1
|
Alexandraki A, Papageorgiou E, Zacharia M, Keramida K, Papakonstantinou A, Cipolla CM, Tsekoura D, Naka K, Mazzocco K, Mauri D, Tsiknakis M, Manikis GC, Marias K, Marcou Y, Kakouri E, Konstantinou I, Daniel M, Galazi M, Kampouroglou E, Ribnikar D, Brown C, Karanasiou G, Antoniades A, Fotiadis D, Filippatos G, Constantinidou A. New Insights in the Era of Clinical Biomarkers as Potential Predictors of Systemic Therapy-Induced Cardiotoxicity in Women with Breast Cancer: A Systematic Review. Cancers (Basel) 2023; 15:3290. [PMID: 37444400 PMCID: PMC10340234 DOI: 10.3390/cancers15133290] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Cardiotoxicity induced by breast cancer therapies is a potentially serious complication associated with the use of various breast cancer therapies. Prediction and better management of cardiotoxicity in patients receiving chemotherapy is of critical importance. However, the management of cancer therapy-related cardiac dysfunction (CTRCD) lacks clinical evidence and is based on limited clinical studies. AIM To provide an overview of existing and potentially novel biomarkers that possess a promising predictive value for the early and late onset of CTRCD in the clinical setting. METHODS A systematic review of published studies searching for promising biomarkers for the prediction of CTRCD in patients with breast cancer was undertaken according to PRISMA guidelines. A search strategy was performed using PubMed, Google Scholar, and Scopus for the period 2013-2023. All subjects were >18 years old, diagnosed with breast cancer, and received breast cancer therapies. RESULTS The most promising biomarkers that can be used for the development of an alternative risk cardiac stratification plan for the prediction and/or early detection of CTRCD in patients with breast cancer were identified. CONCLUSIONS We highlighted the new insights associated with the use of currently available biomarkers as a standard of care for the management of CTRCD and identified potentially novel clinical biomarkers that could be further investigated as promising predictors of CTRCD.
Collapse
Affiliation(s)
- Alexia Alexandraki
- A.G. Leventis Clinical Trials Unit, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (E.P.); (M.Z.)
| | - Elisavet Papageorgiou
- A.G. Leventis Clinical Trials Unit, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (E.P.); (M.Z.)
| | - Marina Zacharia
- A.G. Leventis Clinical Trials Unit, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (E.P.); (M.Z.)
| | - Kalliopi Keramida
- 2nd Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
- Cardiology Department, General Anti-Cancer Oncological Hospital, Agios Savvas, 11522 Athens, Greece
| | - Andri Papakonstantinou
- Department of Oncology-Pathology, Karolinska Institute, 17176 Stockholm, Sweden;
- Department for Breast, Endocrine Tumours and Sarcoma, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Carlo M. Cipolla
- Cardioncology and Second Opinion Division, European Institute of Oncology (IEO), IRCCS, Via Ripamonti 435, 20141 Milan, Italy;
| | - Dorothea Tsekoura
- 2nd Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, 76 Vas. Sofias Av., 11528 Athens, Greece; (D.T.); (E.K.)
| | - Katerina Naka
- 2nd Cardiology Department, University of Ioannina Medical School, 45110 Ioannina, Greece;
| | - Ketti Mazzocco
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology IRCCS, 20139 Milan, Italy;
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Davide Mauri
- Department of Medical Oncology, University of Ioannina, 45110 Ioannina, Greece;
| | - Manolis Tsiknakis
- Department of Electrical and Computer Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.T.); (K.M.)
- Computational BioMedicine Laboratory (CBML), Institute of Computer Science, Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece;
| | - Georgios C. Manikis
- Computational BioMedicine Laboratory (CBML), Institute of Computer Science, Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece;
| | - Kostas Marias
- Department of Electrical and Computer Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.T.); (K.M.)
- Computational BioMedicine Laboratory (CBML), Institute of Computer Science, Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece;
| | - Yiola Marcou
- Department of Medical Oncology, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (Y.M.); (E.K.); (I.K.); (M.G.)
| | - Eleni Kakouri
- Department of Medical Oncology, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (Y.M.); (E.K.); (I.K.); (M.G.)
| | - Ifigenia Konstantinou
- Department of Medical Oncology, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (Y.M.); (E.K.); (I.K.); (M.G.)
| | - Maria Daniel
- Department of Radiation Oncology, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus;
| | - Myria Galazi
- Department of Medical Oncology, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (Y.M.); (E.K.); (I.K.); (M.G.)
| | - Effrosyni Kampouroglou
- 2nd Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, 76 Vas. Sofias Av., 11528 Athens, Greece; (D.T.); (E.K.)
| | - Domen Ribnikar
- Division of Medical Oncology, Institute of Oncology Ljubljana, Faculty of Medicine, University of Ljubljana, Zaloska Cesta 2, 1000 Ljubljana, Slovenia;
| | - Cameron Brown
- Translational Medicine, Stremble Ventures Ltd., 59 Christaki Kranou, Limassol 4042, Cyprus;
| | - Georgia Karanasiou
- Biomedical Research Institute, Foundation for Research and Technology, Hellas, 45500 Ioannina, Greece;
| | - Athos Antoniades
- Research and Development, Stremble Ventures Ltd., 59 Christaki Kranou, Limassol 4042, Cyprus;
| | - Dimitrios Fotiadis
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece;
| | - Gerasimos Filippatos
- Cardio-Oncology Clinic, Heart Failure Unit, Department of Cardiology, National and Kapodistrian University of Athens Medical School, Athens University Hospital Attikon, 11527 Athens, Greece;
| | - Anastasia Constantinidou
- Department of Medical Oncology, Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Nicosia 2006, Cyprus; (Y.M.); (E.K.); (I.K.); (M.G.)
- School of Medicine, University of Cyprus, Panepistimiou 1, Aglantzia, Nicosia 2408, Cyprus
| |
Collapse
|
2
|
Jin H, Xu J, Sui Z, Wang L. Risk factors from Framingham risk score for anthracyclines cardiotoxicity in breast cancer: A systematic review and meta-analysis. Front Cardiovasc Med 2023; 10:1101585. [PMID: 36742068 PMCID: PMC9892715 DOI: 10.3389/fcvm.2023.1101585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Background Framingham risk score (FRS) is an effective tool for evaluating the 10-year risk of cardiovascular diseases. However, the sensitivity of FRS for anthracycline-induced cardiotoxicity is unclear. This meta-analysis aims to evaluate the correlation between risk factors (hypertension, hyperlipidemia, diabetes, smoking, and obesity) in FRS and anthracycline-induced cardiotoxicity in breast cancer. Methods We searched PubMed, EMBASE, and Cochrane Library for studies published from inception to January 2022 which reported cardiotoxicity due to anthracycline. Cardiotoxicity defined as any cardiac events were used as the primary endpoint. A total of 33 studies involving 55,708 breast cancer patients treated with anthracyclines were included in this meta-analysis. Results At least one risk factor was identified at baseline for the 55,708 breast cancer patients treated with anthracycline. Hypertension [I 2 = 45%, Fixed, RR (95% CI) = 1.40 (1.22, 1.60), p < 0.00001], hyperlipidemia [I 2 = 0%, Fixed, RR (95% CI): 1.35 (1.12, 1.62), p = 0.002], diabetes [I 2 = 0%, Fixed, RR (95% CI): 1.29 (1.05, 1.57), p = 0.01], and obesity [I 2 = 0%, Fixed, RR (95% CI): 1.32 (1.05, 1.67), p = 0.02] were associated with increased risks of cardiac events. In addition, smoking was also associated with reduced left ventricular ejection fraction (LVEF) during anthracycline chemotherapy [I 2 = 0%, Fixed, OR (95% CI): 1.91 (1.24, 2.95), p = 0.003] in studies that recorded only the odds ratio (OR). Conclusion Hypertension, hyperlipidemia, diabetes, smoking, and obesity are associated with increased risks of anthracycline-induced cardiotoxicity. Therefore, corresponding measures should be used to manage cardiovascular risk factors in breast cancer during and after anthracycline treatment.
