1
|
Pragnere S, Courtial EJ, Dubreuil F, Errazuriz-Cerda E, Marquette C, Petiot E, Pailler-Mattei C. Tuning viscoelasticity and stiffness in bioprinted hydrogels for enhanced 3D cell culture: A multi-scale mechanical analysis. J Mech Behav Biomed Mater 2024; 159:106696. [PMID: 39205347 DOI: 10.1016/j.jmbbm.2024.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/26/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Bioprinted hydrogels are extensively studied to provide an artificial matrix for 3D cell culture. The success of bioprinting hydrogels relies on fine-tuning their rheology and composition to achieve shear-thinning behavior. However, a challenge arises from the limited viscoelastic and stiffness range accessible from a single hydrogel formulation. Nevertheless, hydrogel mechanical properties are recognized as essential cues influencing cell phenotype, migration, and differentiation. Thus, it is crucial to develop a system to easily modulate bioprinted hydrogels' mechanical behaviors. In this work, we modulated the viscoelastic properties and stiffness of bioprinted hydrogels composed of fibrinogen, alginate, and gelatin by tuning the crosslinking bath solution. Various concentrations of calcium ionically crosslinked alginate, while transglutaminase crosslinked gelatin. Subsequently, we characterized the mechanical behavior of our bioprinted hydrogels from the nanoscale to the macroscale. This approach enabled the production of diverse bioprinted constructs, either with similar elastic behavior but different elastic moduli or with similar elastic moduli but different viscoelastic behavior from the same hydrogel formulation. Culturing fibroblasts in the hydrogels for 33 days revealed a preference for cell growth and matrix secretion in the viscoelastic hydrogels. This work demonstrates the suitability of the method to decouple the effects of material mechanical from biochemical composition cues on 3D cultured cells.
Collapse
Affiliation(s)
- Sarah Pragnere
- Laboratory of Tribology and System Dynamics UMR-CNRS 5513, Ecole Centrale de, Lyon, France; Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, the Netherlands
| | - Edwin-Joffrey Courtial
- 3d.FAB, Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd Du 11, Villeurbanne cedex, France
| | - Frédéric Dubreuil
- Laboratory of Tribology and System Dynamics UMR-CNRS 5513, Ecole Centrale de, Lyon, France
| | | | - Christophe Marquette
- 3d.FAB, Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd Du 11, Villeurbanne cedex, France
| | - Emma Petiot
- 3d.FAB, Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd Du 11, Villeurbanne cedex, France
| | - Cyril Pailler-Mattei
- Laboratory of Tribology and System Dynamics UMR-CNRS 5513, Ecole Centrale de, Lyon, France; University of Lyon, Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie de, Lyon, France.
| |
Collapse
|
2
|
Willems C, Qi F, Trutschel ML, Groth T. Functionalized Gelatin/Polysaccharide Hydrogels for Encapsulation of Hepatocytes. Gels 2024; 10:231. [PMID: 38667650 PMCID: PMC11048940 DOI: 10.3390/gels10040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Liver diseases represent a considerable burden to patients and healthcare systems. Hydrogels play an important role in the engineering of soft tissues and may be useful for embedding hepatocytes for different therapeutic interventions or the development of in vitro models to study the pathogenesis of liver diseases or testing of drugs. Here, we developed two types of hydrogels by crosslinking hydrazide-functionalized gelatin with either oxidized dialdehyde hyaluronan or alginate through the formation of hydrazone bonds. Gel formulations were studied through texture analysis and rheometry, showing mechanical properties comparable to those of liver tissue while also demonstrating long-term stability. The biocompatibility of hydrogels and their ability to host hepatocytes was studied in vitro in comparison to pure gelatin hydrogels crosslinked by transglutaminase using the hepatocellular line HepG2. It was found that HepG2 cells could be successfully embedded in the hydrogels, showing no signs of gel toxicity and proliferating in a 3D environment comparable to pure transglutaminase cross-linked gelatin hydrogels used as control. Altogether, hydrazide gelatin in combination with oxidized polysaccharides makes stable in situ gelling systems for the incorporation of hepatocytes, which may pave the way for use in liver tissue engineering and drug testing.
Collapse
Affiliation(s)
- Christian Willems
- Department of Biomedical Materials, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany; (C.W.); (F.Q.)
| | - Fangdi Qi
- Department of Biomedical Materials, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany; (C.W.); (F.Q.)
| | - Marie-Luise Trutschel
- Department of Pharmaceutical Technology, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany; (C.W.); (F.Q.)
