+high-fat diet for 16 weeks. The total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) in the three groups were compared. The gross aorta and aortic sinus of mice were stained with oil red O, and the area of atherosclerotic plaque was observed and compared. The diversity and structure of the mouse fecal flora were detected by sequencing the V3-V4 region of the 16S rRNA gene, and the levels of metabolites in mouse feces were assessed by gas chromatography-mass spectrometry. The plasma lipopolysaccharide (LPS) levels and aortic inflammatory factors were measured by multi-index flow cytometry (CBA). RESULTS ApoE-/- mice fed with the high-fat diet exhibited an increase of approximately 46% in the area of atherosclerotic lesions, and the levels of TC, TG and LDL-C were significantly increased ( P < 0.05) compared with levels in the normal diet group. After inulin was added to the high-fat group, the area of atherosclerotic lesions, the level of serum LPS and aortic inflammation were reduced, and the levels of TC, TG and LDL-C were decreased ( P < 0.05). Based on 16S rRNA gene detection, we found that the composition of the intestinal microbiota, such as Prevotella, and metabolites, such as L-arginine, changed significantly due to hyperlipidemia, and the dietary inulin intervention partially reversed the relevant changes. CONCLUSION Inulin can inhibit the formation of atherosclerotic plaques, which may be related to the changes in lipid metabolism, the composition of the intestinal microbial community and its metabolites, and the inhibition of the expression of related inflammatory factors. Our study identified the relationships among the characteristic intestinal microbiota, metabolites and atherosclerosis, aiming to provide a new direction for future research to delay or treat atherosclerosis by changing the composition and function of the host intestinal microbiota and metabolites.
Collapse
Affiliation(s)
| | - Qingqing Xu
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | | | | |
Collapse
|
3
|
An R, Zhou X, He P, Lyu C, Wang D. Inulin mitigated antibiotic-induced intestinal microbiota dysbiosis - a comparison of different supplementation stages. Food Funct 2024; 15:5429-5438. [PMID: 38644728 DOI: 10.1039/d3fo05186b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Antibiotics are unavoidable to be prescribed to subjects due to different reasons, and they decrease the relative abundance of beneficial microbes. Inulin, a fructan type of polysaccharide carbohydrate, on the contrary, could promote the growth of beneficial microbes. In this study, we investigated the effect of inulin on antibiotic-induced intestinal microbiota dysbiosis and compared their overall impact at different supplementation stages, i.e., post-antibiotic, at the time of antibiotic administration or prior to antibiotic treatment, in the C57BL/6 mice model. Although supplementation of inulin after antibiotic treatment could aid in the reconstruction of the intestinal microbial community its overall impact was limited and no remarkable differences were identified as compared to the spontaneous restoration. On the contrary, the effect of simultaneous and pre-supplementation was more remarkable. Simultaneous inulin supplementation significantly mitigated the antibiotic-induced dysbiosis based on alterations as evaluated using weighted and unweighted UniFrac distance between baseline and after treatment. Moreover, comparing the effect of simultaneous supplementation, pre-supplemented inulin further mitigated the antibiotic-induced dysbiosis, especially on the relative abundance of dominant microbes. Collectively, the current study found that the use of inulin could alleviate antibiotic-induced microbiota dysbiosis, and the best supplementation stage (overall effect as evaluated by beta diversity distance changes) was before the antibiotic treatment, then simultaneous supplementation and supplementation after the antibiotic treatment.
