1
|
McCallum N, Najlah M. The Anticancer Activity of Monosaccharides: Perspectives and Outlooks. Cancers (Basel) 2024; 16:2775. [PMID: 39199548 PMCID: PMC11353049 DOI: 10.3390/cancers16162775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
A major hallmark of cancer is the reprogramming of cellular metabolism from oxidative phosphorylation (OXPHOS) to glycolysis, a phenomenon known as the Warburg effect. To sustain high rates of glycolysis, cancer cells overexpress GLUT transporters and glycolytic enzymes, allowing for the enhanced uptake and consumption of glucose. The Warburg effect may be exploited in the treatment of cancer; certain epimers and derivatives of glucose can enter cancer cells and inhibit glycolytic enzymes, stunting metabolism and causing cell death. These include common dietary monosaccharides (ᴅ-mannose, ᴅ-galactose, ᴅ-glucosamine, ʟ-fucose), as well as some rare monosaccharides (xylitol, ᴅ-allose, ʟ-sorbose, ʟ-rhamnose). This article reviews the literature on these sugars in in vitro and in vivo models of cancer, discussing their mechanisms of cytotoxicity. In addition to this, the anticancer potential of some synthetically modified monosaccharides, such as 2-deoxy-ᴅ-glucose and its acetylated and halogenated derivatives, is reviewed. Further, this article reviews how certain monosaccharides can be used in combination with anticancer drugs to potentiate conventional chemotherapies and to help overcome chemoresistance. Finally, the limitations of administering two separate agents, a sugar and a chemotherapeutic drug, are discussed. The potential of the glycoconjugation of classical or repurposed chemotherapy drugs as a solution to these limitations is reviewed.
Collapse
Affiliation(s)
| | - Mohammad Najlah
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Bishops Hall Lane, Chelmsford CM1 1SQ, UK;
| |
Collapse
|
2
|
Weiz G, González AL, Mansilla IS, Fernandez-Zapico ME, Molejón MI, Breccia JD. Rutinosides-derived from Sarocladium strictum 6-O-α-rhamnosyl-β-glucosidase show enhanced anti-tumoral activity in pancreatic cancer cells. Microb Cell Fact 2024; 23:133. [PMID: 38720294 PMCID: PMC11077868 DOI: 10.1186/s12934-024-02395-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Low targeting efficacy and high toxicity continue to be challenges in Oncology. A promising strategy is the glycosylation of chemotherapeutic agents to improve their pharmacodynamics and anti-tumoral activity. Herein, we provide evidence of a novel approach using diglycosidases from fungi of the Hypocreales order to obtain novel rutinose-conjugates therapeutic agents with enhanced anti-tumoral capacity. RESULTS Screening for diglycosidase activity in twenty-eight strains of the genetically related genera Acremonium and Sarocladium identified 6-O-α-rhamnosyl-β-glucosidase (αRβG) of Sarocladium strictum DMic 093557 as candidate enzyme for our studies. Biochemically characterization shows that αRβG has the ability to transglycosylate bulky OH-acceptors, including bioactive compounds. Interestingly, rutinoside-derivatives of phloroglucinol (PR) resorcinol (RR) and 4-methylumbelliferone (4MUR) displayed higher growth inhibitory activity on pancreatic cancer cells than the respective aglycones without significant affecting normal pancreatic epithelial cells. PR exhibited the highest efficacy with an IC50 of 0.89 mM, followed by RR with an IC50 of 1.67 mM, and 4MUR with an IC50 of 2.4 mM, whereas the respective aglycones displayed higher IC50 values: 4.69 mM for phloroglucinol, 5.90 mM for resorcinol, and 4.8 mM for 4-methylumbelliferone. Further, glycoconjugates significantly sensitized pancreatic cancer cells to the standard of care chemotherapy agent gemcitabine. CONCLUSIONS αRβG from S. strictum transglycosylate-based approach to synthesize rutinosides represents a suitable option to enhance the anti-proliferative effect of bioactive compounds. This finding opens up new possibilities for developing more effective therapies for pancreatic cancer and other solid malignancies.
