1
|
Soliman MM, Islam MT, Chowdhury MEH, Alqahtani A, Musharavati F, Alam T, Alshammari AS, Misran N, Soliman MS, Mahmud S, Khandakar A. Advancement in total hip implant: a comprehensive review of mechanics and performance parameters across diverse novelties. J Mater Chem B 2023; 11:10507-10537. [PMID: 37873807 DOI: 10.1039/d3tb01469j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The UK's National Joint Registry (NJR) and the American Joint Replacement Registry (AJRR) of 2022 revealed that total hip replacement (THR) is the most common orthopaedic joint procedure. The NJR also noted that 10-20% of hip implants require revision within 1 to 10 years. Most of these revisions are a result of aseptic loosening, dislocation, implant wear, implant fracture, and joint incompatibility, which are all caused by implant geometry disparity. The primary purpose of this review article is to analyze and evaluate the mechanics and performance factors of advancement in hip implants with novel geometries. The existing hip implants can be categorized based on two parts: the hip stem and the joint of the implant. Insufficient stress distribution from implants to the femur can cause stress shielding, bone loss, excessive micromotion, and ultimately, implant aseptic loosening due to inflammation. Researchers are designing hip implants with a porous lattice and functionally graded material (FGM) stems, femur resurfacing, short-stem, and collared stems, all aimed at achieving uniform stress distribution and promoting adequate bone remodeling. Designing hip implants with a porous lattice FGM structure requires maintaining stiffness, strength, isotropy, and bone development potential. Mechanical stability is still an issue with hip implants, femur resurfacing, collared stems, and short stems. Hip implants are being developed with a variety of joint geometries to decrease wear, improve an angular range of motion, and strengthen mechanical stability at the joint interface. Dual mobility and reverse femoral head-liner hip implants reduce the hip joint's dislocation limits. In addition, researchers reveal that femoral headliner joints with unidirectional motion have a lower wear rate than traditional ball-and-socket joints. Based on research findings and gaps, a hypothesis is formulated by the authors proposing a hip implant with a collared stem and porous lattice FGM structure to address stress shielding and micromotion issues. A hypothesis is also formulated by the authors suggesting that the utilization of a spiral or gear-shaped thread with a matched contact point at the tapered joint of a hip implant could be a viable option for reducing wear and enhancing stability. The literature analysis underscores substantial research opportunities in developing a hip implant joint that addresses both dislocation and increased wear rates. Finally, this review explores potential solutions to existing obstacles in developing a better hip implant system.
Collapse
Affiliation(s)
- Md Mohiuddin Soliman
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia.
| | - Mohammad Tariqul Islam
- Centre for Advanced Electronic and Communication Engineering, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia.
| | - Muhammad E H Chowdhury
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.
| | - Abdulrahman Alqahtani
- Department of Medical Equipment Technology, College of Applied, Medical Science, Majmaah University, Majmaah City 11952, Saudi Arabia
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Farayi Musharavati
- Department of Mechanical & Industrial Engineering, Qatar University, Doha 2713, Qatar.
| | - Touhidul Alam
- Pusat Sains Ankasa (ANGKASA), Institut Perubahan Iklim, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia.
| | - Ahmed S Alshammari
- Department of Electrical Engineering, College of Engineering, University Hail, Hail 81481, Saudi Arabia.
- Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Norbahiah Misran
- Centre for Advanced Electronic and Communication Engineering, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia.
| | - Mohamed S Soliman
- Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
- Department of Electrical Engineering, Faculty of Energy Engineering, Aswan University, Aswan, 81528, Egypt
| | - Sakib Mahmud
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.
| | - Amith Khandakar
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
2
|
Radaelli M, Buchalter DB, Mont MA, Schwarzkopf R, Hepinstall MS. A New Classification System for Cementless Femoral Stems in Total Hip Arthroplasty. J Arthroplasty 2023; 38:502-510. [PMID: 36122690 DOI: 10.1016/j.arth.2022.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/18/2022] [Accepted: 09/11/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The growing variety of total hip arthroplasty implants necessitates a standardized, simple, and brand-neutral language to precisely classify femoral components. Although previous classifications have been useful, they need updating to include stems that have current surface treatment technologies, modularity, collar features, and other geometric characteristics. METHODS To accomplish this, we propose a new classification system for stems based on 3 distinguishing stem features: (1) geometry, (2) location of modularity, and (3) length. RESULTS Our system allows for the easy classification of all currently used stem types. CONCLUSIONS One goal of this endeavor is to improve clinical record keeping to facilitate study comparisons as well as literature reviews.
