1
|
Mesnard B, Ogbemudia E, Bruneau S, Le Bas-Bernardet S, Minault D, Hervouet J, Kervella D, Masset C, Cantarovich D, Rigaud J, Badet L, Friend P, Ploeg R, Blancho G, Hunter J, Prudhomme T, Branchereau J. Pancreas Preservation: Hypothermic Oxygenated Perfusion to Improve Graft Reperfusion. Transplantation 2025; 109:e1-e10. [PMID: 39656523 DOI: 10.1097/tp.0000000000005111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
BACKGROUND The clinical standard for pancreas preservation for transplantation is static cold storage (SCS). Oxygenation during preservation has been shown to be advantageous in clinical studies. This study evaluates the efficiency of different oxygenation modalities during hypothermic pancreas preservation. METHODS Thirty-two porcine pancreases were procured in a controlled donation after circulatory death model and were divided to be preserved in 8 groups: (1) SCS, (2) hypothermic machine perfusion (HMP), (3) hypothermic oxygenated machine perfusion (HOPE) with 21% oxygen, (4) HOPE and 100%, (5) SCS and oxygen carrier, M101, (6) HMP and M101, (7) HOPE 21% and M101, and (8) HOPE 100% and M101. All the groups underwent 24 h of hypothermic preservation, followed by 2 h of normothermic reperfusion. Oxygen partial pressures were assessed using parenchymal probes. Perfusion parameters, perfusate samples, and tissue biopsies were analyzed. RESULTS This study showed that HMP was linked to higher tissue oxygen partial pressures, lower succinate levels, and better reperfusion parameters. Furthermore, the addition of M101 to either SCS or HMP was associated with lower succinate and creatinine phosphokinase accumulation, suggesting a protective effect against ischemia. CONCLUSIONS Our research has demonstrated the efficacy of machine perfusion in hypothermic conditions in providing oxygen to the pancreas during preservation and conditioning the pancreatic microvasculature for reperfusion during transplantation. Furthermore, the addition of M101 suggests a protective effect on the graft from ischemia.
Collapse
Affiliation(s)
- Benoit Mesnard
- Department of Urology and Transplantation Surgery, Nantes University Hospital, Nantes, France
- Nantes Université, CHU Nantes1, INSERM, Centre for Research in Transplantation and Translational Immunology, Nantes, France
| | | | - Sarah Bruneau
- Nantes Université, CHU Nantes1, INSERM, Centre for Research in Transplantation and Translational Immunology, Nantes, France
| | - Stéphanie Le Bas-Bernardet
- Nantes Université, CHU Nantes1, INSERM, Centre for Research in Transplantation and Translational Immunology, Nantes, France
| | - David Minault
- Nantes Université, CHU Nantes1, INSERM, Centre for Research in Transplantation and Translational Immunology, Nantes, France
| | - Jeremy Hervouet
- Nantes Université, CHU Nantes1, INSERM, Centre for Research in Transplantation and Translational Immunology, Nantes, France
| | - Delphine Kervella
- Nantes Université, CHU Nantes1, INSERM, Centre for Research in Transplantation and Translational Immunology, Nantes, France
| | - Christophe Masset
- Nantes Université, CHU Nantes1, INSERM, Centre for Research in Transplantation and Translational Immunology, Nantes, France
| | - Diego Cantarovich
- Nantes Université, CHU Nantes1, INSERM, Centre for Research in Transplantation and Translational Immunology, Nantes, France
| | - Jérôme Rigaud
- Department of Urology and Transplantation Surgery, Nantes University Hospital, Nantes, France
| | - Lionel Badet
- Department of Urology Surgery and Transplantation, Edouard Herriot Hospital, Lyon, France
| | - Peter Friend
- Nuffield Department of Surgical Science, Oxford, United Kingdom
| | - Rutger Ploeg
- Nuffield Department of Surgical Science, Oxford, United Kingdom
| | - Gilles Blancho
- Nantes Université, CHU Nantes1, INSERM, Centre for Research in Transplantation and Translational Immunology, Nantes, France
| | - James Hunter
- Nuffield Department of Surgical Science, Oxford, United Kingdom
| | - Thomas Prudhomme
- Nantes Université, CHU Nantes1, INSERM, Centre for Research in Transplantation and Translational Immunology, Nantes, France
| | - Julien Branchereau
- Department of Urology and Transplantation Surgery, Nantes University Hospital, Nantes, France
- Nantes Université, CHU Nantes1, INSERM, Centre for Research in Transplantation and Translational Immunology, Nantes, France