Collapse
Affiliation(s)
- Hao Jin
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jianfeng Xu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zheng Sui
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lili Wang
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
3
|
Almeida ZL, Brito RMM. Amyloid Disassembly: What Can We Learn from Chaperones? Biomedicines 2022; 10:3276. [PMID: 36552032 PMCID: PMC9776232 DOI: 10.3390/biomedicines10123276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 12/23/2022] Open
Abstract
Protein aggregation and subsequent accumulation of insoluble amyloid fibrils with cross-β structure is an intrinsic characteristic of amyloid diseases, i.e., amyloidoses. Amyloid formation involves a series of on-pathway and off-pathway protein aggregation events, leading to mature insoluble fibrils that eventually accumulate in multiple tissues. In this cascade of events, soluble oligomeric species are formed, which are among the most cytotoxic molecular entities along the amyloid cascade. The direct or indirect action of these amyloid soluble oligomers and amyloid protofibrils and fibrils in several tissues and organs lead to cell death in some cases and organ disfunction in general. There are dozens of different proteins and peptides causing multiple amyloid pathologies, chief among them Alzheimer's, Parkinson's, Huntington's, and several other neurodegenerative diseases. Amyloid fibril disassembly is among the disease-modifying therapeutic strategies being pursued to overcome amyloid pathologies. The clearance of preformed amyloids and consequently the arresting of the progression of organ deterioration may increase patient survival and quality of life. In this review, we compiled from the literature many examples of chemical and biochemical agents able to disaggregate preformed amyloids, which have been classified as molecular chaperones, chemical chaperones, and pharmacological chaperones. We focused on their mode of action, chemical structure, interactions with the fibrillar structures, morphology and toxicity of the disaggregation products, and the potential use of disaggregation agents as a treatment option in amyloidosis.
Collapse
Affiliation(s)
| | - Rui M. M. Brito
- Chemistry Department and Coimbra Chemistry Centre—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
4
|
Babayeva M, Azzi B, Loewy ZG. Pharmacogenomics Informs Cardiovascular Pharmacotherapy. Methods Mol Biol 2022; 2547:201-240. [PMID: 36068466 DOI: 10.1007/978-1-0716-2573-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Precision medicine exemplifies the emergence of personalized treatment options which may benefit specific patient populations based upon their genetic makeup. Application of pharmacogenomics requires an understanding of how genetic variations impact pharmacokinetic and pharmacodynamic properties. This particular approach in pharmacotherapy is helpful because it can assist in and improve clinical decisions. Application of pharmacogenomics to cardiovascular pharmacotherapy provides for the ability of the medical provider to gain critical knowledge on a patient's response to various treatment options and risk of side effects.
Collapse
Affiliation(s)
| | | | - Zvi G Loewy
- Touro College of Pharmacy, New York, NY, USA.
- School of Medicine, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
5
|
Yang X, Li G, Guan M, Bapat A, Dai Q, Zhong C, Yang T, Luo C, An N, Liu W, Yang F, Pan H, Wang P, Gao Y, Gong Y, Das S, Shang H, Xing Y. Potential Gene Association Studies of Chemotherapy-Induced Cardiotoxicity: A Systematic Review and Meta-Analysis. Front Cardiovasc Med 2021; 8:651269. [PMID: 34150864 PMCID: PMC8213036 DOI: 10.3389/fcvm.2021.651269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy is widely used in the treatment of cancer patients, but the cardiotoxicity induced by chemotherapy is still a major concern to most clinicians. Currently, genetic methods have been used to detect patients with high risk of chemotherapy-induced cardiotoxicity (CIC), and our study evaluated the correlation between genomic variants and CIC. The systematic literature search was performed in the PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), China Biology Medicine disc (CBMdisc), the Embase database, China National Knowledge Internet (CNKI) and Wanfang database from inception until June 2020. Forty-one studies were identified that examined the relationship between genetic variations and CIC. And these studies examined 88 different genes and 154 single nucleotide polymorphisms (SNPs). Our study indicated 6 variants obviously associated with the increased risk for CIC, including CYBA rs4673 (pooled odds ratio, 1.93; 95% CI, 1.13–3.30), RAC2 rs13058338 (2.05; 1.11–3.78), CYP3A5 rs776746 (2.15; 1.00–4.62) ABCC1 rs45511401 (1.46; 1.05–2.01), ABCC2 rs8187710 (2.19; 1.38–3.48), and HER2-Ile655Val rs1136201 (2.48; 1.53–4.02). Although further studies are required to validate the diagnostic and prognostic roles of these 6 variants in predicting CIC, our study emphasizes the promising benefits of pharmacogenomic screening before chemotherapy to minimize the CIC.
Collapse
Affiliation(s)
- Xinyu Yang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Manke Guan
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Aneesh Bapat
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Qianqian Dai
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Changming Zhong
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tao Yang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Changyong Luo
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjing Liu
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haie Pan
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Pengqian Wang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Ye Gong
- Department of Critical Care Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Genetic Variability of Antioxidative Mechanisms and Cardiotoxicity after Adjuvant Radiotherapy in HER2-Positive Breast Cancer Patients. DISEASE MARKERS 2021; 2020:6645588. [PMID: 33425072 PMCID: PMC7772014 DOI: 10.1155/2020/6645588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/02/2020] [Accepted: 12/09/2020] [Indexed: 12/29/2022]
Abstract
Background Breast cancer treatment is associated with the occurrence of various cardiac adverse events. One of the mechanisms associated with cardiotoxicity is oxidative stress, against which cells are protected by antioxidative enzymes. Genetic variability of antioxidative enzymes can affect enzyme activity or expression, which modifies the ability of cells to defend themselves against oxidative stress and could consequently contribute to the occurrence of treatment-related cardiotoxicity. Our aim was to evaluate the association of common polymorphisms in antioxidative genes with cardiotoxicity after adjuvant radiotherapy (RT) in HER2-positive breast cancer patients. Methods Our retrospective study included 101 HER2-positive early breast cancer patients who received trastuzumab and adjuvant RT. We isolated DNA from buccal swabs and used competitive allele-specific PCR for genotyping of PON1 rs854560 and rs662, GSTP1 rs1138272 and rs1695, SOD2 rs4880, CAT rs1001179, and HIF1 rs1154965 polymorphisms. N-terminal pro B-type natriuretic peptide (NT-proBNP), left ventricular ejection fraction, and NYHA class were used as markers of cardiotoxicity. We used logistic regression to evaluate the association of genetic factors with markers of cardiotoxicity. Results Carriers of at least one polymorphic PON1 rs854560 allele were less likely to have increased NT-proBNP (OR = 0.34; 95% CI = 0.15-0.79; P = 0.012), even after adjustment for age (OR = 0.35; 95% CI = 0.15-0.83; P = 0.017). Carriers of at least one polymorphic PON1 rs662 allele were more likely to have increased NT-proBNP (OR = 4.44; 95% CI = 1.85-10.66; P = 0.001), even after adjustment for age (OR = 5.41; 95% CI = 2.12-13.78; P < 0.001). GSTP1 rs1695 was also associated with decreased NT-proBNP in the multivariable analysis (P = 0.026), while CAT rs1001179 was associated with NYHA class in the univariable (P = 0.012) and multivariable analysis (P = 0.023). Conclusion In our study, polymorphisms PON1 rs662 and rs854560, CAT rs1001179, and GSTP1 rs1695 were significantly associated with the occurrence of cardiac adverse events after adjuvant RT and could serve as biomarkers contributing to treatment personalization.