- Interdisciplinary Center of Materials Science, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
3
|
Ciulla MG, Marchini A, Gazzola J, Forouharshad M, Pugliese R, Gelain F. In Situ Transglutaminase Cross-Linking Improves Mechanical Properties of Self-Assembling Peptides for Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:1723-1734. [PMID: 38346174 DOI: 10.1021/acsabm.3c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The development of three-dimensional (3D) biomaterials that mimic natural tissues is required for efficiently restoring physiological functions of injured tissues and organs. In the field of soft hydrogels, self-assembled peptides (SAPs) stand out as distinctive biomimetic scaffolds, offering tunable properties. They have garnered significant attention in nanomedicine due to their innate ability to self-assemble, resulting in the creation of fibrous nanostructures that closely mimic the microenvironment of the extracellular matrix (ECM). This unique feature ensures their biocompatibility and bioactivity, making them a compelling area of study over the past few decades. As they are soft hydrogels, approaches are necessary to enhance the stiffness and resilience of the SAP materials. This work shows an enzymatic strategy to selectively increase the stiffness and resiliency of functionalized SAPs using transglutaminase (TGase) type 2, an enzyme capable of triggering the formation of isopeptide bonds. To this aim, we synthesized a set of SAP sequences and characterized their cross-linking via rheological experiments, atomic force microscopy (AFM), thioflavin-T binding assay, and infrared spectroscopy (ATR-FTIR) tests. The results showed an improvement of the storage modulus of cross-linked SAPs at no cost of the maximum stress-at-failure. Further, in in vitro tests, we examined and validated the TGase capability to cross-link SAPs without hampering seeded neural stem cells (hNSCs) viability and differentiation, potentially leaving the door open for safe in situ cross-linking reactions in vivo.
Collapse
Affiliation(s)
- Maria Gessica Ciulla
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Amanda Marchini
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Jacopo Gazzola
- Department of Biotechnology and Biosciences, University of Milan - Bicocca, 20125 Milan, Italy
| | - Mahdi Forouharshad
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Raffaele Pugliese
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Fabrizio Gelain
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| |
Collapse
|
4
|
Mohanto S, Narayana S, Merai KP, Kumar JA, Bhunia A, Hani U, Al Fatease A, Gowda BHJ, Nag S, Ahmed MG, Paul K, Vora LK. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review. Int J Biol Macromol 2023; 253:127143. [PMID: 37793512 DOI: 10.1016/j.ijbiomac.2023.127143] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
A gelatin-based hydrogel system is a stimulus-responsive, biocompatible, and biodegradable polymeric system with solid-like rheology that entangles moisture in its porous network that gradually protrudes to assemble a hierarchical crosslinked arrangement. The hydrolysis of collagen directs gelatin construction, which retains arginyl glycyl aspartic acid and matrix metalloproteinase-sensitive degeneration sites, further confining access to chemicals entangled within the gel (e.g., cell encapsulation), modulating the release of encapsulated payloads and providing mechanical signals to the adjoining cells. The utilization of various types of functional tunable biopolymers as scaffold materials in hydrogels has become highly attractive due to their higher porosity and mechanical ability; thus, higher loading of proteins, peptides, therapeutic molecules, etc., can be further modulated. Furthermore, a stimulus-mediated gelatin-based hydrogel with an impaired concentration of gellan demonstrated great shear thinning and self-recovering characteristics in biomedical and tissue engineering applications. Therefore, this contemporary review presents a concise version of the gelatin-based hydrogel as a conceivable biomaterial for various biomedical applications. In addition, the article has recapped the multiple sources of gelatin and their structural characteristics concerning stimulating hydrogel development and delivery approaches of therapeutic molecules (e.g., proteins, peptides, genes, drugs, etc.), existing challenges, and overcoming designs, particularly from drug delivery perspectives.