Collapse
Affiliation(s)
- Gisela Weiz
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa-Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina.
| | - Alina L González
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa-Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| | - Iara S Mansilla
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa-Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| | - Martín E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - María I Molejón
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa-Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| | - Javier D Breccia
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa-Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| |
Collapse
|
3
|
Szulc A, Woźniak M. Targeting Pivotal Hallmarks of Cancer for Enhanced Therapeutic Strategies in Triple-Negative Breast Cancer Treatment-In Vitro, In Vivo and Clinical Trials Literature Review. Cancers (Basel) 2024; 16:1483. [PMID: 38672570 PMCID: PMC11047913 DOI: 10.3390/cancers16081483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This literature review provides a comprehensive overview of triple-negative breast cancer (TNBC) and explores innovative targeted therapies focused on specific hallmarks of cancer cells, aiming to revolutionize breast cancer treatment. TNBC, characterized by its lack of expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), presents distinct features, categorizing these invasive breast tumors into various phenotypes delineated by key elements in molecular assays. This article delves into the latest advancements in therapeutic strategies targeting components of the tumor microenvironment and pivotal hallmarks of cancer: deregulating cellular metabolism and the Warburg effect, acidosis and hypoxia, the ability to metastasize and evade the immune system, aiming to enhance treatment efficacy while mitigating systemic toxicity. Insights from in vitro and in vivo studies and clinical trials underscore the promising effectiveness and elucidate the mechanisms of action of these novel therapeutic interventions for TNBC, particularly in cases refractory to conventional treatments. The integration of targeted therapies tailored to the molecular characteristics of TNBC holds significant potential for optimizing clinical outcomes and addressing the pressing need for more effective treatment options for this aggressive subtype of breast cancer.
Collapse
Affiliation(s)
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
4
|
Gnanaselvan S, Yadav SA, Manoharan SP. Structure-based virtual screening of anti-breast cancer compounds from Artemisia absinthium-insights through molecular docking, pharmacokinetics, and molecular dynamic simulations. J Biomol Struct Dyn 2024; 42:3267-3285. [PMID: 37194295 DOI: 10.1080/07391102.2023.2212805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
Breast cancer is the world's second most frequent malignancy, with a significant mortality and morbidity rate. Nowadays, natural breast cancer medicine has piqued attention as disease-curing agent with low side effects. Herein, the leaf powder of Artemisia absinthium was extracted with ethanol, and GC-MS and LC-MS methods were employed to identify the phytocompounds. Using commercial software SeeSAR-9.2 and StarDrop, identified phytocompounds were docked with estrogen and progesterone breast cancer receptors as they promote breast cancer growth to find the binding affinity of the ligands, drugability, and toxicity. Hormone-mediated breast cancer accounts for about 80% of all cases of breast cancer. Cancer cells proliferate when estrogen and progesterone hormones are attached to these receptors. The molecular docking results demonstrated that 3',4',5,7-Tetrahydroxyisoflavanone (THIF) has stronger binding efficacy than standard drugs and other phytocompounds with -28.71 (3 hydrogen bonds) and -24.18 kcal/mol (6 hydrogen bonds) binding energies for estrogen and progesterone receptors, respectively. Pharmacokinetics and toxicity analysis were done to predict the drug-likeness of THIF which results in good drugability and less toxicity. The best fit THIF was subjected to a molecular dynamics simulation analysis by using Gromacs to analyze the conformational changes that occurred during protein-ligand interaction and found that, the structural changes were observed. The results from MD simulation and pharmacokinetic studies suggested that THIF can be expected that in vitro and in vivo research on this compound may lead to the development of a potent anti-breast cancer drug in the future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suvathika Gnanaselvan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | | | - Sowmya Priya Manoharan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| |