Collapse
|
7
|
Possible Susceptibility Genes for Intervention against Chemotherapy-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4894625. [PMID: 33110473 PMCID: PMC7578723 DOI: 10.1155/2020/4894625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Recent therapeutic advances have significantly improved the short- and long-term survival rates in patients with heart disease and cancer. Survival in cancer patients may, however, be accompanied by disadvantages, namely, increased rates of cardiovascular events. Chemotherapy-related cardiac dysfunction is an important side effect of anticancer therapy. While advances in cancer treatment have increased patient survival, treatments are associated with cardiovascular complications, including heart failure (HF), arrhythmias, cardiac ischemia, valve disease, pericarditis, and fibrosis of the pericardium and myocardium. The molecular mechanisms of cardiotoxicity caused by cancer treatment have not yet been elucidated, and they may be both varied and complex. By identifying the functional genetic variations responsible for this toxicity, we may be able to improve our understanding of the potential mechanisms and pathways of treatment, paving the way for the development of new therapies to target these toxicities. Data from studies on genetic defects and pharmacological interventions have suggested that many molecules, primarily those regulating oxidative stress, inflammation, autophagy, apoptosis, and metabolism, contribute to the pathogenesis of cardiotoxicity induced by cancer treatment. Here, we review the progress of genetic research in illuminating the molecular mechanisms of cancer treatment-mediated cardiotoxicity and provide insights for the research and development of new therapies to treat or even prevent cardiotoxicity in patients undergoing cancer treatment. The current evidence is not clear about the role of pharmacogenomic screening of susceptible genes. Further studies need to done in chemotherapy-induced cardiotoxicity.
Collapse
|
8
|
Ng PCI, Chan JYW, Leung RKK, Li J, Ren Z, Chan AWH, Xu Y, Lee SS, Wang R, Ji X, Zheng J, Chan DPC, Yew WW, Lee SMY. Role of oxidative stress in clofazimine-induced cardiac dysfunction in a zebrafish model. Biomed Pharmacother 2020; 132:110749. [PMID: 33017766 DOI: 10.1016/j.biopha.2020.110749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Clofazimine (CFZ), a riminophenazine, is now commonly used in the treatment of multidrug-resistant tuberculosis. However, its use may be potentially associated with cardiac dysfunction in some individuals. In this study, the zebrafish heart, by merit of its developmental and genetic characteristics being in homology with that of human, was chosen as an animal model for evaluation of such dysfunction. METHODS Morphological and physiological parameters were used to assess cardiac dysfunction. Transcriptome analysis was performed, followed by validation with real-time quantitative PCR, for delineation of the relevant genomics. RESULTS Exposure of 2 dpf zebrafish to 4 mg/L CFZ for 2 days, adversely affected cardiac functions including significant decreases in HR, SV, CO, and FS, with observable pathophysiological developments of pericardial effusion and blood accumulation in the heart, in comparison with the control group. In addition, genes which respond to xenobiotic stimulus, related to oxygen transport, glutathione metabolism and extracellular matrix -receptor interactions, were significantly enriched among the differentially up-regulated genes. Antioxidant response element motif was enriched in the 5000 base pair upstream regions of the differentially expressed genes. Co-administration of N-acetylcysteine was shown to protect zebrafish against the development of CFZ-induced cardiac dysfunction. CONCLUSIONS This study suggests an important role of oxidative stress as a major pathogenetic mechanism of riminophenazine-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Phoebe C I Ng
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Judy Y W Chan
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ross K K Leung
- School of Public Health, University of Hong Kong, Hong Kong, China; Stanley Ho Centre for Emerging Infectious Diseases, Chinese University of Hong Kong, Hong Kong, China
| | - J Li
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Z Ren
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Anthony W H Chan
- Department of Anatomical & Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China
| | - Y Xu
- Stanley Ho Centre for Emerging Infectious Diseases, Chinese University of Hong Kong, Hong Kong, China
| | - S S Lee
- Stanley Ho Centre for Emerging Infectious Diseases, Chinese University of Hong Kong, Hong Kong, China
| | - R Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xia Ji
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Denise P C Chan
- Stanley Ho Centre for Emerging Infectious Diseases, Chinese University of Hong Kong, Hong Kong, China.
| | - W W Yew
- Stanley Ho Centre for Emerging Infectious Diseases, Chinese University of Hong Kong, Hong Kong, China.
| | - Simon M Y Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
9
|
Impact of Arterial Hypertension on Doxorubicin-Based Chemotherapy-Induced Subclinical Cardiac Damage in Breast Cancer Patients. Cardiovasc Toxicol 2020; 20:321-327. [PMID: 31782105 DOI: 10.1007/s12012-019-09556-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Advances in oncologic therapies have allowed to achieve better outcomes and longer survival in many patients with breast cancer. Anthracyclines are cytotoxic antibiotics widely used in daily oncology practice. However, anthracyclines cause cardiotoxicity which is a limiting factor of its use. Cumulative dose of anthracyclines is the major cause of induced cardiotoxicity. According to previous clinical trials, the major predisposing high-risk factors for anthracycline-based chemotherapy-induced cardiotoxicity are age, body weight, female gender, radiotherapy, and other diseases such as diabetes and hypertension. Experimental studies in animals confirm that hypertension may be a significant factor predisposing anthracycline-based chemotherapy cardiotoxicity. The main objective of our study was to identify the effect of pre-existing arterial hypertension on the development of subclinical cardiac damage during or after doxorubicin-based chemotherapy in breast cancer patients. The study was performed prospectively between March 2016 and January 2017 in the Hospital of Lithuanian University of Health Sciences Kaunas Clinics Department of Oncology and Department of Cardiology. Data of 73 women with breast cancer treated with doxorubicin-based chemotherapy in outpatient clinic were analyzed. Statistically significant association between pre-existing arterial hypertension and left ventricular systolic dysfunction after completion of chemotherapy was observed (P < 0.004). Our study demonstrated that pre-existing arterial hypertension has a very important role in the development of anthracycline-based chemotherapy-induced cardiotoxicity, despite arterial hypertension control quality. Consequently, further studies evaluating impact of other risk factors and how early and sufficient management of arterial hypertension could influence the development of cardiotoxicity are needed to avoid permanent cardiac damage.