Collapse
Affiliation(s)
- Ran An
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| | - Xilong Zhou
- State Key Laboratory of Dairy Biotechnology, Dairy Research Institute, Bright Dairy and Food Co., Ltd, Shanghai, China
| | - Penglin He
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| | - Chenang Lyu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Park J, Wickramasinghe S, Mills DA, Lönnerdal BL, Ji P. Iron Fortification and Inulin Supplementation in Early Infancy: Evaluating the Impact on Iron Metabolism and Trace Mineral Status in a Piglet Model. Curr Dev Nutr 2024; 8:102147. [PMID: 38645881 PMCID: PMC11026733 DOI: 10.1016/j.cdnut.2024.102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
Background Infant formula in the United States contains abundant iron, raising health concerns about excess iron intake in early infancy. Objectives Using a piglet model, we explored the impact of high iron fortification and prebiotic or synbiotic supplementation on iron homeostasis and trace mineral bioavailability. Methods Twenty-four piglets were stratified and randomly assigned to treatments on postnatal day 2. Piglets were individually housed and received an iron-adequate milk diet (AI), a high-iron milk diet (HI), HI supplemented with 5% inulin (HI with a prebiotic [HIP]), or HIP with an oral gavage of Ligilactobacillus agilis YZ050, an inulin-fermenting strain, every third day (HI with synbiotic [HIS]). Milk was provided in 14 meals daily, mimicking formula feeding in infants. Fecal consistency score and body weight were recorded daily or every other day. Blood and feces were sampled weekly, and tissues collected on postnatal day 29. Data were analyzed using mixed model analysis of variance with repeated measures whenever necessary. Results Diet did not affect growth. HI increased hemoglobin, hematocrit, and serum iron compared to AI. Despite marginal adequacy, AI upregulated iron transporter genes and maintained satisfactory iron status in most pigs. HI upregulated hepcidin gene expression in liver, caused pronounced tissue iron deposition, and markedly increased colonic and fecal iron. Inulin supplementation, regardless of L. agilis YZ050, not only attenuated hepatic iron overload but also decreased colonic and fecal iron without altering pH or the expression of iron regulatory genes. HI lowered zinc (Zn) and copper (Cu) in the duodenum and liver compared to AI, whereas HIP and HIS further decreased Zn and Cu in the liver and diminished colonic and fecal trace minerals. Conclusions Early-infancy excessive iron fortification causes iron overload and compromises Zn and Cu absorption. Inulin decreases trace mineral absorption likely by enhancing gut peristalsis and stool frequency.
Collapse
Affiliation(s)
- Jungjae Park
- Department of Nutrition, University of California Davis, CA, United States
| | - Saumya Wickramasinghe
- Department of Food Science and Technology, University of California Davis, CA, United States
| | - David A. Mills
- Department of Food Science and Technology, University of California Davis, CA, United States
| | - Bo L. Lönnerdal
- Department of Nutrition, University of California Davis, CA, United States
| | - Peng Ji
- Department of Nutrition, University of California Davis, CA, United States
| |
Collapse
|
5
|
An R, Zhou X, Zhang J, Yang Y, Lyu C, Wang D. Restoration of Intestinal Microbiota After Inulin Supplementation Halted: The Secondary Effect of Supplemented Inulin. Mol Nutr Food Res 2024; 68:e2400033. [PMID: 38483096 DOI: 10.1002/mnfr.202400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Indexed: 04/17/2024]
Abstract
SCOPE Consumption of inulin could affect the intestinal microbiota composition. Hereby, it is aimed to investigate the intestinal microbial community restoration process when the inulin supplementation is terminated (i.e., the secondary effect). METHODS AND RESULTS The current study investigates the response and restoration of intestinal microbiota to/after high (Inulin-H) and low (Inulin-L) dosage of inulin supplementation or sequential antibiotics and inulin (Anti-Inulin-L) supplementation, based on analysis of 16S rRNA gene sequences in C57BL/6 mice. The number of significantly changed genera in response to inulin is highest in Anti-Inulin-L (n = 66) group, followed by Inulin-H (n = 51) and Inulin-L (n = 38) group. After inulin supplementation stops, microbiota of all studied groups tend to recover to their original states, with highest percentage of inulin-responding microbes stay significantly different at Anti-Inulin-L (93.94%) group, followed by Inulin-H (74.51%) and Inulin-L (44.12%) groups. Of note, the relative abundance of some non-inulin-responding taxa significantly increases during restoration. CONCLUSION Sequential antibiotics and inulin supplementation induce greatest changes in the intestinal microbial composition, followed by high and low dosage of inulin. Additionally, the changes induce by supplemented inulin in the intestinal microbial community, provide a chance for some microbes to outcompete the other microbes during the spontaneous restoration.