Collapse
|
5
|
Kosutova N, Lorencova L, Hires M, Jane E, Orovcik L, Kollar J, Kozics K, Gabelova A, Ukraintsev E, Rezek B, Kasak P, Cernocka H, Ostatna V, Blahutova J, Vikartovska A, Bertok T, Tkac J. Negative Charge-Carrying Glycans Attached to Exosomes as Novel Liquid Biopsy Marker. SENSORS (BASEL, SWITZERLAND) 2024; 24:1128. [PMID: 38400284 PMCID: PMC10892626 DOI: 10.3390/s24041128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Prostate cancer (PCa) is the second most common cancer. In this paper, the isolation and properties of exosomes as potential novel liquid biopsy markers for early PCa liquid biopsy diagnosis are investigated using two prostate human cell lines, i.e., benign (control) cell line RWPE1 and carcinoma cell line 22Rv1. Exosomes produced by both cell lines are characterised by various methods including nanoparticle-tracking analysis, dynamic light scattering, scanning electron microscopy and atomic force microscopy. In addition, surface plasmon resonance (SPR) is used to study three different receptors on the exosomal surface (CD63, CD81 and prostate-specific membrane antigen-PMSA), implementing monoclonal antibodies and identifying the type of glycans present on the surface of exosomes using lectins (glycan-recognising proteins). Electrochemical analysis is used to understand the interfacial properties of exosomes. The results indicate that cancerous exosomes are smaller, are produced at higher concentrations, and exhibit more nega tive zeta potential than the control exosomes. The SPR experiments confirm that negatively charged α-2,3- and α-2,6-sialic acid-containing glycans are found in greater abundance on carcinoma exosomes, whereas bisecting and branched glycans are more abundant in the control exosomes. The SPR results also show that a sandwich antibody/exosomes/lectins configuration could be constructed for effective glycoprofiling of exosomes as a novel liquid biopsy marker.
Collapse
Affiliation(s)
- Natalia Kosutova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| | - Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| | - Michal Hires
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| | - Lubomir Orovcik
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dubravska cesta 9/6319, 845 13 Bratislava, Slovakia
| | - Jozef Kollar
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
| | - Katarina Kozics
- Biomedical Research Centre, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia (A.G.)
| | - Alena Gabelova
- Biomedical Research Centre, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia (A.G.)
| | - Egor Ukraintsev
- Department of Physics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27 Prague, Czech Republic; (E.U.); (B.R.)
| | - Bohuslav Rezek
- Department of Physics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27 Prague, Czech Republic; (E.U.); (B.R.)
| | - Peter Kasak
- Centre for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Hana Cernocka
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61200 Brno, Czech Republic; (H.C.)
| | - Veronika Ostatna
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61200 Brno, Czech Republic; (H.C.)
| | - Jana Blahutova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| | - Alica Vikartovska
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| | - Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| |
Collapse
|
6
|
Yan S, Na J, Liu X, Wu P. Different Targeting Ligands-Mediated Drug Delivery Systems for Tumor Therapy. Pharmaceutics 2024; 16:248. [PMID: 38399302 PMCID: PMC10893104 DOI: 10.3390/pharmaceutics16020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Traditional tumor treatments have the drawback of harming both tumor cells and normal cells, leading to significant systemic toxic side effects. As a result, there is a pressing need for targeted drug delivery methods that can specifically target cells or tissues. Currently, researchers have made significant progress in developing targeted drug delivery systems for tumor therapy using various targeting ligands. This review aims to summarize recent advancements in targeted drug delivery systems for tumor therapy, focusing on different targeting ligands such as folic acid, carbohydrates, peptides, aptamers, and antibodies. The review also discusses the advantages, challenges, and future prospects of these targeted drug delivery systems.
Collapse
Affiliation(s)
- Shuxin Yan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (S.Y.); (J.N.)
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (S.Y.); (J.N.)
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (S.Y.); (J.N.)
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (S.Y.); (J.N.)