Collapse
|
10
|
Singh P, Wang X, Hageman L, Chen Y, Magdy T, Landier W, Ginsberg JP, Neglia JP, Sklar CA, Castellino SM, Dreyer ZE, Hudson MM, Robison LL, Blanco JG, Relling MV, Burridge P, Bhatia S. Association of GSTM1 null variant with anthracycline-related cardiomyopathy after childhood cancer-A Children's Oncology Group ALTE03N1 report. Cancer 2020; 126:4051-4058. [PMID: 32413235 PMCID: PMC7423633 DOI: 10.1002/cncr.32948] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/07/2019] [Accepted: 01/03/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Anthracycline-related cardiomyopathy is a leading cause of late morbidity in childhood cancer survivors. Glutathione S-transferases (GSTs) are a class of phase II detoxification enzymes that facilitate the elimination of anthracyclines. As free-radical scavengers, GSTs could play a role in oxidative damage-induced cardiomyopathy. Associations between the GSTμ1 (GSTM1) null genotype and iron-overload-related cardiomyopathy have been reported in patients with thalassemia. METHODS The authors sought to identify an association between the GSTM1 null genotype and anthracycline-related cardiomyopathy in childhood cancer survivors and to corroborate the association by examining GSTM1 gene expression in peripheral blood and human-induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) from survivors with and without cardiomyopathy. GSTM1 gene deletion was examined by polymerase chain reaction in 75 survivors who had clinically validated cardiomyopathy (cases) and in 92 matched survivors without cardiomyopathy (controls). Conditional logistic regression analysis adjusting for sex, age at cancer diagnosis, chest radiation, and anthracycline dose was used to assess the association between genotype and cardiomyopathy. Proprietary bead array technology and quantitative real-time polymerase chain reaction were used to measure GSTM1 expression levels in samples from 20 cases and 20 matched controls. hiPSC-CMs from childhood cancer survivors (3 with cardiomyopathy, 3 without cardiomyopathy) also were examined for GSTM1 gene expression levels. RESULTS A significant association was observed between the risk of cardiomyopathy and the GSTM1 null genotype (odds ratio, 2.7; 95% CI, 1.3-5.9; P = .007). There was significant downregulation of GSTM1 expression in cases compared with controls (average relative expression, 0.67 ± 0.57 vs 1.33 ± 1.33, respectively; P = .049). hiPSC-CMs from patients who had cardiomyopathy revealed reduced GSTM1 expression (P = .007). CONCLUSIONS The current findings could facilitate the identification of childhood cancer survivors who are at risk for anthracycline-related cardiomyopathy.
Collapse
Affiliation(s)
- Purnima Singh
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xuexia Wang
- Department of Mathematics, University of North Texas, Denton, Texas
| | - Lindsey Hageman
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yanjun Chen
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tarek Magdy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Wendy Landier
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jill P. Ginsberg
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Joseph P. Neglia
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Charles A. Sklar
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sharon M. Castellino
- Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia
| | - Zoann E. Dreyer
- Department of Pediatrics, Texas Children’s Cancer Center, Houston, Texas
| | - Melissa M. Hudson
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Javier G. Blanco
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Mary V. Relling
- Department of Pharmaceutical Sciences, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Paul Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
11
|
HFE Gene Variants' Impact on Anthracycline-Based Chemotherapy-Induced Subclinical Cardiotoxicity. Cardiovasc Toxicol 2020; 21:59-66. [PMID: 32748118 DOI: 10.1007/s12012-020-09595-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023]
Abstract
Progress in oncology has allowed to improve outcomes in many breast cancer patients. The core stone of breast cancer chemotherapy is anthracycline-based chemotherapy. Unfortunately, anthracyclines cause cardiotoxicity which is a limiting factor of its use and lifetime cumulative dose of anthracyclines is the major risk factor for cardiotoxicity. With evolution of echocardiography subclinical damage is identified, and more sensitive evaluation can be performed. This leads to understanding the heart damage beyond cumulative dose in early phase and importance of other risk factors. There are many risk factors for anthracycline-based chemotherapy cardiotoxicity (ABCC) like arterial hypertension, obesity, diabetes, genetic predisposition, etc. One of possible pathophysiological pathways is iron metabolism, especially HFE gene-regulated iron metabolism pathway. Pre-existing genetic iron metabolism dysregulation increases risk for ABCC. Clinical studies and experimental models in mice have shown potential impact of HFE gene SNP on ABCC. The main objective of our study was to identify the impact of HFE C282Y and H63D SNP on the development of subclinical heart damage during and/or after doxorubicin-based chemotherapy in breast cancer patients. Data of 81 women with breast cancer treated with doxorubicin-based chemotherapy in the outpatient clinic were analyzed and SNP RT-PCR tests were performed. Statistically significant association between H63D and ABCC after completion of chemotherapy was observed (p < 0.005). Consequently, our study demonstrated that H63D SNP has an important role in the development of ABCC. HFE SNP mutation status could be used as one of important tools to identify high-risk patients for ABCC.
Collapse
|
12
|
Pinheiro EA, Magdy T, Burridge PW. Human In Vitro Models for Assessing the Genomic Basis of Chemotherapy-Induced Cardiovascular Toxicity. J Cardiovasc Transl Res 2020; 13:377-389. [PMID: 32078739 PMCID: PMC7365753 DOI: 10.1007/s12265-020-09962-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Abstract
Chemotherapy-induced cardiovascular toxicity (CICT) is a well-established risk for cancer survivors and causes diseases such as heart failure, arrhythmia, vascular dysfunction, and atherosclerosis. As our knowledge of the precise cardiovascular risks of each chemotherapy agent has improved, it has become clear that genomics is one of the most influential predictors of which patients will experience cardiovascular toxicity. Most recently, GWAS-led, top-down approaches have identified novel genetic variants and their related genes that are statistically related to CICT. Importantly, the advent of human-induced pluripotent stem cell (hiPSC) models provides a system to experimentally test the effect of these genomic findings in vitro, query the underlying mechanisms, and develop novel strategies to mitigate the cardiovascular toxicity liabilities due to these mechanisms. Here we review the cardiovascular toxicities of chemotherapy drugs, discuss how these can be modeled in vitro, and suggest how these models can be used to validate genetic variants that predispose patients to these effects.
Collapse
Affiliation(s)
- Emily A Pinheiro
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tarek Magdy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
13
|
Sun S, Sun Y, Rong X, Bai L. High glucose promotes breast cancer proliferation and metastasis by impairing angiotensinogen expression. Biosci Rep 2019; 39:BSR20190436. [PMID: 31142626 PMCID: PMC6567675 DOI: 10.1042/bsr20190436] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022] Open
Abstract
A number of investigations have addressed the importance of high glucose in breast cancer, however, the involvement of angiotensinogen (AGT) in this scenario is yet to be defined. Here we set out to analyze the potential pro-tumor effects of high glucose in breast cancer, and understand the underlying molecular mechanism. We demonstrated that high glucose promoted cell proliferation, viability, and anchorage-independent growth of breast cancer cells. In addition, the migrative and invasive capacities were significantly enhanced by high glucose medium. Mechanistically, AGT expression was inhibited by high glucose at both transcriptional and translational levels. High AGT remarkably suppressed proliferation, inhibited viability, and compromised migration/invasion of breast cancer cells. Most importantly, ectopic introduction of AGT almost completely abrogated pro-tumor effects of high glucose. Our study has characterized the pro-tumor properties of high glucose in breast cancer cells, which is predominantly attributed to the suppression of AGT.
