1
|
Wang H, Xu R, She S, Abdullah M, Meng K, Xiao M, Nie J, Zhao H, Zhang KQ. PTFE Stent Membrane Based on the Electrospinning Technique and Its Potential for Replacing ePTFE. ACS APPLIED BIO MATERIALS 2024; 7:8608-8620. [PMID: 39601771 DOI: 10.1021/acsabm.4c01392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Expanded poly(tetrafluoroethylene) (ePTFE), obtained by the paste extrusion-stretching method, is a commonly used stent membrane material for the treatment of arterial stenosis or aneurysm in clinical practice. However, the structure of ePTFE is nonfibrous, which is not friendly to cells, and the equipment consumes a lot of energy and often requires the use of flammable and toxic lubricants. In this study, electrospinning was used to prepare PTFE vascular stent membranes, following plasma treatment, dopamine, and heparin grafting to obtain an anticoagulant surface. The morphology, structure, axial and circumferential tensile strength, porosity, water penetration pressure, and heparin-releasing behaviors of the samples were studied at first. Then, the experiments of blood compatibility, cytotoxicity, and in vivo subcutaneous implantation were conducted. Results showed that the PTFE electrospun tubular membrane has submicrometer to nanoscale fiber structures similar to the extracellular matrix. The axial and circumferential tensile strengths can reach 8.12 and 6.10 MPa, respectively, and the axial and circumferential elongations at break can reach 328.75% and 285.28%, respectively. It maintains higher porosity and water penetration pressure as well as a longer heparin-releasing period. It has a suitable hemolysis rate and superior anticoagulant properties. Dopamine and heparin modifications can facilitate the adhesion and proliferation of endothelial cells. Histological analysis of the PTFE electrospun tubular membrane showed no difference from the commercially available ePTFE graft.
Collapse
Affiliation(s)
- Haojie Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, PR China
| | - Rong Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, PR China
| | - Shuangyan She
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou 215123 Jiangsu, China
| | - Md Abdullah
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, PR China
| | - Kai Meng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, PR China
| | - Miao Xiao
- Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Jihua Nie
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou 215123 Jiangsu, China
| | - Huijing Zhao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, PR China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, PR China
| |
Collapse
|
2
|
Tan W, Boodagh P, Selvakumar PP, Keyser S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front Bioeng Biotechnol 2023; 10:1097334. [PMID: 36704297 PMCID: PMC9871289 DOI: 10.3389/fbioe.2022.1097334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular grafts are widely used for vascular surgeries, to bypass a diseased artery or function as a vascular access for hemodialysis. Bioengineered or tissue-engineered vascular grafts have long been envisioned to take the place of bioinert synthetic grafts and even vein grafts under certain clinical circumstances. However, host responses to a graft device induce adverse remodeling, to varied degrees depending on the graft property and host's developmental and health conditions. This in turn leads to invention or failure. Herein, we have mapped out the relationship between the design constraints and outcomes for vascular grafts, by analyzing impairment factors involved in the adverse graft remodeling. Strategies to tackle these impairment factors and counteract adverse healing are then summarized by outlining the research landscape of graft innovations in three dimensions-cell technology, scaffold technology and graft translation. Such a comprehensive view of cell and scaffold technological innovations in the translational context may benefit the future advancements in vascular grafts. From this perspective, we conclude the review with recommendations for future design endeavors.
Collapse
Affiliation(s)
- Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States,*Correspondence: Wei Tan,
| | - Parnaz Boodagh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Sean Keyser
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
3
|
Wang H, Xing M, Deng W, Qian M, Wang F, Wang K, Midgley AC, Zhao Q. Anti-Sca-1 antibody-functionalized vascular grafts improve vascular regeneration via selective capture of endogenous vascular stem/progenitor cells. Bioact Mater 2022; 16:433-450. [PMID: 35415291 PMCID: PMC8965769 DOI: 10.1016/j.bioactmat.2022.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 12/17/2022] Open
|
4
|
Computational Characterization of Mechanical, Hemodynamic, and Surface Interaction Conditions: Role of Protein Adsorption on the Regenerative Response of TEVGs. Int J Mol Sci 2022; 23:ijms23031130. [PMID: 35163056 PMCID: PMC8835378 DOI: 10.3390/ijms23031130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/10/2022] Open
Abstract
Currently available small diameter vascular grafts (<6 mm) present several long-term limitations, which has prevented their full clinical implementation. Computational modeling and simulation emerge as tools to study and optimize the rational design of small diameter tissue engineered vascular grafts (TEVG). This study aims to model the correlation between mechanical-hemodynamic-biochemical variables on protein adsorption over TEVG and their regenerative potential. To understand mechanical-hemodynamic variables, two-way Fluid-Structure Interaction (FSI) computational models of novel TEVGs were developed in ANSYS Fluent 2019R3® and ANSYS Transient Structural® software. Experimental pulsatile pressure was included as an UDF into the models. TEVG mechanical properties were obtained from tensile strength tests, under the ISO7198:2016, for novel TEVGs. Subsequently, a kinetic model, linked to previously obtained velocity profiles, of the protein-surface interaction between albumin and fibrinogen, and the intima layer of the TEVGs, was implemented in COMSOL Multiphysics 5.3®. TEVG wall properties appear critical to understand flow and protein adsorption under hemodynamic stimuli. In addition, the kinetic model under flow conditions revealed that size and concentration are the main parameters to trigger protein adsorption on TEVGs. The computational models provide a robust platform to study multiparametrically the performance of TEVGs in terms of protein adsorption and their regenerative potential.