Collapse
Affiliation(s)
- Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India.
| | - Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Khushboo Paresh Merai
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Jahanvee Ashok Kumar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Adrija Bhunia
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK.
| | - Sagnik Nag
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Rd, 632014, Tamil Nadu, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK
| |
Collapse
|
5
|
Naranjo-Alcazar R, Bendix S, Groth T, Gallego Ferrer G. Research Progress in Enzymatically Cross-Linked Hydrogels as Injectable Systems for Bioprinting and Tissue Engineering. Gels 2023; 9:gels9030230. [PMID: 36975679 PMCID: PMC10048521 DOI: 10.3390/gels9030230] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Hydrogels have been developed for different biomedical applications such as in vitro culture platforms, drug delivery, bioprinting and tissue engineering. Enzymatic cross-linking has many advantages for its ability to form gels in situ while being injected into tissue, which facilitates minimally invasive surgery and adaptation to the shape of the defect. It is a highly biocompatible form of cross-linking, which permits the harmless encapsulation of cytokines and cells in contrast to chemically or photochemically induced cross-linking processes. The enzymatic cross-linking of synthetic and biogenic polymers also opens up their application as bioinks for engineering tissue and tumor models. This review first provides a general overview of the different cross-linking mechanisms, followed by a detailed survey of the enzymatic cross-linking mechanism applied to both natural and synthetic hydrogels. A detailed analysis of their specifications for bioprinting and tissue engineering applications is also included.
Collapse
Affiliation(s)
- Raquel Naranjo-Alcazar
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Correspondence:
| | - Sophie Bendix
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Research, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Gloria Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine, Carlos III Health Institute (CIBER-BBN, ISCIII), 46022 Valencia, Spain
| |
Collapse
|
6
|
Stojkov G, Niyazov Z, Picchioni F, Bose RK. Relationship between Structure and Rheology of Hydrogels for Various Applications. Gels 2021; 7:255. [PMID: 34940315 PMCID: PMC8700820 DOI: 10.3390/gels7040255] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 02/01/2023] Open
Abstract
Hydrogels have gained a lot of attention with their widespread use in different industrial applications. The versatility in the synthesis and the nature of the precursor reactants allow for a varying range of hydrogels with different mechanical and rheological properties. Understanding of the rheological behavior and the relationship between the chemical structure and the resulting properties is crucial, and is the focus of this review. Specifically, we include detailed discussion on the correlation between the rheological characteristics of hydrogels and their possible applications. Different rheological tests such as time, temperature and frequency sweep, among others, are described and the results of those tests are reported. The most prevalent applications of hydrogels are also discussed.
Collapse
Affiliation(s)
| | | | | | - Ranjita K. Bose
- Department of Chemical Engineering, Product Technology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (G.S.); (Z.N.); (F.P.)
| |
Collapse
|
7
|
Willems C, Trutschel ML, Mazaikina V, Strätz J, Mäder K, Fischer S, Groth T. Hydrogels Based on Oxidized Cellulose Sulfates and Carboxymethyl Chitosan: Studies on Intrinsic Gel Properties, Stability, and Biocompatibility. Macromol Biosci 2021; 21:e2100098. [PMID: 34124844 DOI: 10.1002/mabi.202100098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/06/2021] [Indexed: 11/07/2022]
Abstract
Cellulose and chitosan are excellent components for the fabrication of bioactive scaffolds, as they are biocompatible and abundantly available. Their derivatives Ocarboxymethyl chitosan (CMChi) and oxidized cellulose sulfate (oxCS) can form in situ gelling, bioactive hydrogels, due to the formation of imine bonds for crosslinking. Here the influence of the degrees of sulfation (DS), oxidation (DO), and the molecular weight of oxCS on intrinsic and rheological properties of such hydrogels and their ability to support the survival and growth of human-adipose-derived stem cells (hADSC) is investigated. It is found that the pH of the hydrogels is generally slightly acidic, while their network density and E-modulus are found to be dependent on the DS and DO, which makes the properties of hydrogels tunable. Extensive studies show that hydrogels can be stable for up to 14 days and that their stability is largely dependent on the DO, molecular weight, and the components mixing ratio. Cytotoxicity studies of the hydrogel with hADSCs show biocompatible gels in dependence on the molecular weight and degree of oxidation with viable cells up to 14 days. These findings can help to develop specifically tailored hydrogels for tissue engineering applications to replace different types of connective tissue.