Collapse
Affiliation(s)
- Shichao Sun
- Department of Neurology, the Second Hospital, Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang 050000, Hebei, China
| | - Yao Sun
- Department of Medical Image, the Fourth Hospital, Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang 050011, Hebei, China
| | - Xiaoping Rong
- Department of Pediatrics, the Fourth Hospital, Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang 050011, Hebei, China
| | - Lei Bai
- Department of Endocrinology, the Fourth Hospital, Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang 050011, Hebei, China
| |
Collapse
|
14
|
Lauschke VM, Zhou Y, Ingelman-Sundberg M. Novel genetic and epigenetic factors of importance for inter-individual differences in drug disposition, response and toxicity. Pharmacol Ther 2019; 197:122-152. [PMID: 30677473 PMCID: PMC6527860 DOI: 10.1016/j.pharmthera.2019.01.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Individuals differ substantially in their response to pharmacological treatment. Personalized medicine aspires to embrace these inter-individual differences and customize therapy by taking a wealth of patient-specific data into account. Pharmacogenomic constitutes a cornerstone of personalized medicine that provides therapeutic guidance based on the genomic profile of a given patient. Pharmacogenomics already has applications in the clinics, particularly in oncology, whereas future development in this area is needed in order to establish pharmacogenomic biomarkers as useful clinical tools. In this review we present an updated overview of current and emerging pharmacogenomic biomarkers in different therapeutic areas and critically discuss their potential to transform clinical care. Furthermore, we discuss opportunities of technological, methodological and institutional advances to improve biomarker discovery. We also summarize recent progress in our understanding of epigenetic effects on drug disposition and response, including a discussion of the only few pharmacogenomic biomarkers implemented into routine care. We anticipate, in part due to exciting rapid developments in Next Generation Sequencing technologies, machine learning methods and national biobanks, that the field will make great advances in the upcoming years towards unlocking the full potential of genomic data.
Collapse
Affiliation(s)
- Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
15
|
Pinheiro EA, Fetterman KA, Burridge PW. hiPSCs in cardio-oncology: deciphering the genomics. Cardiovasc Res 2019; 115:935-948. [PMID: 30689737 PMCID: PMC6452310 DOI: 10.1093/cvr/cvz018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/11/2018] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
The genomic predisposition to oncology-drug-induced cardiovascular toxicity has been postulated for many decades. Only recently has it become possible to experimentally validate this hypothesis via the use of patient-specific human-induced pluripotent stem cells (hiPSCs) and suitably powered genome-wide association studies (GWAS). Identifying the individual single nucleotide polymorphisms (SNPs) responsible for the susceptibility to toxicity from a specific drug is a daunting task as this precludes the use of one of the most powerful tools in genomics: comparing phenotypes to close relatives, as these are highly unlikely to have been treated with the same drug. Great strides have been made through the use of candidate gene association studies (CGAS) and increasingly large GWAS studies, as well as in vivo whole-organism studies to further our mechanistic understanding of this toxicity. The hiPSC model is a powerful technology to build on this work and identify and validate causal variants in mechanistic pathways through directed genomic editing such as CRISPR. The causative variants identified through these studies can then be implemented clinically to identify those likely to experience cardiovascular toxicity and guide treatment options. Additionally, targets identified through hiPSC studies can inform future drug development. Through careful phenotypic characterization, identification of genomic variants that contribute to gene function and expression, and genomic editing to verify mechanistic pathways, hiPSC technology is a critical tool for drug discovery and the realization of precision medicine in cardio-oncology.
Collapse
Affiliation(s)
- Emily A Pinheiro
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Searle 8-525, 320 East Superior Street, Chicago, IL, USA
| | - K Ashley Fetterman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Searle 8-525, 320 East Superior Street, Chicago, IL, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Searle 8-525, 320 East Superior Street, Chicago, IL, USA
| |
Collapse
|
16
|
Yang X, Liu N, Li X, Yang Y, Wang X, Li L, Jiang L, Gao Y, Tang H, Tang Y, Xing Y, Shang H. A Review on the Effect of Traditional Chinese Medicine Against Anthracycline-Induced Cardiac Toxicity. Front Pharmacol 2018; 9:444. [PMID: 29867456 PMCID: PMC5963334 DOI: 10.3389/fphar.2018.00444] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/16/2018] [Indexed: 01/29/2023] Open
Abstract
Anthracyclines are effective agents generally used to treat solid-tumor and hematologic malignancies. The use of anthracyclines for over 40 years has improved cancer survival statistics. Nevertheless, the clinical utility of anthracyclines is limited by its dose-dependent cardiotoxicity that adversely affects 10-30% of patients. Anthracycline-induced cardiotoxicity may be classified as acute/subacute or chronic/late toxicity and leads to devastating adverse effects resulting in poor quality of life, morbidity, and premature mortality. Traditional Chinese medicine has a history of over 2,000 years, involving both unique theories and substantial experience. Several studies have investigated the potential of natural products to decrease the cardiotoxic effects of chemotherapeutic agents on healthy cells, without negatively affecting their antineoplastic activity. This article discusses the mechanism of anthracycline-induced cardiotoxicity, and summarizes traditional Chinese medicine treatment for anthracycline-induced heart failure (HF), cardiac arrhythmia, cardiomyopathy, and myocardial ischemia in recent years, in order to provide a reference for the clinical prevention and treatment of cardiac toxicity.
Collapse
Affiliation(s)
- Xinyu Yang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Nian Liu
- Department of Cardiology, Beijing Anzhen Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Xinye Li
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yihan Yang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaofeng Wang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Linling Li
- Department of Cardiology, Beijing Anzhen Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Le Jiang
- Department of Cardiology, Beijing Anzhen Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hebin Tang
- Department of Pharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yong Tang
- Department of Pancreatic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yanwei Xing
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Linschoten M, Teske AJ, Cramer MJ, van der Wall E, Asselbergs FW. Chemotherapy-Related Cardiac Dysfunction: A Systematic Review of Genetic Variants Modulating Individual Risk. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2018; 11:e001753. [PMID: 29557343 DOI: 10.1161/circgen.117.001753] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chemotherapy-related cardiac dysfunction is a significant side effect of anticancer treatment. Risk stratification is based on clinical- and treatment-related risk factors that do not adequately explain individual susceptibility. The addition of genetic variants may improve risk assessment. We conducted a systematic literature search in PubMed and Embase, to identify studies investigating genetic risk factors for chemotherapy-related cardiac dysfunction. Included were articles describing genetic variants in humans altering susceptibility to chemotherapy-related cardiac dysfunction. The validity of identified studies was assessed by 10 criteria, including assessment of population stratification, statistical methodology, and replication of findings. We identified 40 studies: 34 exploring genetic risk factors for anthracycline-induced cardiotoxicity (n=9678) and 6 studies related to trastuzumab-associated cardiotoxicity (n=642). The majority (35/40) of studies had a candidate gene approach, whereas 5 genome-wide association studies have been performed. We identified 25 genetic variants in 20 genes and 2 intergenic variants reported significant at least once. The overall validity of studies was limited, with small cohorts, failure to assess population ancestry and lack of replication. SNPs with the most robust evidence up to this point are CELF4 rs1786814 (sarcomere structure and function), RARG rs2229774 (topoisomerase-2β expression), SLC28A3 rs7853758 (drug transport), UGT1A6 rs17863783 (drug metabolism), and 1 intergenic variant (rs28714259). Existing evidence supports the hypothesis that genetic variation contributes to chemotherapy-related cardiac dysfunction. Although many variants identified by this systematic review show potential to improve risk stratification, future studies are necessary for validation and assessment of their value in a diagnostic and prognostic setting.