Collapse
Affiliation(s)
- Marco Radaelli
- Department of Orthopedic Surgery, NYU Langone Health, New York, New York
| | - Daniel B Buchalter
- Department of Orthopedic Surgery, NYU Langone Health, New York, New York
| | - Michael A Mont
- Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, Maryland
| | - Ran Schwarzkopf
- Department of Orthopedic Surgery, NYU Langone Health, New York, New York
| | | |
Collapse
|
3
|
Soliman MM, Chowdhury MEH, Islam MT, Musharavati F, Mahmud S, Hafizh M, Ayari MA, Khandakar A, Alam MK, Nezhad EZ. Design and Performance Evaluation of a Novel Spiral Head-Stem Trunnion for Hip Implants Using Finite Element Analysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16041466. [PMID: 36837096 PMCID: PMC9962303 DOI: 10.3390/ma16041466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 05/27/2023]
Abstract
With an expectation of an increased number of revision surgeries and patients receiving orthopedic implants in the coming years, the focus of joint replacement research needs to be on improving the mechanical properties of implants. Head-stem trunnion fixation provides superior load support and implant stability. Fretting wear is formed at the trunnion because of the dynamic load activities of patients, and this eventually causes the total hip implant system to fail. To optimize the design, multiple experiments with various trunnion geometries have been performed by researchers to examine the wear rate and associated mechanical performance characteristics of the existing head-stem trunnion. The objective of this work is to quantify and evaluate the performance parameters of smooth and novel spiral head-stem trunnion types under dynamic loading situations. This study proposes a finite element method for estimating head-stem trunnion performance characteristics, namely contact pressure and sliding distance, for both trunnion types under walking and jogging dynamic loading conditions. The wear rate for both trunnion types was computed using the Archard wear model for a standard number of gait cycles. The experimental results indicated that the spiral trunnion with a uniform contact pressure distribution achieved more fixation than the smooth trunnion. However, the average contact pressure distribution was nearly the same for both trunnion types. The maximum and average sliding distances were both shorter for the spiral trunnion; hence, the summed sliding distance was approximately 10% shorter for spiral trunnions than that of the smooth trunnion over a complete gait cycle. Owing to a lower sliding ability, hip implants with spiral trunnions achieved more stability than those with smooth trunnions. The anticipated wear rate for spiral trunnions was 0.039 mm3, which was approximately 10% lower than the smooth trunnion wear rate of 0.048 mm3 per million loading cycles. The spiral trunnion achieved superior fixation stability with a shorter sliding distance and a lower wear rate than the smooth trunnion; therefore, the spiral trunnion can be recommended for future hip implant systems.
Collapse
Affiliation(s)
- Md Mohiuddin Soliman
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | | | - Mohammad Tariqul Islam
- Centre for Advanced Electronic and Communication Engineering, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Farayi Musharavati
- Department of Mechanical & Industrial Engineering, Qatar University, Doha 2713, Qatar
| | - Sakib Mahmud
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar
| | - Muhammad Hafizh
- Department of Mechanical & Industrial Engineering, Qatar University, Doha 2713, Qatar
| | | | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar
| | | | - Erfan Zal Nezhad
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
4
|
Feyzi M, Fallahnezhad K, Taylor M, Hashemi R. An Overview of the Stability and Fretting Corrosion of Microgrooved Necks in the Taper Junction of Hip Implants. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8396. [PMID: 36499893 PMCID: PMC9735617 DOI: 10.3390/ma15238396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Fretting corrosion at the head-neck interface of modular hip implants, scientifically termed trunnionosis/taperosis, may cause regional inflammation, metallosis, and adverse local tissue reactions. The severity of such a deleterious process depends on various design parameters. In this review, the influence of surface topography (in some cases, called microgrooves/ridges) on the overall performance of the microgrooved head-neck junctions is investigated. The methodologies together with the assumptions and simplifications, as well as the findings from both the experimental observations (retrieval and in vitro) and the numerical approaches used in previous studies, are presented and discussed. The performance of the microgrooved junctions is compared to those with a smooth surface finish in two main categories: stability and integrity; wear, corrosion, and material loss. Existing contradictions and disagreements among the reported results are reported and discussed in order to present a comprehensive picture of the microgrooved junctions. The current research needs and possible future research directions on the microgrooved junctions are also identified and presented.