Collapse
Affiliation(s)
- Christian Willems
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120, Halle (Saale), Germany
| | - Marie-Luise Trutschel
- Department of Pharmaceutical Technology, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes Strasse 3, 06120, Halle (Saale), Germany
| | - Vera Mazaikina
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120, Halle (Saale), Germany
| | - Juliane Strätz
- Institute of Plant and Wood Chemistry, Technische Universität Dresden, Pienner Strasse 19, 01737, Tharandt, Germany
| | - Karsten Mäder
- Department of Pharmaceutical Technology, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes Strasse 3, 06120, Halle (Saale), Germany
| | - Steffen Fischer
- Institute of Plant and Wood Chemistry, Technische Universität Dresden, Pienner Strasse 19, 01737, Tharandt, Germany
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120, Halle (Saale), Germany.,Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, 06099, Halle (Saale), Germany
| |
Collapse
|
8
|
van Velthoven MJJ, Ramadan R, Zügel FS, Klotz BJ, Gawlitta D, Costa PF, Malda J, Castilho MD, de Kort LMO, de Graaf P. Gel Casting as an Approach for Tissue Engineering of Multilayered Tubular Structures. Tissue Eng Part C Methods 2021; 26:190-198. [PMID: 32089096 DOI: 10.1089/ten.tec.2019.0280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several urological structures, such as the male urethra, have a tubular organization consisting of different layers. However, in severe urethral disease, urologists are limited to replacing solely the epithelial layer. In case of severe hypospadias and urethral stricture disease, the underlying supporting structure (the corpus spongiosum) is either absent or fibrotic, causing suboptimal vascularization and therefore increasing the risk of graft failure. Recapitulating the multilayered architecture of the urethra, including supporting structure with tissue engineering, might minimize urethral graft failure. However, current tissue engineering applications for complex multilayered tubular constructs are limited. We describe a gel casting method to tissue engineer multilayered tubular constructs based on fiber-reinforced cell-laden hydrogels. For this, a multichambered polydimethylsiloxane mold was casted with fiber-reinforced hydrogels containing smooth muscle cells (SMCs) and a coculture of endothelial cells and pericytes. The cell-loaded hydrogels were rolled, with the fiber mesh as guidance, into a tubular construct. In the lumen, urothelial cells were seeded and survived for 2 weeks. In the tubular construct, the cells showed good viability and functionality: endothelial cells formed capillary-like structures supported by pericytes and SMCs expressed elastin. With a graft produced by this technique, supported with subepithelial vascularization, urethral reconstructive surgery can be improved. This approach toward tissue engineering of multilayered tubular structures can also be applied to other multilayered tubular structures found in the human body. Impact Statement Recapitulating the multilayered architecture of tubular structures found in the human body might minimize graft failure. Current tissue engineering applications for complex multilayered tubular constructs are limited. Here we describe a gel casting approach based on fiber-reinforced cell-laden hydrogels. A multichambered polydimethylsiloxane mold was casted with cell-loaded, fiber-reinforced hydrogels, with the fiber mesh as guidance, into a tubular construct. A graft produced by this technique can improve reconstructive surgery by providing subepithelial vascularization and thereby can reduce graft failure.
Collapse
Affiliation(s)
- Melissa J J van Velthoven
- Department of Urology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Rana Ramadan
- Department of Urology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Franziska S Zügel
- Department of Urology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Barbara J Klotz
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands.,Department of Oral and Maxillofacial Surgery & Special Dental Care and University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Debby Gawlitta
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands.,Department of Oral and Maxillofacial Surgery & Special Dental Care and University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Pedro F Costa
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jos Malda
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Equine Sciences, Faculty of Veterinary Medicine, University Utrecht, Utrecht, The Netherlands
| | - Miguel D Castilho
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Laetitia M O de Kort
- Department of Urology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Petra de Graaf
- Department of Urology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
9
|
Synthesis and Characterization of Oxidized Polysaccharides for In Situ Forming Hydrogels. Biomolecules 2020; 10:biom10081185. [PMID: 32824101 PMCID: PMC7464976 DOI: 10.3390/biom10081185] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/26/2022] Open
Abstract
Polysaccharides are widely used as building blocks of scaffolds and hydrogels in tissue engineering, which may require their chemical modification to permit crosslinking. The goal of this study was to generate a library of oxidized alginate (oALG) and oxidized hyaluronic acid (oHA) that can be used for in situ gelling hydrogels by covalent reaction between aldehyde groups of the oxidized polysaccharides (oPS) and amino groups of carboxymethyl chitosan (CMC) through imine bond formation. Here, we studied the effect of sodium periodate concentration and reaction time on aldehyde content, molecular weight of derivatives and cytotoxicity of oPS towards 3T3-L1 fibroblasts. It was found that the molecular weights of all oPs decreased with oxidation and that the degree of oxidation was generally higher in oHA than in oALG. Studies showed that only oPs with an oxidation degree above 25% were cytotoxic. Initial studies were also done on the crosslinking of oPs with CMC showing with rheometry that rather soft gels were formed from higher oxidized oPs possessing a moderate cytotoxicity. The results of this study indicate the potential of oALG and oHA for use as in situ gelling hydrogels or inks in bioprinting for application in tissue engineering and controlled release.