Collapse
Affiliation(s)
- Marijke Linschoten
- From the Department of Cardiology, Division of Heart & Lungs (M.L., A.J.T., M.J.C., F.W.A.) and Department of Medical Oncology (E.v.d.W.), University Medical Center Utrecht, University of Utrecht, The Netherlands; Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht (F.W.A.); and Institute of Cardiovascular Science, Faculty of Population Health Sciences (F.W.A.) and Farr Institute of Health Informatics Research and Institute of Health Informatics (F.W.A.), University College London, United Kingdom
| | - Arco J Teske
- From the Department of Cardiology, Division of Heart & Lungs (M.L., A.J.T., M.J.C., F.W.A.) and Department of Medical Oncology (E.v.d.W.), University Medical Center Utrecht, University of Utrecht, The Netherlands; Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht (F.W.A.); and Institute of Cardiovascular Science, Faculty of Population Health Sciences (F.W.A.) and Farr Institute of Health Informatics Research and Institute of Health Informatics (F.W.A.), University College London, United Kingdom
| | - Maarten J Cramer
- From the Department of Cardiology, Division of Heart & Lungs (M.L., A.J.T., M.J.C., F.W.A.) and Department of Medical Oncology (E.v.d.W.), University Medical Center Utrecht, University of Utrecht, The Netherlands; Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht (F.W.A.); and Institute of Cardiovascular Science, Faculty of Population Health Sciences (F.W.A.) and Farr Institute of Health Informatics Research and Institute of Health Informatics (F.W.A.), University College London, United Kingdom
| | - Elsken van der Wall
- From the Department of Cardiology, Division of Heart & Lungs (M.L., A.J.T., M.J.C., F.W.A.) and Department of Medical Oncology (E.v.d.W.), University Medical Center Utrecht, University of Utrecht, The Netherlands; Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht (F.W.A.); and Institute of Cardiovascular Science, Faculty of Population Health Sciences (F.W.A.) and Farr Institute of Health Informatics Research and Institute of Health Informatics (F.W.A.), University College London, United Kingdom
| | - Folkert W Asselbergs
- From the Department of Cardiology, Division of Heart & Lungs (M.L., A.J.T., M.J.C., F.W.A.) and Department of Medical Oncology (E.v.d.W.), University Medical Center Utrecht, University of Utrecht, The Netherlands; Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht (F.W.A.); and Institute of Cardiovascular Science, Faculty of Population Health Sciences (F.W.A.) and Farr Institute of Health Informatics Research and Institute of Health Informatics (F.W.A.), University College London, United Kingdom.
| |
Collapse
|
18
|
Ruiz-Pinto S, Pita G, Patiño-García A, Alonso J, Pérez-Martínez A, Cartón AJ, Gutiérrez-Larraya F, Alonso MR, Barnes DR, Dennis J, Michailidou K, Gómez-Santos C, Thompson DJ, Easton DF, Benítez J, González-Neira A. Exome array analysis identifies GPR35 as a novel susceptibility gene for anthracycline-induced cardiotoxicity in childhood cancer. Pharmacogenet Genomics 2017; 27:445-453. [PMID: 28961156 DOI: 10.1097/fpc.0000000000000309] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Pediatric cancer survivors are a steadily growing population; however, chronic anthracycline-induced cardiotoxicity (AIC) is a serious long-term complication leading to considerable morbidity. We aimed to identify new genes and low-frequency variants influencing the susceptibility to AIC for pediatric cancer patients. PATIENTS AND METHODS We studied the association of variants on the Illumina HumanExome BeadChip array in 83 anthracycline-treated pediatric cancer patients. In addition to single-variant association tests, we carried out a gene-based analysis to investigate the combined effects of common and low-frequency variants to chronic AIC. RESULTS Although no single-variant showed an association with chronic AIC that was statistically significant after correction for multiple testing, we identified a novel significant association for G protein-coupled receptor 35 (GPR35) by gene-based testing, a gene with potential roles in cardiac physiology and pathology (P=7.0×10), which remained statistically significant after correction for multiple testing (PFDR=0.03). The greatest contribution to this observed association was made by rs12468485, a missense variant (p.Thr253Met, c.758C>T, minor allele frequency=0.04), with the T allele associated with an increased risk of chronic AIC and more severe symptomatic cardiac manifestations at low anthracycline doses. CONCLUSION Using exome array data, we identified GPR35 as a novel susceptibility gene associated with chronic AIC in pediatric cancer patients.
Collapse
Affiliation(s)
- Sara Ruiz-Pinto
- aHuman Genotyping Unit-CeGen bHuman Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO) cPediatric Solid Tumor Laboratory, Human Genetic Department, Research Institute of Rare Diseases, Instituto de Salud Carlos III dDepartment of Pediatric Hemato-Oncology eDepartment of Pediatric Cardiology, Hospital Universitario La Paz fDepartment of Pediatrics, Hospital Universitario Infanta Elena, Madrid gDepartment of Pediatrics, University Clinic of Navarra, Universidad de Navarra, Pamplona, Spain hDepartment of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology iDepartment of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK jDepartment of Electron Microscopy/Molecular Pathology, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ruiz-Pinto S, Pita G, Martín M, Alonso-Gordoa T, Barnes DR, Alonso MR, Herraez B, García-Miguel P, Alonso J, Pérez-Martínez A, Cartón AJ, Gutiérrez-Larraya F, García-Sáenz JA, Benítez J, Easton DF, Patiño-García A, González-Neira A. Exome array analysis identifies ETFB as a novel susceptibility gene for anthracycline-induced cardiotoxicity in cancer patients. Breast Cancer Res Treat 2017; 167:249-256. [PMID: 28913729 DOI: 10.1007/s10549-017-4497-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/01/2017] [Indexed: 12/30/2022]
Abstract
PURPOSE Anthracyclines are widely used chemotherapeutic drugs that can cause progressive and irreversible cardiac damage and fatal heart failure. Several genetic variants associated with anthracycline-induced cardiotoxicity (AIC) have been identified, but they explain only a small proportion of the interindividual differences in AIC susceptibility. METHODS In this study, we evaluated the association of low-frequency variants with risk of chronic AIC using the Illumina HumanExome BeadChip array in a discovery cohort of 61 anthracycline-treated breast cancer patients with replication in a second independent cohort of 83 anthracycline-treated pediatric cancer patients, using gene-based tests (SKAT-O). RESULTS The most significant associated gene in the discovery cohort was ETFB (electron transfer flavoprotein beta subunit) involved in mitochondrial β-oxidation and ATP production (P = 4.16 × 10-4) and this association was replicated in an independent set of anthracycline-treated cancer patients (P = 2.81 × 10-3). Within ETFB, we found that the missense variant rs79338777 (p.Pro52Leu; c.155C > T) made the greatest contribution to the observed gene association and it was associated with increased risk of chronic AIC in the two cohorts separately and when combined (OR 9.00, P = 1.95 × 10-4, 95% CI 2.83-28.6). CONCLUSIONS We identified and replicated a novel gene, ETFB, strongly associated with chronic AIC independently of age at tumor onset and related to anthracycline-mediated mitochondrial dysfunction. Although experimental verification and further studies in larger patient cohorts are required to confirm our finding, we demonstrated that exome array data analysis represents a valuable strategy to identify novel genes contributing to the susceptibility to chronic AIC.