Collapse
|
5
|
Wight C, Phillips DM, Whyne C. Wear reduction of orthopaedic implants through Cryogenic Thermal Cycling. J Mech Behav Biomed Mater 2022; 135:105420. [DOI: 10.1016/j.jmbbm.2022.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 10/31/2022]
|
6
|
Karachalios TS, Komnos GA. Morse taper and femoral head modularity: a technical note. Hip Int 2022; 32:237-238. [PMID: 35317636 DOI: 10.1177/11207000221082647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Theofilos S Karachalios
- Orthopaedic Department, University General Hospital of Larissa, School of Health Sciences, Faculty of Medicine, University of Thessalia, Larissa, Greece
| | - George A Komnos
- Orthopaedic Department, University General Hospital of Larissa, School of Health Sciences, Faculty of Medicine, University of Thessalia, Larissa, Greece
| |
Collapse
|
7
|
Wight CM, Schemitsch EH. In vitro testing for hip head-neck taper tribocorrosion: A review of experimental methods. Proc Inst Mech Eng H 2022; 236:9544119221074582. [PMID: 35139678 PMCID: PMC8915230 DOI: 10.1177/09544119221074582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In vitro test methods are challenged by the multi-factorial nature of head-neck taper connection tribocorrosion due to the consequences of simplification. Incorrect study design and misinterpretation of results has led to contradictory findings regarding important factors affecting head-neck taper tribocorrosion. This review seeks to highlight important considerations when developing in vitro test methods, to help researchers strengthen their study design and analyze the implications of others' design decisions. The advantages, disadvantages, limitations and procedural considerations for finite element analyses, electrochemical studies and in vitro simulations related to head-neck taper connection tribocorrosion are discussed. Finite element analysis offers an efficient method for studying large ranges of mechanical parameters. However, they are limited by neglecting electrochemical, biological and fluid flow factors. Electrochemical studies may be preferred if these factors are considered important. Care must be taken in interpreting data from electrochemical studies, particularly when different materials are compared. Differences in material valence and toxicity affect clinical translation of electrochemical studies' results. At their most complex, electrochemical studies attempt to simulate all aspects of headneck taper connection tribocorrosion in a bench top study. Effective execution requires in-depth knowledge of the tribocorrosion phenomenon, the involved mechanisms, and their measures such that each study design decision is fully informed.
Collapse
Affiliation(s)
- Christian M Wight
- Institute of Biomaterial and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Emil H Schemitsch
- Division of Orthopaedic Surgery, Department of Surgery, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
8
|
Pruitt BP, Mears SC, Apple AE, Stambough JB, Barnes CL, Stronach BM. Catastrophic Trunnion Failure in an Anatomic Titanium Alloy Stem. Geriatr Orthop Surg Rehabil 2022; 13:21514593221142726. [DOI: 10.1177/21514593221142726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Introduction Certain titanium alloy stems have been shown to be susceptible to failure at the neck with catastrophic trunnion failure. Failure has been particularly noted in the single wedge Accolade 1 stem design. Other stems also used this alloy including the anatomic designed Citation stem. Methods This case series details 3 catastrophic failures of the TMZF version of the Citation femoral stem. Results Each of these failures appear to be attributed to cyclical wear of the TMZF trunnion against the cobalt chromium femoral head. Wear resulted in ultimate implant failure and significant metal debris in the joint capsule at the time of revision surgery. Discussion While surgeons are aware of the risk of catastrophic failure for the Accolade 1 stem, failure may similarly happen in the TMZF Citation stem. Surgeons should monitor these implants with care and discuss the potential for trunnion failure with their patients.