Collapse
|
10
|
Advances in biomaterials for adipose tissue reconstruction in plastic surgery. NANOTECHNOLOGY REVIEWS 2020. [DOI: 10.1515/ntrev-2020-0028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Adipose tissue reconstruction is an important technique for soft tissue defects caused by facial plastic surgery and trauma. Adipose tissue reconstruction can be repaired by fat transplantation and biomaterial filling, but there are some problems in fat transplantation, such as second operation and limited resources. The application of advanced artificial biomaterials is a promising strategy. In this paper, injectable biomaterials and three-dimensional (3D) tissue-engineered scaffold materials for adipose tissue reconstruction in plastic surgery are reviewed. Injectable biomaterials include natural biomaterials and artificial biomaterials, which generally have problems such as high absorptivity of fillers, repeated injection, and rejection. In recent years, the technology of new 3D tissue-engineering scaffold materials with adipose-derived stem cells (ADSCs) and porous scaffold as the core has made good progress in fat reconstruction, which is expected to solve the current problem of clinical adipose tissue reconstruction, and various biomaterials preparation technology and transformation research also provide the basis for clinical transformation of fat tissue reconstruction.
Collapse
|
11
|
Besser RR, Bowles AC, Alassaf A, Carbonero D, Claure I, Jones E, Reda J, Wubker L, Batchelor W, Ziebarth N, Silvera R, Khan A, Maciel R, Saporta M, Agarwal A. Enzymatically crosslinked gelatin-laminin hydrogels for applications in neuromuscular tissue engineering. Biomater Sci 2020; 8:591-606. [PMID: 31859298 PMCID: PMC7141910 DOI: 10.1039/c9bm01430f] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report a water-soluble and non-toxic method to incorporate additional extracellular matrix proteins into gelatin hydrogels, while obviating the use of chemical crosslinkers such as glutaraldehyde. Gelatin hydrogels were fabricated using a range of gelatin concentrations (4%-10%) that corresponded to elastic moduli of approximately 1 kPa-25 kPa, respectively, a substrate stiffness relevant for multiple cell types. Microbial transglutaminase was then used to enzymatically crosslink a layer of laminin on top of gelatin hydrogels, resulting in 2-component gelatin-laminin hydrogels. Human induced pluripotent stem cell derived spinal spheroids readily adhered and rapidly extended axons on GEL-LN hydrogels. Axons displayed a more mature morphology and superior electrophysiological properties on GEL-LN hydrogels compared to the controls. Schwann cells on GEL-LN hydrogels adhered and proliferated normally, displayed a healthy morphology, and maintained the expression of Schwann cell specific markers. Lastly, skeletal muscle cells on GEL-LN hydrogels achieved long-term culture for up to 28 days without delamination, while expressing higher levels of terminal genes including myosin heavy chain, MyoD, MuSK, and M-cadherin suggesting enhanced maturation potential and myotube formation compared to the controls. Future studies will employ the superior culture outcomes of this hybrid substrate for engineering functional neuromuscular junctions and related organ on a chip applications.