- Nuffield Department of Surgical Science, Oxford, United Kingdom
| |
Collapse
|
2
|
Takaki T, Shimoda M. Pancreatic islet transplantation: toward definitive treatment for diabetes mellitus. Glob Health Med 2020; 2:200-211. [PMID: 33330809 DOI: 10.35772/ghm.2020.01057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/27/2022]
Abstract
Since the late 20th century, advances in pancreatic islet transplantation have targeted improved glycemic control and fewer hypoglycemic events in patients with type 1 diabetes, and some important milestones have been reached. Following the Edmonton group's success in achieving insulin independence in all transplanted patients with type 1 diabetes, clinical islet transplantation is now performed worldwide. β cell replacement therapy for type 1 diabetes was established based on the favorable outcomes of a phase 3, prospective, open-label, single-arm, clinical study conducted at 8 centers in North America, in which 42 of 48 patients who underwent islet transplantation from 2008 to 2011 achieved HbA1c < 7.0% (53 mmol/mol) at day 365, which was maintained at 2 years in 34 patients. In Japan, a phase 2 multicenter clinical trial of islet transplantation for type 1 diabetes patients is currently ongoing and will end soon, but the interim results have already led to positive changes, with allogeneic islet transplantation being covered by the national health insurance system since April 2020. Current efforts are being made to solve the problem of donor shortage by studying alternative donor sources, such as porcine islets and pancreatic progenitor cells derived from pluripotent stem cells. The results of clinical trials in this area are eagerly awaited. It is hoped that they will contribute to establishing alternative sources for insulin-producing β cells in the near future.
Collapse
Affiliation(s)
- Tadashi Takaki
- Department of Pancreatic Islet Cell Transplantation, National Center for Global Health and Medicine, Tokyo, Japan.,Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Takeda-CiRA Joint Program for iPS Cell Applications (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Masayuki Shimoda
- Department of Pancreatic Islet Cell Transplantation, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Hawthorne WJ. Necessities for a Clinical Islet Program. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 938:67-88. [PMID: 27586423 DOI: 10.1007/978-3-319-39824-2_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For more than two decades we have been refining advances in islet cell transplantation as a clinical therapy for patients suffering from type 1 diabetes. A great deal of effort has gone to making this a viable therapy for a broader range of patients with type 1 diabetes. Clinical results have progressively improved, demonstrating clinical outcomes on par with other organ transplants, specifically in terms of insulin independence, graft and patient survival. We are now at the point where islet cell transplantation, in the form of allotransplantation, has become accepted as a clinical therapy in adult patients affected by type 1 diabetes, in particular those suffering from severe hypoglycaemic unawareness. This chapter provides an overview on how this has been undertaken over the years to provide outcomes on par with other organ transplantation results. In particular this chapter focuses on the processes and facilities that are required to establish a clinical islet isolation and transplantation program. It also outlines the very important underpinning processes of selection of the organ donor for islet isolation, the processes of organ donor operation and preservation of the pancreas by various means and the ideal ways to best improve outcomes for human islet cell isolation. Providing these more optimal conditions we can underpin the isolation processes to provide islets for transplantation and as such a safe, effective and feasible therapeutic option for an increasing number of patients suffering from type 1 diabetes with severe hypoglycaemic unawareness.
Collapse
Affiliation(s)
- Wayne J Hawthorne
- National Pancreas and Islet Transplant Laboratories, The Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia. .,Department of Surgery, Westmead Clinical School, Westmead Hospital, University of Sydney, Westmead, NSW, 2145, Australia.
| |
Collapse
|