Collapse
Affiliation(s)
- Sara Ruiz-Pinto
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Guillermo Pita
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Miguel Martín
- Gregorio Marañón Health Research Institute (IISGM), Universidad Complutense, 28007, Madrid, Spain
| | - Teresa Alonso-Gordoa
- Department of Medical Oncology, Hospital Universitario Ramón y Cajal, 28034, Madrid, Spain
| | - Daniel R Barnes
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - María R Alonso
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Belén Herraez
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | | | - Javier Alonso
- Pediatric Solid Tumor Laboratory, Human Genetic Department, Research Institute of Rare Diseases, Instituto de Salud Carlos III, 28220, Majadahonda, Spain
| | - Antonio Pérez-Martínez
- Department of Pediatric Hemato-Oncology, Hospital Universitario La Paz, 28046, Madrid, Spain
| | - Antonio J Cartón
- Department of Pediatric Cardiology, Hospital Universitario La Paz, 28046, Madrid, Spain
| | | | - José A García-Sáenz
- Medical Oncology Service, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Javier Benítez
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Douglas F Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, CB1 8RN, UK
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Ana Patiño-García
- Department of Pediatrics, Universidad de Navarra, University Clinic of Navarra, 31008, Pamplona, Spain
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
20
|
Leong SL, Chaiyakunapruk N, Lee SWH. Candidate Gene Association Studies of Anthracycline-induced Cardiotoxicity: A Systematic Review and Meta-analysis. Sci Rep 2017; 7:39. [PMID: 28232737 PMCID: PMC5428315 DOI: 10.1038/s41598-017-00075-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/27/2017] [Indexed: 11/24/2022] Open
Abstract
Anthracyclines play an important role in the management of patients with cancer but the development of anthracycline-induced cardiotoxicity (ACT) remains a significant concern for most clinicians. Recently, genetic approach has been used to identify patients at increased risk of ACT. This systematic review assessed the association between genomic markers and ACT. A systematic literature search was performed in Medline, PubMed, Cochrane Central Register of Controlled Studies, CINAHL Plus, AMED, EMBASE and HuGE Navigator from inception until May 2016. Twenty-eight studies examining the association of genetic variants and ACT were identified. These studies examined 84 different genes and 147 single nucleotide polymorphisms. Meta-analyses showed 3 risk variants significantly increased the risk for ACT; namely ABCC2 rs8187710 (pooled odds ratio: 2.20; 95% CI: 1.36-3.54), CYBA rs4673 (1.55; 1.05-2.30) and RAC2 rs13058338 (1.79; 1.27-2.52). The current evidence remains unclear on the potential role of pharmacogenomic screening prior to anthracycline therapy. Further research is needed to improve the diagnostic and prognostic role in predicting ACT.
Collapse
Affiliation(s)
- Siew Lian Leong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 46150, Selangor, Malaysia
- Faculty of Pharmacy, Cyberjaya University College of Medical Sciences, Cyberjaya, 63000, Selangor, Malaysia
| | - Nathorn Chaiyakunapruk
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 46150, Selangor, Malaysia
- Center of Pharmaceutical Outcomes Research (CPOR), Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- School of Pharmacy, University of Wisconsin, Madison, USA
- School of Population Health, University of Queensland, Brisbane, Australia
| | - Shaun Wen Huey Lee
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 46150, Selangor, Malaysia.
| |
Collapse
|
21
|
Aminkeng F, Ross CJD, Rassekh SR, Hwang S, Rieder MJ, Bhavsar AP, Smith A, Sanatani S, Gelmon KA, Bernstein D, Hayden MR, Amstutz U, Carleton BC. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br J Clin Pharmacol 2016; 82:683-95. [PMID: 27197003 PMCID: PMC5338111 DOI: 10.1111/bcp.13008] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/15/2022] Open
Abstract
AIMS Anthracycline-induced cardiotoxicity (ACT) occurs in 57% of treated patients and remains an important limitation of anthracycline-based chemotherapy. In various genetic association studies, potential genetic risk markers for ACT have been identified. Therefore, we developed evidence-based clinical practice recommendations for pharmacogenomic testing to further individualize therapy based on ACT risk. METHODS We followed a standard guideline development process, including a systematic literature search, evidence synthesis and critical appraisal, and the development of clinical practice recommendations with an international expert group. RESULTS RARG rs2229774, SLC28A3 rs7853758 and UGT1A6 rs17863783 variants currently have the strongest and the most consistent evidence for association with ACT. Genetic variants in ABCC1, ABCC2, ABCC5, ABCB1, ABCB4, CBR3, RAC2, NCF4, CYBA, GSTP1, CAT, SULT2B1, POR, HAS3, SLC22A7, SCL22A17, HFE and NOS3 have also been associated with ACT, but require additional validation. We recommend pharmacogenomic testing for the RARG rs2229774 (S427L), SLC28A3 rs7853758 (L461L) and UGT1A6*4 rs17863783 (V209V) variants in childhood cancer patients with an indication for doxorubicin or daunorubicin therapy (Level B - moderate). Based on an overall risk stratification, taking into account genetic and clinical risk factors, we recommend a number of management options including increased frequency of echocardiogram monitoring, follow-up, as well as therapeutic options within the current standard of clinical practice. CONCLUSIONS Existing evidence demonstrates that genetic factors have the potential to improve the discrimination between individuals at higher and lower risk of ACT. Genetic testing may therefore support both patient care decisions and evidence development for an improved prevention of ACT.
Collapse
Affiliation(s)
- Folefac Aminkeng
- Centre for Molecular Medicine and Therapeutics, Department of Medical GeneticsUniversity of British ColumbiaVancouverBCCanada
- Child & Family Research InstituteUniversity of British ColumbiaVancouverBCCanada
| | - Colin J. D. Ross
- Child & Family Research InstituteUniversity of British ColumbiaVancouverBCCanada
- Division of Translational Therapeutics, Department of PediatricsUniversity of British ColumbiaVancouverBCCanada
| | - Shahrad R. Rassekh
- Child & Family Research InstituteUniversity of British ColumbiaVancouverBCCanada
- Division of Pediatric Hematology/Oncology/BMT, Department of PediatricsUniversity of British ColumbiaVancouverBCCanada
| | - Soomi Hwang
- Faculty of Pharmaceutical SciencesUniversity of British ColumbiaVancouverBCCanada
| | | | - Amit P. Bhavsar
- Child & Family Research InstituteUniversity of British ColumbiaVancouverBCCanada
- Division of Translational Therapeutics, Department of PediatricsUniversity of British ColumbiaVancouverBCCanada
| | - Anne Smith
- Child & Family Research InstituteUniversity of British ColumbiaVancouverBCCanada
- Pharmaceutical Outcomes & Policy Innovations ProgrammeBC Children's HospitalVancouverBCCanada
| | - Shubhayan Sanatani
- Child & Family Research InstituteUniversity of British ColumbiaVancouverBCCanada
| | | | - Daniel Bernstein
- Department of Pediatrics, Division of CardiologyStanford UniversityStanfordCAUSA
| | - Michael R. Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical GeneticsUniversity of British ColumbiaVancouverBCCanada
- Child & Family Research InstituteUniversity of British ColumbiaVancouverBCCanada
- Translational Laboratory in Genetic Medicine, National University of Singapore and Association for ScienceTechnology and Research (A*STAR)Singapore
| | - Ursula Amstutz
- Child & Family Research InstituteUniversity of British ColumbiaVancouverBCCanada
- Division of Translational Therapeutics, Department of PediatricsUniversity of British ColumbiaVancouverBCCanada
- University Institute of Clinical Chemistry, Inselspital Bern University Hospital and University of BernSwitzerland
| | - Bruce C. Carleton
- Child & Family Research InstituteUniversity of British ColumbiaVancouverBCCanada
- Pharmaceutical Outcomes & Policy Innovations ProgrammeBC Children's HospitalVancouverBCCanada
| | | |
Collapse
|
22
|
Hasni D, Siregar KB, Lim H. The influence of glutathion S-transferase P-1 polymorphism A313G rs1695 on the susceptibility to cyclophosphamide hematologic toxicity in Indonesian patients. MEDICAL JOURNAL OF INDONESIA 2016. [DOI: 10.13181/mji.v25i2.1308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Background: Chemotherapy often causes side effects such as hematologic toxicity. The degree of toxicity is often associated with genetic polymorphism. This study aims to determine the influence of GSTP1 A313G polymorphism, an enzyme responsible for detoxifying cyclophosphamid, on incidence and severity of cyclophosphamid hematologic toxicity.Methods: 91 Indonesian females diagnosed with breast cancer at Haji Adam Malik Central General Hospital, Medan, receiving cyclophosphamide, doxorubicin/epirubicin and 5-FU were included in this retrospective cohort study. DNA was extracted from peripheral leukocytes and GSTP1 A313G genotyping was analyzed using polymerase chain reaction-restriction length fragment polymorphism (PCR-RFLP). Genotype deviation and allele frequencies were also determined by Hardy-Weinberg Equilibrium. The degrees of hematologic toxicity (leucopenia and neutropenia data after chemotherapy cycles 1 and 3) were collected from the patient medical records. The data were analyzed using chi-square test.Results: 60.4% of the patients had the wildtype (A/A), while 29.7% were heterozygous (A/G), and 9.9% were homozygous mutant (G/G). There was no significant deviation of allele and genotype frequency from Hardy-Weinberg Equilibrium. The G allele (A/G & G/G) contributes to more severe degree of leukopenia compared to patients with wild type allele (A/A) (p<0.05) after the 3rd chemotherapy cycles.Conclusion: There was association between GSTP1 polymorphism with the degree of hematologic toxicity in breast cancer patients receiving cyclophosphamide chemotherapy regimen.