Collapse
Affiliation(s)
- Rachel R Besser
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Dr, MEA 203, Coral Gables, FL 33146, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chen Y, Li C, Li C, Chen J, Li Y, Xie H, Lin C, Fan M, Guo Y, Gao E, Yan W, Tao L. Tailorable Hydrogel Improves Retention and Cardioprotection of Intramyocardial Transplanted Mesenchymal Stem Cells for the Treatment of Acute Myocardial Infarction in Mice. J Am Heart Assoc 2020; 9:e013784. [PMID: 31955638 PMCID: PMC7033822 DOI: 10.1161/jaha.119.013784] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Poor engraftment of intramyocardial stem cells limits their therapeutic efficiency against myocardial infarction (MI)‐induced cardiac injury. Transglutaminase cross‐linked Gelatin (Col‐Tgel) is a tailorable collagen‐based hydrogel that is becoming an excellent biomaterial scaffold for cellular delivery in vivo. Here, we tested the hypothesis that Col‐Tgel increases retention of intramyocardially‐injected stem cells, and thereby reduces post‐MI cardiac injury. Methods and Results Adipose‐derived mesenchymal stem cells (ADSCs) were co‐cultured with Col‐Tgel in a 3‐dimensional system in vitro, and Col‐Tgel encapsulated ADSCs were observed using scanning electron microscopy and confocal microscopy. Vitality, proliferation, and migration of co‐cultured ADSCs were evaluated. In addition, mice were subjected to MI and were intramyocardially injected with ADSCs, Col‐Tgel, or a combination thereof. ADSCs engraftment, survival, cardiac function, and fibrosis were assessed. In vitro MTT and Cell Counting Kit‐8 assays demonstrated that ADSCs survive and proliferate up to 4 weeks in the Col‐Tgel. In addition, MTT and transwell assays showed that ADSCs migrate outside the edge of the Col‐Tgel sphere. Furthermore, when compared with ADSCs alone, Col‐Tgel‐encapsulated ADSCs significantly enhanced the long‐term retention and cardioprotective effect of ADSCs against MI‐induced cardiac injury. Conclusions In the current study, we successfully established a 3‐dimensional co‐culture system using ADSCs and Col‐Tgel. The Col‐Tgel creates a suitable microenvironment for long‐term retention of ADSCs in an ischemic area, and thereby enhances their cardioprotective effects. Taken together, this study may provide an alternative biomaterial for stem cell‐based therapy to treat ischemic heart diseases.
Collapse
Affiliation(s)
- Youhu Chen
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Congye Li
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Chengxiang Li
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Jiangwei Chen
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Yan Li
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Huaning Xie
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Chen Lin
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Miaomiao Fan
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Yongzhen Guo
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Erhe Gao
- Center for Translational MedicineTemple UniversityPhiladelphiaPA
| | - Wenjun Yan
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Ling Tao
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| |
Collapse
|
13
|
Review transglutaminases: part II-industrial applications in food, biotechnology, textiles and leather products. World J Microbiol Biotechnol 2019; 36:11. [PMID: 31879822 DOI: 10.1007/s11274-019-2792-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022]
Abstract
Because of their protein cross-linking properties, transglutaminases are widely used in several industrial processes, including the food and pharmaceutical industries. Transglutaminases obtained from animal tissues and organs, the first sources of this enzyme, are being replaced by microbial sources, which are cheaper and easier to produce and purify. Since the discovery of microbial transglutaminase (mTGase), the enzyme has been produced for industrial applications by traditional fermentation process using the bacterium Streptomyces mobaraensis. Several studies have been carried out in this field to increase the enzyme industrial productivity. Researches on gene expression encoding transglutaminase biosynthesis were performed in Streptomyces lividans, Escherichia coli, Corynebacterium glutamicum, Yarrowia lipolytica, and Pichia pastoris. In the first part of this review, we presented an overview of the literature on the origins, types, mediated reactions, and general characterizations of these important enzymes, as well as the studies on recombinant microbial transglutaminases. In this second part, we focus on the application versatility of mTGase in three broad areas: food, pharmacological, and biotechnological industries. The use of mTGase is presented for several food groups, showing possibilities of applications and challenges to further improve the quality of the end-products. Some applications in the textile and leather industries are also reviewed, as well as special applications in the PEGylation reaction, in the production of antibody drug conjugates, and in regenerative medicine.
Collapse
|
14
|
Echave MC, Pimenta-Lopes C, Pedraz JL, Mehrali M, Dolatshahi-Pirouz A, Ventura F, Orive G. Enzymatic crosslinked gelatin 3D scaffolds for bone tissue engineering. Int J Pharm 2019; 562:151-161. [PMID: 30853482 DOI: 10.1016/j.ijpharm.2019.02.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/17/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Abstract
Bone tissue engineering is an emerging medical field that has been developed in recent years to address pathologies with limited ability of bones to regenerate. Here we report the fabrication and characterization of microbial transglutaminase crosslinked gelatin-based scaffolds designed for serving as both cell substrate and growth factor release system. In particular, morphological, biomechanical and biological features have been analyzed. The enzyme ratio applied during the fabrication of the scaffolds affects the swelling capacity and the mechanical properties of the final structure. The developed systems are not cytotoxic according to the biocompatibility tests. The biological performance of selected formulations was studied using L-929 fibroblasts, D1 MSC and MG63 osteoblasts. Moreover, scaffolds allowed efficient osteogenic differentiation and signaling of MSCs. MSC cultured on the scaffolds not only presented lower proliferative and stemness profile, but also increased expression of osteoblast-related genes (Col1a1, Runx2, Osx). Furthermore, the in vitro release kinetics of vascular endothelial growth factor (VEGF) and bone morphogenetic protein -2 (BMP-2) from the scaffolds were also investigated. The release of the growth factors produced from the scaffolds followed a first order kinetics. These results highlight that the scaffolds designed and developed in this work may be suitable candidates for bone tissue regeneration purposes.