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
7
|
Křen V, Bojarová P. Rutinosidase and other diglycosidases: Rising stars in biotechnology. Biotechnol Adv 2023; 68:108217. [PMID: 37481095 DOI: 10.1016/j.biotechadv.2023.108217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Diglycosidases are a special class of glycosidases (EC 3.2.1) that catalyze the separation of intact disaccharide moieties from the aglycone part. The main diglycosidase representatives comprise rutinosidases that cleave rutinose (α-l-Rha-(1-6)-β-d-Glc) from rutin or other rutinosides, and (iso)primeverosidases processing (iso)primeverosides (d-Xyl-(1-6)-β-d-Glc), but other activities are known. Notably, some diglycosidases may be ranked as monoglucosidases with enlarged substrate specificity. Diglycosidases are found in various microorganisms and plants. Diglycosidases are used in the food industry for aroma enhancement and flavor modification. Besides their hydrolytic activity, they also possess pronounced synthetic (transglycosylating) capabilities. Recently, they have been demonstrated to glycosylate various substrates in a high yield, including peculiar species like inorganic azide or carboxylic acids, which is a unique feature in biocatalysis. Rhamnose-containing compounds such as rutinose are currently receiving increased attention due to their proven activity in anti-cancer and dermatological experimental studies. This review demonstrates the vast and yet underrated biotechnological potential of diglycosidases from various sources (plant, microbial), and reveals perspectives on the use of these catalysts as well as of their products in biotechnology.
Collapse
Affiliation(s)
- Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, CZ 14200 Prague 4, Czech Republic.
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, CZ 14200 Prague 4, Czech Republic.
| |
Collapse
|
8
|
Pastuch-Gawołek G, Szreder J, Domińska M, Pielok M, Cichy P, Grymel M. A Small Sugar Molecule with Huge Potential in Targeted Cancer Therapy. Pharmaceutics 2023; 15:913. [PMID: 36986774 PMCID: PMC10056414 DOI: 10.3390/pharmaceutics15030913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The number of cancer-related diseases is still growing. Despite the availability of a large number of anticancer drugs, the ideal drug is still being sought that would be effective, selective, and overcome the effect of multidrug resistance. Therefore, researchers are still looking for ways to improve the properties of already-used chemotherapeutics. One of the possibilities is the development of targeted therapies. The use of prodrugs that release the bioactive substance only under the influence of factors characteristic of the tumor microenvironment makes it possible to deliver the drug precisely to the cancer cells. Obtaining such compounds is possible by coupling a therapeutic agent with a ligand targeting receptors, to which the attached ligand shows affinity and is overexpressed in cancer cells. Another way is to encapsulate the drug in a carrier that is stable in physiological conditions and sensitive to conditions of the tumor microenvironment. Such a carrier can be directed by attaching to it a ligand recognized by receptors typical of tumor cells. Sugars seem to be ideal ligands for obtaining prodrugs targeted at receptors overexpressed in cancer cells. They can also be ligands modifying polymers' drug carriers. Furthermore, polysaccharides can act as selective nanocarriers for numerous chemotherapeutics. The proof of this thesis is the huge number of papers devoted to their use for modification or targeted transport of anticancer compounds. In this work, selected examples of broad-defined sugars application for improving the properties of both already-used drugs and substances exhibiting anticancer activity are presented.