Collapse
|
23
|
Valcovici M, Andrica F, Serban C, Dragan S. Cardiotoxicity of anthracycline therapy: current perspectives. Arch Med Sci 2016; 12:428-35. [PMID: 27186191 PMCID: PMC4848373 DOI: 10.5114/aoms.2016.59270] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/07/2014] [Indexed: 12/31/2022] Open
Abstract
Anthracyclines, especially doxorubicin and daunorubicin, are the drugs of first choice in the treatment of patients with hematologic malignancies, soft-tissue sarcomas, and solid tumors. Unfortunately, the use of anthracyclines is limited by their dose-dependent and cumulative cardiotoxicity. The molecular mechanism responsible for anthracycline-induced cardiotoxicity remains poorly understood, although experimental and clinical studies have shown that oxidative stress plays the main role. Hence, antioxidant agents, especially dexrazoxane, and also other drug classes (statins, β-blockers) proved to have a beneficial effect in protecting against anthracycline-induced cardiotoxicity. According to previous clinical trials, the major high-risk factors for anthracycline-induced cardiotoxicity are age, body weight, female gender, radiotherapy, and other diseases such as Down syndrome, familial dilated cardiomyopathy, diabetes and hypertension. Consequently, further studies are needed to elucidate the molecular pathogenesis of anthracycline-induced cardiotoxicity and also to discover new cardioprotective agents against anthracycline-induced cardiotoxicity.
Collapse
Affiliation(s)
- Mihaela Valcovici
- Cardiology Department, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
| | - Florina Andrica
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania; Center for Interdisciplinary Research, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
| | - Corina Serban
- Center for Interdisciplinary Research, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania; Department of Functional Sciences, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
| | - Simona Dragan
- Cardiology Department, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania; Center for Interdisciplinary Research, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
| |
Collapse
|
24
|
Aminkeng F, Bhavsar AP, Visscher H, Rassekh SR, Li Y, Lee JW, Brunham LR, Caron HN, van Dalen EC, Kremer LC, van der Pal HJ, Amstutz U, Rieder MJ, Bernstein D, Carleton BC, Hayden MR, Ross CJD. A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nat Genet 2015; 47:1079-84. [PMID: 26237429 PMCID: PMC4552570 DOI: 10.1038/ng.3374] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 07/10/2015] [Indexed: 12/13/2022]
Abstract
Anthracyclines are used in over 50% of childhood cancer treatment protocols, but their clinical usefulness is limited by anthracycline-induced cardiotoxicity (ACT) manifesting as asymptomatic cardiac dysfunction and congestive heart failure in up to 57% and 16% of patients, respectively. Candidate gene studies have reported genetic associations with ACT, but these studies have in general lacked robust patient numbers, independent replication or functional validation. Thus, the individual variability in ACT susceptibility remains largely unexplained. We performed a genome-wide association study in 280 patients of European ancestry treated for childhood cancer, with independent replication in similarly treated cohorts of 96 European and 80 non-European patients. We identified a nonsynonymous variant (rs2229774, p.Ser427Leu) in RARG highly associated with ACT (P = 5.9 × 10(-8), odds ratio (95% confidence interval) = 4.7 (2.7-8.3)). This variant alters RARG function, leading to derepression of the key ACT genetic determinant Top2b, and provides new insight into the pathophysiology of this severe adverse drug reaction.
Collapse
Affiliation(s)
- Folefac Aminkeng
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Amit P Bhavsar
- Child and Family Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, Division of Translational Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Henk Visscher
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Shahrad R Rassekh
- Child and Family Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, Division of Pediatric Hematology/Oncology/Blood and Marrow Transplantation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuling Li
- Child and Family Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, Division of Translational Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jong W Lee
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Liam R Brunham
- Translational Laboratory in Genetic Medicine, National University of Singapore and Association for Science, Technology and Research (A*STAR), Singapore
| | - Huib N Caron
- Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center, Amsterdam, the Netherlands
| | - Elvira C van Dalen
- Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center, Amsterdam, the Netherlands
| | - Leontien C Kremer
- Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center, Amsterdam, the Netherlands
| | - Helena J van der Pal
- Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center, Amsterdam, the Netherlands
- Department of Medical Oncology, Emma Children's Hospital/Academic Medical Center, Amsterdam, the Netherlands
| | - Ursula Amstutz
- Child and Family Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, Division of Translational Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael J Rieder
- Department of Pediatrics, University of Western Ontario, London, Ontario, Canada
| | - Daniel Bernstein
- Division of Pediatric Cardiology, Stanford University, Palo Alto, California, USA
| | - Bruce C Carleton
- Child and Family Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, Division of Translational Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- Pharmaceutical Outcomes Programme, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Michael R Hayden
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, Vancouver, British Columbia, Canada
- Translational Laboratory in Genetic Medicine, National University of Singapore and Association for Science, Technology and Research (A*STAR), Singapore
| | - Colin J D Ross
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, Division of Translational Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- Pharmaceutical Outcomes Programme, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Chen F, Chen G, Dou Y, Xu X. Association of angiotensin ІІ type 1 receptor (A1166C) polymorphism with breast cancer risk: An update meta-analysis. J Renin Angiotensin Aldosterone Syst 2015; 16:851-7. [PMID: 26041128 DOI: 10.1177/1470320315588234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/24/2015] [Indexed: 02/02/2023] Open
Affiliation(s)
- Fangguo Chen
- Department of Oncology, 88th Hospital of PLA, Tai’an, People’s Republic of China
| | - Guiling Chen
- Department of Internal Medicine, Suncun Hospital of Shandong Xinwen Mining Group, Xintai, People’s Republic of China
| | - Yan Dou
- Department of Radiotherapy, Shandong University Affiliated Jinan Central Hospital, Ji’nan, People’s Republic of China
| | - Xinyun Xu
- Department of General Surgery, Shanghai Chang Zheng Hospital, Second Military Medical University, People’s Republic of China
| |
Collapse
|