Collapse
Affiliation(s)
- Mari Carmen Echave
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Carolina Pimenta-Lopes
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, C/ Feixa Llarga s/n 08907, Hospitalet de Llobregat, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Mehdi Mehrali
- Technical University of Denmark, Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceutical, 2800 Kgs, Denmark
| | - Alireza Dolatshahi-Pirouz
- Technical University of Denmark, Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceutical, 2800 Kgs, Denmark; Department of Dentistry - Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen 6525 EX, The Netherlands
| | - Fransesc Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, C/ Feixa Llarga s/n 08907, Hospitalet de Llobregat, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| |
Collapse
|
15
|
Hajihasani Biouki M, Mobedi H, Karkhaneh A, Daliri Joupari M. Development of a simvastatin loaded injectable porous scaffold in situ formed by phase inversion method for bone tissue regeneration. Int J Artif Organs 2018; 42:72-79. [PMID: 30482084 DOI: 10.1177/0391398818806161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION: The use of injectable scaffolds as a minimally invasive method is a good choice in tissue engineering applications. A critical parameter for the tissue engineering scaffolds is a suitable morphology with interconnected pores. We present the development of a simvastatin loaded scaffold that forms in situ and provides the porous structure with interconnected pores. METHODS: The formulation of these scaffolds includes a polymeric solution of poly lactic-co-glycolic acid (25 wt%) in N-methyl-2-pyrrolidone containing 6 wt% deionized water and porogen (mannitol, four times the weight of the polymer). We have grafted simvastatin to poly lactic-co-glycolic acid by the esterification reactions. Simvastatin or simvastatin-grafted poly lactic-co-glycolic acid in different levels was added to polymer solution and finally the solution was injected into phosphate buffered saline. The simvastatin-grafted poly lactic-co-glycolic acid was characterized by attenuated total reflection Fourier-transform infra-red and 1H-nuclear magnetic resonance spectroscopy. The morphology, porosity, and biocompatibility of the scaffolds were evaluated. The in vitro simvastatin release from the various formulations was studied. Osteogenic differentiation of the adipose-derived stem cells was investigated using alkaline phosphatase activity assay and cell mineralization was evaluated using Alizarin red staining. RESULTS: The morphology results showed the resultant scaffold was porous with the interconnected pores. The scaffolds presented 91% porosity. Non-toxic doses of simvastatin in the scaffolds were determined by methyl-thiazolyl diphenyl-tetrazolium bromide assay. The released simvastatin from the scaffolds continues over 80 days. Alkaline phosphatase activity and Alizarin red results indicated that cell osteogenic differentiation is promoted. CONCLUSION: The results demonstrated that release of simvastatin from the injectable scaffolds can have positive effects on osteogenic differentiation of the adipose-derived stem cells.
Collapse
Affiliation(s)
- Mina Hajihasani Biouki
- 1 Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Mobedi
- 2 Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Akbar Karkhaneh
- 3 Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Morteza Daliri Joupari
- 4 Department of Animal and Marine Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
16
|
Guebitz GM, Nyanhongo GS. Enzymes as Green Catalysts and Interactive Biomolecules in Wound Dressing Hydrogels. Trends Biotechnol 2018; 36:1040-1053. [DOI: 10.1016/j.tibtech.2018.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 02/08/2023]
|
17
|
Niepel MS, Almouhanna F, Ekambaram BK, Menzel M, Heilmann A, Groth T. Cross-linking multilayers of poly-l-lysine and hyaluronic acid: Effect on mesenchymal stem cell behavior. Int J Artif Organs 2018. [PMID: 29528795 DOI: 10.1177/0391398817752598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cells possess a specialized machinery through which they can sense physical as well as chemical alterations in their surrounding microenvironment that affect their cellular behavior. AIM In this study, we aim to establish a polyelectrolyte multilayer system of 24 layers of poly-l-lysine and hyaluronic acid to control stem cell response after chemical cross-linking. METHODS AND RESULTS The multilayer build-up process is monitored using different methods, which show that the studied polyelectrolyte multilayer system grows exponentially following the islands and islets theory. Successful chemical cross-linking is monitored by an increased zeta potential toward negative magnitude and an extraordinary growth in thickness. Human adipose-derived stem cells are used here and a relationship between cross-linking degree and cell spreading is shown as cells seeded on higher cross-linked polyelectrolyte multilayer show enhanced spreading. Furthermore, cells that fail to establish focal adhesions on native and low cross-linked polyelectrolyte multilayer films do not proliferate to a high extent in comparison to cells seeded on highly cross-linked polyelectrolyte multilayer, which also show an increased metabolic activity. Moreover, this study shows the relation between cross-linking degree and human adipose-derived stem cell lineage commitment. Histological staining reveals that highly cross-linked polyelectrolyte multilayers support osteogenic differentiation, whereas less cross-linked and native polyelectrolyte multilayers support adipogenic differentiation in the absence of any specific inducers. CONCLUSION Owing to the precise control of polyelectrolyte multilayer properties such as potential, wettability, and viscoelasticity, the system presented here offers great potential for guided stem cell differentiation in regenerative medicine, especially in combination with materials exhibiting a defined surface topography.