Collapse
Affiliation(s)
- Ran An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan 800, Shanghai, 200240, China
| | - Xilong Zhou
- State Key Laboratory of Dairy Biotechnology, Dairy Research Institute, Bright Dairy and Food Co., Ltd, Shanghai, China, Jiangchang West Road 1518, Shanghai, 200436, China
| | - Jing Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan 800, Shanghai, 200240, China
| | - Yaqi Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan 800, Shanghai, 200240, China
| | - Chengang Lyu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan 800, Shanghai, 200240, China
| | - Dapeng Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan 800, Shanghai, 200240, China
| |
Collapse
|
6
|
Momo Cabrera P, Rachmühl C, Derrien M, Bourdet-Sicard R, Lacroix C, Geirnaert A. Comparative prebiotic potential of galacto- and fructo-oligosaccharides, native inulin, and acacia gum in Kenyan infant gut microbiota during iron supplementation. ISME COMMUNICATIONS 2024; 4:ycae033. [PMID: 38774131 PMCID: PMC11107946 DOI: 10.1093/ismeco/ycae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/10/2024] [Indexed: 05/24/2024]
Abstract
Iron fortification to prevent anemia in African infants increases colonic iron levels, favoring the growth of enteropathogens. The use of prebiotics may be an effective strategy to reduce these detrimental effects. Using the African infant PolyFermS gut model, we compared the effect of the prebiotics short-chain galacto- with long-chain fructo-oligosaccharides (scGOS/lcFOS) and native inulin, and the emerging prebiotic acacia gum, a branched-polysaccharide-protein complex consisting of arabinose and galactose, during iron supplementation on four Kenyan infant gut microbiota. Iron supplementation did not alter the microbiota but promoted Clostridioides difficile in one microbiota. The prebiotic effect of scGOS/lcFOS and inulin was confirmed during iron supplementation in all investigated Kenyan infant gut microbiota, leading to higher abundance of bifidobacteria, increased production of acetate, propionate, and butyrate, and a significant shift in microbiota composition compared to non-supplemented microbiota. The abundance of the pathogens Clostridium difficile and Clostridium perfringens was also inhibited upon addition of the prebiotic fibers. Acacia gum had no effect on any of the microbiota. In conclusion, scGOS/lcFOS and inulin, but not acacia gum, showed a donor-independent strong prebiotic potential in Kenyan infant gut microbiota. This study demonstrates the relevance of comparing fibers in vitro prior to clinical studies.
Collapse
Affiliation(s)
- Paula Momo Cabrera
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Carole Rachmühl
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Muriel Derrien
- Danone Global Research & Innovation Center, 91190 Gif sur Yvette, France
- Present address: Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute KU, 3000 Leuven, Belgium
| | | | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Annelies Geirnaert
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
7
|
Nagy DU, Sándor-Bajusz KA, Bódy B, Decsi T, Van Harsselaar J, Theis S, Lohner S. Effect of chicory-derived inulin-type fructans on abundance of Bifidobacterium and on bowel function: a systematic review with meta-analyses. Crit Rev Food Sci Nutr 2023; 63:12018-12035. [PMID: 35833477 DOI: 10.1080/10408398.2022.2098246] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Inulin-type fructans are considered to stimulate the growth of beneficial microorganisms, like Bifidobacterium in the gut and support health. However, both the fructan source and chemical structure may modify these effects. A systematic review was conducted to assess the effects of chicory-derived inulin-type fructans consumed either in specific foods or as dietary supplements on abundance of Bifidobacterium in the gut and on health-related outcomes. Three electronic databases and two clinical trial registries were systematically searched until January 2021. Two authors independently selected randomized controlled trials that investigated with a protocol of minimum seven days supplementation the effect of chicory-derived inulin-type fructans on Bifidobacterium abundance in any population. Meta-analyses with random-effects model were conducted on Bifidobacterium abundance and bowel function parameters. We evaluated risk of bias using Cochrane RoB tool. Chicory-derived inulin-type fructans at a dose of 3-20 g/day significantly increased Bifidobacterium abundance in participants with an age range from 0 to 83 years (standardized mean difference: 0.83, 95% CI: 0.58-1.08; p < 0.01; 50 studies; 2525 participants). Significant bifidogenic effects were observed in healthy individuals and in populations with health impairments, except gastrointestinal disorders. Significant beneficial effects on bowel function parameters were observed in healthy subjects. Chicory-derived inulin-type fructans may have significant bifidogenic effects and may beneficially influence bowel function in healthy individuals. PROSPERO registration number CRD42020162892.