Collapse
|
5
|
Wei Y, Wang F, Guo Z, Zhao Q. Tissue-engineered vascular grafts and regeneration mechanisms. J Mol Cell Cardiol 2021; 165:40-53. [PMID: 34971664 DOI: 10.1016/j.yjmcc.2021.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are life-threatening diseases with high morbidity and mortality worldwide. Vascular bypass surgery is still the ultimate strategy for CVD treatment. Autografts are the gold standard for graft transplantation, but insufficient sources limit their widespread application. Therefore, alternative tissue engineered vascular grafts (TEVGs) are urgently needed. In this review, we summarize the major strategies for the preparation of vascular grafts, as well as the factors affecting their patency and tissue regeneration. Finally, the underlying mechanisms of vascular regeneration that are mediated by host cells are discussed.
Collapse
Affiliation(s)
- Yongzhen Wei
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Fei Wang
- State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Zhikun Guo
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China
| | - Qiang Zhao
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
6
|
Geelhoed WJ, Moroni L, Rotmans JI. Utilizing the Foreign Body Response to Grow Tissue Engineered Blood Vessels in Vivo. J Cardiovasc Transl Res 2017; 10:167-179. [PMID: 28205013 PMCID: PMC5437130 DOI: 10.1007/s12265-017-9731-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/23/2017] [Indexed: 12/21/2022]
Abstract
It is well known that the number of patients requiring a vascular grafts for use as vessel replacement in cardiovascular diseases, or as vascular access site for hemodialysis is ever increasing. The development of tissue engineered blood vessels (TEBV's) is a promising method to meet this increasing demand vascular grafts, without having to rely on poorly performing synthetic options such as polytetrafluoroethylene (PTFE) or Dacron. The generation of in vivo TEBV's involves utilizing the host reaction to an implanted biomaterial for the generation of completely autologous tissues. Essentially this approach to the development of TEBV's makes use of the foreign body response to biomaterials for the construction of the entire vascular replacement tissue within the patient's own body. In this review we will discuss the method of developing in vivo TEBV's, and debate the approaches of several research groups that have implemented this method.
Collapse
Affiliation(s)
- Wouter J Geelhoed
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Eindhoven Laboratory of Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, Maastricht, The Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands. .,Eindhoven Laboratory of Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
7
|
Michel SAAX, Knetsch MLW, Koole LH. Adsorption of albumin on flax fibers increases endothelial cell adhesion and blood compatibility in vitro. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:698-712. [PMID: 24641207 DOI: 10.1080/09205063.2014.896633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The physical and chemical properties of flax (linen) are attractive from the perspective of biomaterials science and engineering. Flax textiles uniquely combine hydrophilicity and strength, with the technical know-how to produce precisely engineered two- and three-dimensional knitted or woven structures. It is, however, extremely difficult to completely remove endotoxins from the flax, and this essentially precludes the use of linen for implant purposes. Herein, the potential utility of flax textiles for blood-contacting applications is investigated, using purified two-dimensional mesh specimens, with and without an albumin surface coating. It was hypothesized that the albumin coating will abolish the effect of adherent endotoxins at the flax's surface. In vitro cell viability assays showed that the flax mesh ± albumin is not cytotoxic. The albumin coating reduced (but not abolished) the effect of surface-exposed endotoxins (Limulus amebocyte lysate test). Under dynamic conditions, the albumin coating favors coverage with endothelial cells. Experiments with fresh human blood plasma (platelet-rich and platelet-free) showed that the albumin coating reduces the thrombogenicity in vitro. Platelets adhered to the albumin-coated flax mesh showed a less flattened structure. Although the results of this work cannot be extrapolated easily to in vivo situations, the data reveal that woven or knitted tubular structures produced from flax fibers may hold promise as implantable blood contacting devices like for instance vascular grafts.
Collapse
Affiliation(s)
- Sophie A A X Michel
- a Faculty of Health, Medicine & Life Sciences, Department of Biomedical Engineering , Maastricht University , Universiteitssingel 50, Maastricht 6229 ER , The Netherlands
| | | | | |
Collapse
|