Collapse
Affiliation(s)
- Benjamin P. Pruitt
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Simon C Mears
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Andrew E. Apple
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jeffrey B. Stambough
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - C. Lowry Barnes
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Benjamin M. Stronach
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
9
|
Wilson JM, Broggi MS, Oladeji P, Goel RK, Roberson JR. Outcomes Following Revision for Mechanically Assisted Crevice Corrosion in a Single Femoral Design. J Arthroplasty 2021; 36:3966-3972. [PMID: 34481694 DOI: 10.1016/j.arth.2021.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Mechanically assisted crevice corrosion (MACC) is a described complication following metal-on-polyethylene (MoP) total hip arthroplasty (THA). The literature regarding outcomes following revision for MACC suggests that complication rates are high. The purpose of this investigation is to add to this literature with the largest reported series to date. METHODS This is a retrospective cohort study of 552 consecutive patients who underwent 621 MoP primary THAs. We identified patients who subsequently underwent revision THA for a diagnosis of MACC. All patients were implanted with the same implant combination (Accolade I stem/cobalt-chromium low friction ion treatment femoral head). Patient demographic, surgical, and laboratory data were collected. Follow-up was calculated from the revision surgery and Hip Disability and Osteoarthritis Outcome Score Joint Replacement and hip subjective values (HSV) were examined at final follow-up. Descriptive statistics were performed. RESULTS The revision rate for MACC was 11.6% and mean time to revision was 6.6 (±2.4) years. Revised patients (n = 69) had a mean preoperative serum cobalt-chromium ratio of 3.5 (±2.4). There were 8 cases of gross trunnion failure. At mean 3.2 (±1.9) years following revision, the overall major complication rate was 11.6% with a 5.8% reoperation rate. At final follow-up, mean Hip Disability and Osteoarthritis Outcome Score Joint Replacement scores were 83.2 (±15.6) and mean hip subjective value was 77.6 (±17.4). Revision resulted in significant increases in both parameters (P < .001). CONCLUSION The incidence of MACC in MoP THA is likely higher than previously reported, particularly for certain implant combinations. Revision surgery for MACC can achieve good outcomes but a high clinical suspicion with early detection and revision is likely key to success.
Collapse
|
10
|
El-Zein ZS, Gehrke CK, Croley JS, Siljander MP, Mallow MA, Flierl MA, Verner JJ, Baker EA. Assessing Taper Geometry, Head Size, Head Material, and Their Interactions in Taper Fretting Corrosion of Retrieved Total Hip Arthroplasty Implants. J Arthroplasty 2021; 36:S386-S394.e4. [PMID: 33832796 DOI: 10.1016/j.arth.2021.02.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/18/2021] [Accepted: 02/15/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Decreased fretting and corrosion damage at the taper interface of retrieved ceramic-on-polyethylene total hip arthroplasty (THA) implants has been consistently reported; however, resultant fretting corrosion as a function of femoral head size and taper geometry has not been definitively explained. METHODS Eight cohorts were defined from 157 retrieved THA implants based on femoral head composition (n = 95, zirconia-toughened alumina, ZTA vs n = 62, cobalt-chromium alloy, CoCr), head size (n = 56, 32mm vs n = 101, 36mm), and taper geometry (n = 84, 12/14 vs n = 73, V40). THA implants were evaluated and graded for taper fretting and corrosion. Data were statistically analyzed, including via a 23 factorial modeling. RESULTS Factorial-based analysis indicated the significant factors related to both resultant (summed) fretting and corrosion damage were head material and taper geometry; head material-taper geometry interaction was also a significant factor in resultant corrosion damage. Lower rates of moderate-to-severe fretting and corrosion damage were exhibited on ZTA heads (ZTA = 13%, CoCr = 38%), smaller heads (32mm = 18%, 36mm = 26%), and 12/14 tapers (12/14 = 13%, V40 = 35%). ZTA+32mm heads demonstrated the lowest rates of moderate-to-severe fretting and corrosion damage (12/14 = 2%, V40 = 7%), whereas CoCr heads with V40 tapers demonstrated the greatest rates of moderate-to-severe damage (32mm = 47%, 36mm = 59%). CONCLUSION In this series, retrieved implants with ZTA, 32-mm heads paired with 12/14 tapers exhibited lower rates of moderate-to-severe damage. Factorial analysis showed head material, taper geometry, and their interactions were the most significant factors associated with resultant damage grades. Isolating implant features may provide additional information regarding factors leading to fretting and corrosion damage in THA. LEVEL OF EVIDENCE IV (case series).