Collapse
Affiliation(s)
- Dávid U Nagy
- Department of Paediatrics, Clinical Center of the University of Pécs, Medical School, University of Pécs, Pécs, Hungary
- Institute of Geobotany/Plant Ecology, Martin-Luther-University, Halle (Saale), Germany
| | - Kinga Amália Sándor-Bajusz
- Department of Paediatrics, Clinical Center of the University of Pécs, Medical School, University of Pécs, Pécs, Hungary
| | - Blanka Bódy
- Department of Paediatrics, Clinical Center of the University of Pécs, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Decsi
- Department of Paediatrics, Clinical Center of the University of Pécs, Medical School, University of Pécs, Pécs, Hungary
| | | | - Stephan Theis
- BENEO-Institute, c/o BENEO GmbH, Obrigheim, (Germany)
| | - Szimonetta Lohner
- Department of Public Health Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
8
|
Baaleman DF, Wegh CAM, de Leeuw TJM, van Etten-Jamaludin FS, Vaughan EE, Schoterman MHC, Belzer C, Smidt H, Tabbers MM, Benninga MA, Koppen IJN. What are Normal Defecation Patterns in Healthy Children up to Four Years of Age? A Systematic Review and Meta-Analysis. J Pediatr 2023; 261:113559. [PMID: 37331467 DOI: 10.1016/j.jpeds.2023.113559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
OBJECTIVE To summarize available data on defecation frequency and stool consistency of healthy children up to age 4 in order to estimate normal references values. STUDY DESIGN Systematic review including cross-sectional, observational, and interventional studies published in English, that reported on defecation frequency and/or stool consistency in healthy children 0-4 years old. RESULTS Seventy-five studies were included with 16 393 children and 40 033 measurements of defecation frequency and/or stool consistency. Based on visual inspection of defecation frequency data, a differentiation was made between two age categories: young infants (0-14 weeks old) and young children (15 weeks-4 years old). Young infants had a mean defecation frequency of 21.8 per week (95 % CI, 3.9-35.2) compared with 10.9 (CI, 5.7-16.7) in young children (P < .001). Among young infants, human milk-fed (HMF) infants had the highest mean defecation frequency per week (23.2 [CI, 8.8-38.1]), followed by formula-fed (FF) infants (13.7 [CI 5.4-23.9]), and mixed-fed (MF) infants (20.7 [CI, 7.0-30.2]). Hard stools were infrequently reported in young infants (1.5%) compared with young children (10.5%), and a reduction in the frequency of soft/watery stools was observed with higher age (27.0% in young infants compared with 6.2% in young children). HMF young infants had softer stools compared with FF young infants. CONCLUSIONS Young infants (0-14 weeks old) have softer and more frequent stools compared with young children (15 weeks-4 years old).
Collapse
Affiliation(s)
- Desiree F Baaleman
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Carrie A M Wegh
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Tessa J M de Leeuw
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | | | | | | - Clara Belzer
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Merit M Tabbers
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc A Benninga
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ilan J N Koppen
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Chen K, Man S, Wang H, Gao C, Li X, Liu L, Wang H, Wang Y, Lu F. Dysregulation of intestinal flora: excess prepackaged soluble fibers damage the mucus layer and induce intestinal inflammation. Food Funct 2022; 13:8558-8571. [PMID: 35881465 DOI: 10.1039/d2fo01884e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soluble fiber is commonly used as a dietary supplement to improve intestinal flora, and many prepackaged products are sold in the market. However, whether these prepared soluble fibers are harmless for intestinal flora has not been systematically evaluated. Here, we assessed the dose-effect of fructooligosaccharides (FOSs) on obesity and intestinal flora using a mouse model. Gavage of low- and medium-dose FOS improved the microbiota in high-fat diet fed mice, but high-dose FOS leads to intestinal flatulence, diarrhea and flora disorders, including an increase in Akkermansia muciniphila and Clostridium difficile, which disrupt the mucus barrier and cause intestinal inflammation. Besides, a high dose of xylooligosaccharide by gavage induces symptoms similar to those of FOS in mice. These adverse effects can be alleviated by regulating intestinal flora. In addition, we experimentally proved that supplementary probiotics protect against the negative effects of FOS in obese mice. Therefore, prepackaged soluble fiber supplements need to be taken with caution, and excessive consumption of soluble fibers results in intestinal dysfunction and even induces intestinal inflammation. Combining probiotics and soluble fiber can be considered if necessary.