Collapse
Affiliation(s)
- Marcus S Niepel
- 1 Institute of Pharmacy, Biomedical Materials Group, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,2 Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Fadi Almouhanna
- 1 Institute of Pharmacy, Biomedical Materials Group, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,3 Pharmaceutical Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Bhavya K Ekambaram
- 1 Institute of Pharmacy, Biomedical Materials Group, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Matthias Menzel
- 4 Biological and Macromolecular Materials Business Unit, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Andreas Heilmann
- 4 Biological and Macromolecular Materials Business Unit, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Thomas Groth
- 1 Institute of Pharmacy, Biomedical Materials Group, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,2 Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
18
|
Van Nieuwenhove I, Tytgat L, Ryx M, Blondeel P, Stillaert F, Thienpont H, Ottevaere H, Dubruel P, Van Vlierberghe S. Soft tissue fillers for adipose tissue regeneration: From hydrogel development toward clinical applications. Acta Biomater 2017; 63:37-49. [PMID: 28941654 DOI: 10.1016/j.actbio.2017.09.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/05/2017] [Accepted: 09/19/2017] [Indexed: 02/08/2023]
Abstract
There is a clear and urgent clinical need to develop soft tissue fillers that outperform the materials currently used for adipose tissue reconstruction. Recently, extensive research has been performed within this field of adipose tissue engineering as the commercially available products and the currently existing techniques are concomitant with several disadvantages. Commercial products are highly expensive and associated with an imposing need for repeated injections. Lipofilling or free fat transfer has an unpredictable outcome with respect to cell survival and potential resorption of the fat grafts. Therefore, researchers are predominantly investigating two challenging adipose tissue engineering strategies: in situ injectable materials and porous 3D printed scaffolds. The present work provides an overview of current research encompassing synthetic, biopolymer-based and extracellular matrix-derived materials with a clear focus on emerging fabrication technologies and developments realized throughout the last decade. Moreover, clinical relevance of the most promising materials will be discussed, together with potential concerns associated with their application in the clinic.
Collapse
|
19
|
Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 2017; 35:530-544. [DOI: 10.1016/j.biotechadv.2017.05.006] [Citation(s) in RCA: 407] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/08/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
|
20
|
Focus issue | Bioartificial organs and tissue engineering. Int J Artif Organs 2017; 40:133-135. [PMID: 28493275 DOI: 10.5301/ijao.5000599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2017] [Indexed: 12/27/2022]
|
21
|
Arkenberg MR, Lin CC. Orthogonal enzymatic reactions for rapid crosslinking and dynamic tuning of PEG–peptide hydrogels. Biomater Sci 2017; 5:2231-2240. [DOI: 10.1039/c7bm00691h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A biocompatible PEG–peptide hydrogel with dynamically tunable stiffness was developed through sortase A-mediated crosslinking and mushroom tyrosinase-triggered stiffening.
Collapse
Affiliation(s)
- Matthew R. Arkenberg
- Department of Biomedical Engineering
- Purdue School of Engineering & Technology
- Indiana University-Purdue University Indianapolis
- Indianapolis
- USA
| | - Chien-Chi Lin
- Department of Biomedical Engineering
- Purdue School of Engineering & Technology
- Indiana University-Purdue University Indianapolis
- Indianapolis
- USA
| |
Collapse
|