Collapse
Affiliation(s)
- Zein S El-Zein
- Department of Orthopaedic Surgery, Beaumont Health, Royal Oak, MI
| | - Corinn K Gehrke
- Department of Orthopaedic Research, Beaumont Health, Royal Oak, MI
| | - J Sawyer Croley
- Department of Orthopaedic Surgery, Beaumont Health, Royal Oak, MI
| | | | - Murphy A Mallow
- Department of Orthopaedic Research, Beaumont Health, Royal Oak, MI
| | - Michael A Flierl
- Department of Orthopaedic Surgery, Beaumont Health, Royal Oak, MI; Department of Orthopaedic Surgery, Oakland University-William Beaumont School of Medicine, Rochester, MI
| | - James J Verner
- Department of Orthopaedic Surgery, Beaumont Health, Royal Oak, MI; Department of Orthopaedic Surgery, Oakland University-William Beaumont School of Medicine, Rochester, MI
| | - Erin A Baker
- Department of Orthopaedic Research, Beaumont Health, Royal Oak, MI; Department of Orthopaedic Surgery, Oakland University-William Beaumont School of Medicine, Rochester, MI
| |
Collapse
|
11
|
Kretzer JP, Uhler M, Jäger S, Bormann T, Sonntag R, Schonhoff M, Schröder S. [Tribology in hip arthroplasty : Benefits of different materials]. DER ORTHOPADE 2021; 50:259-269. [PMID: 33630110 DOI: 10.1007/s00132-021-04077-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
When it comes to total hip replacements, choosing the suitable material combination is of clinical relevance. The present review article examines the technical differences in wear and corrosion of the relevant material combinations of ceramics, metals, ceramized metals and various types of polyethylene. The material characteristics, which were often tested under standardized conditions in the laboratory, are compared with clinical results on the basis of evidence-graded clinical studies and on the basis of register studies. This article thus represents an up-to-date snapshot of the expectations and actual clinical outcomes of the present choice of material combinations. It shows that some tendencies from the field of materials research, e.g. with regard to cross-linked polyethylene, coincide with observations from practical clinical experience, while for other materials, a proven technical superiority has not yet been confirmed as an evident advantage in clinical practice.
Collapse
Affiliation(s)
- J Philippe Kretzer
- Klinik für Orthopädie und Unfallchirurgie, Labor für Biomechanik und Implantatforschung, Universitätsklinikum Heidelberg, Schlierbacher Landstraße 200a, 69118, Heidelberg, Deutschland.
| | - Maximilian Uhler
- Klinik für Orthopädie und Unfallchirurgie, Labor für Biomechanik und Implantatforschung, Universitätsklinikum Heidelberg, Schlierbacher Landstraße 200a, 69118, Heidelberg, Deutschland
| | - Sebastian Jäger
- Klinik für Orthopädie und Unfallchirurgie, Labor für Biomechanik und Implantatforschung, Universitätsklinikum Heidelberg, Schlierbacher Landstraße 200a, 69118, Heidelberg, Deutschland
| | - Therese Bormann
- Klinik für Orthopädie und Unfallchirurgie, Labor für Biomechanik und Implantatforschung, Universitätsklinikum Heidelberg, Schlierbacher Landstraße 200a, 69118, Heidelberg, Deutschland
| | - Robert Sonntag
- Klinik für Orthopädie und Unfallchirurgie, Labor für Biomechanik und Implantatforschung, Universitätsklinikum Heidelberg, Schlierbacher Landstraße 200a, 69118, Heidelberg, Deutschland
| | - Mareike Schonhoff
- Klinik für Orthopädie und Unfallchirurgie, Labor für Biomechanik und Implantatforschung, Universitätsklinikum Heidelberg, Schlierbacher Landstraße 200a, 69118, Heidelberg, Deutschland
| | - Stefan Schröder
- Klinik für Orthopädie und Unfallchirurgie, Labor für Biomechanik und Implantatforschung, Universitätsklinikum Heidelberg, Schlierbacher Landstraße 200a, 69118, Heidelberg, Deutschland
| |
Collapse
|
12
|
Feyzi M, Fallahnezhad K, Taylor M, Hashemi R. The mechanics of head-neck taper junctions: What do we know from finite element analysis? J Mech Behav Biomed Mater 2021; 116:104338. [PMID: 33524892 DOI: 10.1016/j.jmbbm.2021.104338] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/16/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
Modular hip implants are widely used in hip arthroplasty because of the advantages they can offer such as flexibility in material combinations and geometrical adjustments. The mechanical environment of the modular junction in the body is quite challenging due to the complex and varying off-axial mechanical loads of physical activities applied to a tapered interface of two contacting materials (head and neck) assembled by an impact force intraoperatively. Experimental analogies to the in-vivo condition of the taper junction are complex, expensive and time-consuming to implement; hence, computational simulations have been a preferred approach taken by researchers for studying the mechanics of these modular junctions that can help us understand their failure mechanisms and improve their design and longevity after implantation. This paper provides a clearer insight into the mechanics of the head-neck taper junction through a careful review on the finite element studies of the junction and their findings. The effects of various factors on the mechanical outputs namely: stresses, micromotions, and contact situations are reviewed and discussed. Also, the simulation methodology of the studies in the literature is compared. Research opportunities for future are scrutinised through tabulating data and information that have been carefully retrieved form the reported findings.