Collapse
Affiliation(s)
- Kaiyang Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Hongbin Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Congcong Gao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Xue Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Liying Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Haikuan Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Yanping Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Fuping Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
10
|
Oemcke LA, Anderson RC, Altermann E, Roy NC, McNabb WC. The Role of Segmented Filamentous Bacteria in Immune Barrier Maturation of the Small Intestine at Weaning. Front Nutr 2021; 8:759137. [PMID: 34869529 PMCID: PMC8637878 DOI: 10.3389/fnut.2021.759137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
The microbiological, physical, chemical, and immunological barriers of the gastrointestinal tract (GIT) begin developing in utero and finish maturing postnatally. Maturation of these barriers is essential for the proper functioning of the GIT. Maturation, particularly of the immunological barrier, involves stimulation by bacteria. Segmented filamentous bacteria (SFB) which are anaerobic, spore-forming commensals have been linked to immune activation. The presence and changes in SFB abundance have been positively correlated to immune markers (cytokines and immunoglobulins) in the rat ileum and stool samples, pre- and post-weaning. The abundance of SFB in infant stool increases from 6 months, peaks around 12 months and plateaus 25 months post-weaning. Changes in SFB abundance at these times correlate positively and negatively with the production of interleukin 17 (IL 17) and immunoglobulin A (IgA), respectively, indicating involvement in immune function and maturation. Additionally, the peak in SFB abundance when a human milk diet was complemented by solid foods hints at a diet effect. SFB genome analysis revealed enzymes involved in metabolic pathways for survival, growth and development, host mucosal attachment and substrate acquisition. This narrative review discusses the current knowledge of SFB and their suggested effects on the small intestine immune system. Referencing the published genomes of rat and mouse SFB, the use of food substrates to modulate SFB abundance is proposed while considering their effects on other microbes. Changes in the immune response caused by the interaction of food substrate with SFB may provide insight into their role in infant immunological barrier maturation.
Collapse
Affiliation(s)
- Linda A Oemcke
- Riddet Institute, Massey University, Palmerston North, New Zealand.,School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Smart Foods Innovation Centre of Excellence, AgResearch, Palmerston North, New Zealand
| | - Rachel C Anderson
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Smart Foods Innovation Centre of Excellence, AgResearch, Palmerston North, New Zealand
| | - Eric Altermann
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Consumer Interface Innovation Centre of Excellence, AgResearch, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Warren C McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
11
|
Kong C, Beukema M, Wang M, de Haan BJ, de Vos P. Human milk oligosaccharides and non-digestible carbohydrates prevent adhesion of specific pathogens via modulating glycosylation or inflammatory genes in intestinal epithelial cells. Food Funct 2021; 12:8100-8119. [PMID: 34286788 DOI: 10.1039/d1fo00872b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human milk oligosaccharides (hMOs) and non-digestible carbohydrates (NDCs) are known to inhibit the adhesion of pathogens to the gut epithelium, but the mechanisms involved are not well understood. Here, the effects of 2'-FL, 3-FL, DP3-DP10, DP10-DP60 and DP30-DP60 inulins and DM7, DM55 and DM69 pectins were studied on pathogen adhesion to Caco-2 cells. As the growth phase influences virulence, E. coli ET8, E. coli LMG5862, E. coli O119, E. coli WA321, and S. enterica subsp. enterica LMG07233 from both log and stationary phases were tested. Specificity for enteric pathogens was tested by including the lung pathogen K. pneumoniae LMG20218. Expression of the cell membrane glycosylation genes of galectin and glycocalyx and inflammatory genes was studied in the presence and absence of 2'-FL or NDCs. Inhibition of pathogen adhesion was observed for 2'-FL, inulins, and pectins. Pre-incubation with 2'-FL downregulated ICAM1, and pectins modified the glycosylation genes. In contrast, K. pneumoniae LMG20218 downregulated the inflammatory genes, but these were restored by pre-incubation with pectins, which reduced the adhesion of K. pneumoniae LMG20218. In addition, DM69 pectin significantly upregulated the inflammatory genes. 2'-FL and pectins but not inulins inhibited pathogen adhesion to the gut epithelial Caco-2 cells through changing the cell membrane glycosylation and inflammatory genes, but the effects were molecule-, pathogen-, and growth phase-dependent.