Collapse
Affiliation(s)
- Mohsen Feyzi
- College of Science and Engineering, Medical Device Research Institute, Flinders University, Tonsley, SA, 5042, Australia
| | - Khosro Fallahnezhad
- College of Science and Engineering, Medical Device Research Institute, Flinders University, Tonsley, SA, 5042, Australia
| | - Mark Taylor
- College of Science and Engineering, Medical Device Research Institute, Flinders University, Tonsley, SA, 5042, Australia
| | - Reza Hashemi
- College of Science and Engineering, Medical Device Research Institute, Flinders University, Tonsley, SA, 5042, Australia.
| |
Collapse
|
13
|
Feyzi M, Fallahnezhad K, Taylor M, Hashemi R. A review on the finite element simulation of fretting wear and corrosion in the taper junction of hip replacement implants. Comput Biol Med 2020; 130:104196. [PMID: 33516962 DOI: 10.1016/j.compbiomed.2020.104196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022]
Abstract
Taperosis/trunnionosis is a scientific term for describing tribocorrosion (fretting corrosion) at the head-neck taper junction of hip implants where two contacting surfaces are undergone oscillatory micromotions while being exposed to the body fluid. Detached ions and emitted debris, as a result of taperosis, migrate to the surrounding tissues and can cause inflammation, infection, and aseptic loosening with an ultimate possibility of implant failure. Improving the tribocorrosion performance of the head-neck junction in the light of minimising the surface damage and debris requires a better understanding of taperosis. Given its complexity associated with both the mechanical and electrochemical aspects, computational methods such as the finite element method have been recently employed for analysing fretting wear and corrosion in the taper junction. To date, there have been more efforts on the fretting wear simulation when compared with corrosion. This is because of the mechanical nature of fretting wear which is probably more straightforward for modelling. However, as a recent research advancement, corrosion has been a focus to be implemented in the finite element modelling of taper junctions. This paper aims to review finite element studies related to taperosis in the head-neck junction to provide a detailed understanding of the design parameters and their role in this failure mechanism. It also reviews and discusses the methodologies developed for simulating this complex process in the taper junction along with the simplifications, assumptions and findings reported in these studies. The current needs and future research opportunities and directions in this field are then identified and presented.
Collapse
Affiliation(s)
- Mohsen Feyzi
- College of Science and Engineering, Medical Device Research Institute, Flinders University, Tonsley, SA, 5042, Australia
| | - Khosro Fallahnezhad
- College of Science and Engineering, Medical Device Research Institute, Flinders University, Tonsley, SA, 5042, Australia
| | - Mark Taylor
- College of Science and Engineering, Medical Device Research Institute, Flinders University, Tonsley, SA, 5042, Australia
| | - Reza Hashemi
- College of Science and Engineering, Medical Device Research Institute, Flinders University, Tonsley, SA, 5042, Australia.
| |
Collapse
|
14
|
Mertl P, Dehl M. Femoral stem modularity. Orthop Traumatol Surg Res 2020; 106:S35-S42. [PMID: 31624033 DOI: 10.1016/j.otsr.2019.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 02/02/2023]
Abstract
Femoral stem modularity in hip replacement was first developed to connect a ceramic head to the stem, then extended to metal heads using the Morse taper principle. Is it a good thing, or a necessary evil? It contributes to improving lower limb length and lateralization setting, at the cost of fairly rare complications such as dissociation and fretting corrosion, which can exceptionally lead to ARMD (Adverse Reaction to Metal Debris). Modular necks were later recommended, with a double Morse taper: cylindrical for the head junction, and more or less flattened for the stem. Is this one modularity too far? Dual modularity in theory perfectly reproduces the biomechanical parameters of the hip, but is unfortunately associated with fractures and severe corrosion, leading to ARMD and pseudotumor, especially in Cr-Co necks. Moreover, it provides no functional advantage, and no longer has a role outside dysplasia and other femoral deformities. Metaphyseal-diaphyseal modularity is not widespread in primary implants, and is it really necessary? Only one model has been widely studied: S-Rom™ (Depuy®). It features a metaphyseal sleeve adapting to the anatomy of the proximal femur, with a stem fitted via an inverse Morse taper. Its only interest is in case of congenital dislocation; like all metal connections, it incurs a risk of fracture and corrosion. On the other hand, modularity is widely employed in revision implants. Does it really help these procedures? The connection between a proximal femoral component of variable geometry and a diaphyseal stem with press-fit distal fixation provides a real solution to problems of length, lateralization and anteversion. Early models encountered high rates of fracture, but current implants and rigorous surgical technique have reduced this risk. Corrosion is a less serious problem, as the Morse taper undergoes only axial stress, without the friction undergone by other models subject to varus stress.