Collapse
Affiliation(s)
- Chunli Kong
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | | | | | | | | |
Collapse
|
12
|
Kong C, Faas MM, de Vos P, Akkerman R. Impact of dietary fibers in infant formulas on gut microbiota and the intestinal immune barrier. Food Funct 2021; 11:9445-9467. [PMID: 33150902 DOI: 10.1039/d0fo01700k] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human milk (HM) is the gold standard for the nutrition of infants. An important component of HM is human milk oligosaccharides (hMOs), which play an important role in gut microbiota colonization and gut immune barrier establishment, and thereby contribute to the maturation of the immune system in early life. Guiding these processes is important as disturbances have life-long health effects and can lead to the development of allergic diseases. Unfortunately, not all infants can be exclusively fed with HM. These infants are routinely fed with infant formulas that contain hMO analogs and other non-digestible carbohydrates (NDCs) to mimic the effects of hMOs. Currently, the hMO analogs 2'-fucosyllactose (2'-FL), galacto-oligosaccharides (GOS), fructo-oligosaccharides (FOS), and pectins are added to infant formulas; however, these NDCs cannot mimic all hMO functions and therefore new NDCs and NDC mixtures need to become available for specific groups of neonates like preterm and disease-prone neonates. In this review, we discuss human data on the beneficial effects of infant formula supplements such as the specific hMO analog 2'-FL and NDCs as well as their mechanism of effects like stimulation of microbiota development, maturation of different parts of the gut immune barrier and anti-pathogenic effects. Insights into the structure-specific mechanisms by which hMOs and NDCs exert their beneficial functions might contribute to the development of new tailored NDCs and NDC mixtures. We also describe the needs for new in vitro systems that can be used for research on hMOs and NDCs. The current data suggest that "tailored infant formulas" for infants of different ages and healthy statuses are needed to ensure a healthy development of the microbiota and the gut immune system of infants.
Collapse
Affiliation(s)
- Chunli Kong
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | | | |
Collapse
|
13
|
Marín-Manzano MDC, Hernandez-Hernandez O, Diez-Municio M, Delgado-Andrade C, Moreno FJ, Clemente A. Prebiotic Properties of Non-Fructosylated α-Galactooligosaccharides from PEA ( Pisum sativum L.) Using Infant Fecal Slurries. Foods 2020; 9:foods9070921. [PMID: 32668744 PMCID: PMC7405007 DOI: 10.3390/foods9070921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
The interest for naturally-occurring oligosaccharides from plant origin having prebiotic properties is growing, with special focus being paid to supplemented products for infants. Currently, non-fructosylated α-galactooligosaccharides (α-GOS) from peas have peaked interest as a result of their prebiotic activity in adults and their mitigated side-effects on gas production from colonic bacterial fermentation. In this study, commercially available non-fructosylated α-GOS from peas and β-galactooligosaccharides (β-GOS) derived from lactose were fermented using fecal slurries from children aged 11 to 24 months old during 6 and 24 h. The modulatory effect of both GOS on different bacterial groups and bifidobacteria species was assessed; non-fructosylated α-GOS consumption was monitored throughout the fermentation process and the amounts of lactic acid and short-chain fatty acids (SCFA) generated were analyzed. Non-fructosylated α-GOS, composed mainly of manninotriose and verbascotetraose and small amounts of melibiose, were fully metabolized and presented remarkable bifidogenic activity, similar to that obtained with β-GOS. Furthermore, non-fructosylated α-GOS selectively caused an increase on the population of Bifidobacterium longum subsp. longum and Bifidobacterium catenulatum/pseudo-catenulatum. In conclusion, non-fructosylated α-GOS could be used as potential ingredient in infant formula supplemented with prebiotic oligosaccharides.
Collapse
Affiliation(s)
- María del Carmen Marín-Manzano
- Estación Experimental del Zaidín (CSIC), Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain; (M.d.C.M.-M.); (C.D.-A.)
| | | | - Marina Diez-Municio
- Institute of Food Science Research (CIAL, CSIC-UAM), 28049 Madrid, Spain; (O.H.-H.); (M.D.-M.); (F.J.M.)
| | - Cristina Delgado-Andrade
- Estación Experimental del Zaidín (CSIC), Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain; (M.d.C.M.-M.); (C.D.-A.)
| | - Francisco Javier Moreno
- Institute of Food Science Research (CIAL, CSIC-UAM), 28049 Madrid, Spain; (O.H.-H.); (M.D.-M.); (F.J.M.)
| | - Alfonso Clemente
- Estación Experimental del Zaidín (CSIC), Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain; (M.d.C.M.-M.); (C.D.-A.)
- Correspondence: ; Tel.: +34-9-5857-2757
| |
Collapse
|