Collapse
Affiliation(s)
- Patrice Mertl
- Service d'orthopédie-traumatologie, CHU d'Amiens, Site Sud, 80054 Amiens Cedex, France.
| | - Massinissa Dehl
- Service d'orthopédie-traumatologie, CHU d'Amiens, Site Sud, 80054 Amiens Cedex, France
| |
Collapse
|
15
|
Does Taper Design Affect Taper Fretting Corrosion in Ceramic-on-Polyethylene Total Hip Arthroplasty? A Retrieval Analysis. J Arthroplasty 2019; 34:S366-S372.e2. [PMID: 31000401 DOI: 10.1016/j.arth.2019.02.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Ceramic-on-polyethylene (CoP) implants have exhibited lower fretting and corrosion scores than metal-on-polyethylene implants. This study aims at investigating the effect of taper design on taper corrosion and fretting in modular CoP total hip arthroplasty (THA) systems. METHODS Under an institutional review board--approved protocol, a query of an implant retrieval library from 2002 to 2017 identified 120 retrieved CoP THA systems with zirconia toughened alumina femoral heads. Femoral stem trunnions were visually evaluated and graded for fretting, corrosion, and damage at the taper interface. Medical records were reviewed for patient demographics and implant characteristics. Data were statistically analyzed using Spearman correlation and rank-sum tests with a Dunn's post hoc test, with a significance level of α = 0.05. RESULTS Four different taper designs were evaluated: 11/13 (n = 18), 12/14 (n = 53), 16/18 (n = 21), and V40 (n = 28). There were no statistically significant demographic differences between taper groups for duration of implantation, laterality, patient age, and patient sex, but patients with 16/18 tapers had a higher body mass index than V40 tapers (P = .012). Duration of implantation had a weak positive correlation with both trunnion fretting (ρ = 0.224, P = .016) and corrosion (ρ = 0.253, P = .006). Summed fretting and corrosion scores were significantly greater on the V40 and 16/18 tapers compared with the 12/14 tapers (all P ≤ .001). CONCLUSION Taper fretting and corrosion were observed in CoP THA implants and were greatest with V40 and 16/18 tapers and lowest with 12/14 tapers. Differences in taper design characteristics may lead to greater micromotion at the taper-head interface, leading to increased fretting and corrosion.
Collapse
|
16
|
Haschke H, Konow T, Huber G, Morlock MM. Influence of flexural rigidity on micromotion at the head-stem taper interface of modular hip prostheses. Med Eng Phys 2019; 68:1-10. [PMID: 30981609 DOI: 10.1016/j.medengphy.2019.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/25/2019] [Accepted: 03/31/2019] [Indexed: 12/17/2022]
Abstract
Fretting corrosion as one reason for failure of modular hip prostheses has been associated with micromotion at the head taper junction. Historically the taper diameter was reduced to improve the range of motion of the hip joint. In combination with other developments, this was accompanied by increased observations of taper fretting, possibly due to the reduced flexural rigidity of smaller tapers. The aim of the study was to investigate how the flexural rigidity of tapers influences the amount of micromotion at the head taper junction. Three different stem and two different taper designs were manufactured. Experimental testing was performed using three different activity levels with peak loads representing walking, stair climbing and stumbling. The relative motion at the head-stem taper was measured in six degrees of freedom. Micromotion was obtained by subtraction of the elastic deformation derived from monoblock and finite element analysis. Less rigid tapers lead to increased micromotion between the head and stem, enlarging the risk of fretting corrosion. The influence of the stem design on micromotion is secondary to taper design. Manufacturers should consider stiffer taper designs to reduce micromotion within the head taper junction.
Collapse
Affiliation(s)
- Henning Haschke
- Institute of Biomechanics, TUHH Hamburg University of Technology, Denickestraße 15, 21073 Hamburg Germany.
| | - Tobias Konow
- Institute of Biomechanics, TUHH Hamburg University of Technology, Denickestraße 15, 21073 Hamburg Germany
| | - Gerd Huber
- Institute of Biomechanics, TUHH Hamburg University of Technology, Denickestraße 15, 21073 Hamburg Germany
| | - Michael M Morlock
- Institute of Biomechanics, TUHH Hamburg University of Technology, Denickestraße 15, 21073 Hamburg Germany
| |
Collapse
|
17
|
Eliaz N. Corrosion of Metallic Biomaterials: A Review. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E407. [PMID: 30696087 PMCID: PMC6384782 DOI: 10.3390/ma12030407] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 12/15/2022]
Abstract
Metallic biomaterials are used in medical devices in humans more than any other family of materials. The corrosion resistance of an implant material affects its functionality and durability and is a prime factor governing biocompatibility. The fundamental paradigm of metallic biomaterials, except biodegradable metals, has been "the more corrosion resistant, the more biocompatible." The body environment is harsh and raises several challenges with respect to corrosion control. In this invited review paper, the body environment is analysed in detail and the possible effects of the corrosion of different biomaterials on biocompatibility are discussed. Then, the kinetics of corrosion, passivity, its breakdown and regeneration in vivo are conferred. Next, the mostly used metallic biomaterials and their corrosion performance are reviewed. These biomaterials include stainless steels, cobalt-chromium alloys, titanium and its alloys, Nitinol shape memory alloy, dental amalgams, gold, metallic glasses and biodegradable metals. Then, the principles of implant failure, retrieval and failure analysis are highlighted, followed by description of the most common corrosion processes in vivo. Finally, approaches to control the corrosion of metallic biomaterials are highlighted.
Collapse
Affiliation(s)
- Noam Eliaz
- Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv 6997801, Israel.
| |
Collapse
|
18
|
Falkenberg A, Drummen P, Morlock MM, Huber G. Determination of local micromotion at the stem-neck taper junction of a bi-modular total hip prosthesis design. Med Eng Phys 2019; 65:31-38. [PMID: 30679024 DOI: 10.1016/j.medengphy.2019.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 11/26/2022]
Abstract
High rates of clinical complications with bi-modular hip prostheses are attributed to failure of the stem-neck taper junction. Taper wear analyses have shown extensive material loss as a result of corrosion, potentially initiated by micromotion. The purpose of the study was to determine the amount of micromotion at this junction for different loading, assembly and material conditions. Micromotion between the neck adapter (CoCr29Mo6-alloy) and the stem (TiMo12Zr6Fe2-alloy; both Rejuvenate, Stryker) within the taper junction of a bi-modular hip stem were determined by image matching analysis of consecutively recorded images through windows in the stem component. A finite element model was used to determine the micromotion in the taper regions outside the windows and validated with the measured micromotion. With the model, the influence of the load amplitude, assembly force and component materials were then investigated. Determined micromotion (14-79 µm) by far exceeded critical values (5 µm) associated with the onset of fretting corrosion. Increasing assembly forces achieved a significant reduction in micromotion. The numerical model revealed insufficient assembly to cause the neck to perform rocking motions under load, repetitively changing taper contact in combination with gap opening, which facilitates fluid ingress into the junction. Changing the stem material to a stiffer Ti-alloy achieved a reduction of the micromotion of about 30%. This study emphasises the high importance of material selection, assembly force and loading on the susceptibility of bi-modular hip stems to fretting and crevice corrosion. These findings can serve to explain the increased rate of clinically reported problems with this particular prosthesis design.
Collapse
Affiliation(s)
- Adrian Falkenberg
- Institute of Biomechanics, Hamburg University of Technology (TUHH), Denickestrasse 15, Hamburg 21073, Germany.
| | - Paul Drummen
- Institute of Biomechanics, Hamburg University of Technology (TUHH), Denickestrasse 15, Hamburg 21073, Germany
| | - Michael M Morlock
- Institute of Biomechanics, Hamburg University of Technology (TUHH), Denickestrasse 15, Hamburg 21073, Germany
| | - Gerd Huber
- Institute of Biomechanics, Hamburg University of Technology (TUHH), Denickestrasse 15, Hamburg 21073, Germany
| |
Collapse
|