Collapse
Affiliation(s)
- Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Julia Szreder
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Monika Domińska
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Mateusz Pielok
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Piotr Cichy
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Mirosława Grymel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| |
Collapse
|
9
|
Sukowati CHC, Weiz G, Lestari WW, Tiribelli C. Glycosylated-drug Delivery as Targeted Therapy for Hepatocellular Carcinoma: Are We There Yet? Curr Pharm Des 2023; 29:2439-2441. [PMID: 37899637 DOI: 10.2174/0113816128269619231018074301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023]
Affiliation(s)
- Caecilia H C Sukowati
- Liver Cancer Unit, Italian Liver Foundation NPO, AREA Science Park, Basovizza, Trieste 34149, Italy
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), B.J. Habibie Building, Jl. M.H. Thamrin No. 8, Jakarta Pusat 10340, Indonesia
| | - Gisela Weiz
- Institute of Earth and Environmental Sciences from La Pampa (INCITAP), School of Natural Sciences (CONICET-UNLPam), National University of La Pampa, Santa Rosa 6300, La Pampa, Argentina
| | - Witri W Lestari
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl Ir. Sutami 36A, Surakarta 57126, Indonesia
| | - Claudio Tiribelli
- Liver Cancer Unit, Italian Liver Foundation NPO, AREA Science Park, Basovizza, Trieste 34149, Italy
| |
Collapse
|
10
|
Design, synthesis of novel triptolide-glucose conjugates targeting glucose Transporter-1 and their selective antitumor effect. Eur J Med Chem 2022; 238:114463. [PMID: 35617856 DOI: 10.1016/j.ejmech.2022.114463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/11/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Abstract
Six positional isomers of triptolide-glucose conjugates (TG1α, TG1β, TG2, TG3, TG4 and TG6) were designed and synthesized. These conjugates exhibited better water solubility, and had selective cytotoxicity between tumor cells with high expression of glucose transport-1 (Glut-1) and non-tumor cells with low expression of Glut-1, in which TG2 formed by triptolide (TPL) and d-glucose C2-OH had the strongest cytotoxicity to tumor cells and lowest toxicity in non-tumor cells, therefore the highest relative therapeutic index, which was 5.7 times that of triptolide and consequent the most powerful selective antitumor activity in vitro. The cytotoxicity of TG2 was highly correlated with Glut-1 function. As a prodrug of triptolide, TG2 could promote RNA Pol II degradation and induce apoptosis as TPL does. TG2 had a stronger dose-dependent antitumor effect in vivo than TPL and no adverse reaction occurred when its tumor inhibition was higher than 90%, which was associated with its selective distribution in tumor tissues. TG2 could be used as a promising drug candidate for the treatment of solid tumors with high expression of Glut-1, which is worthy of further study.
Collapse
|
11
|
Luo X, Liu J. Ultrasmall Luminescent Metal Nanoparticles: Surface Engineering Strategies for Biological Targeting and Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103971. [PMID: 34796699 PMCID: PMC8787435 DOI: 10.1002/advs.202103971] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/27/2021] [Indexed: 05/07/2023]
Abstract
In the past decade, ultrasmall luminescent metal nanoparticles (ULMNPs, d < 3 nm) have achieved rapid progress in addressing many challenges in the healthcare field because of their excellent physicochemical properties and biological behaviors. With the sharp shrinking size of large plasmonic metal nanoparticles (PMNPs), the contributions from the surface characteristics increase significantly, which brings both opportunities and challenges in the application-driven surface engineering of ULMNPs toward advanced biological applications. Here, the systematic advancements in the biological applications of ULMNPs from bioimaging to theranostics are summarized with emphasis on the versatile surface engineering strategies in the regulation of biological targeting and imaging performance. The efforts in the surface functionalization strategies of ULMNPs for enhanced disease targeting abilities are first discussed. Thereafter, self-assembly strategies of ULMNPs for fabricating multifunctional nanostructures for multimodal imaging and nanomedicine are discussed. Further, surface engineering strategies of ratiometric ULMNPs to enhance the imaging stability to address the imaging challenges in complicated bioenvironments are summarized. Finally, the phototoxicity of ULMNPs and future perspectives are also reviewed, which are expected to provide a fundamental understanding of the physicochemical properties and biological behaviors of ULMNPs to accelerate their future clinical applications in healthcare.
Collapse
Affiliation(s)
- Xiaoxi Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| |
Collapse
|
12
|
Ahmed DE, Rashidi FB, Abdelhakim HK, Mohamed AS, Arafa HMM. An in vitro cytotoxicity of glufosfamide in HepG2 cells relative to its nonconjugated counterpart. J Egypt Natl Canc Inst 2021; 33:22. [PMID: 34423383 DOI: 10.1186/s43046-021-00080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glufosfamide (β-D-glucosylisophosphoramide mustard, GLU) is an alkylating cytotoxic agent in which ifosforamide mustard (IPM) is glycosidically linked to the β-D-glucose molecule. GLU exerted its cytotoxic effect as a targeted chemotherapy. Although, its cytotoxic efficacy in a number of cell lines, there were no experimental or clinical data available on the oncolytic effect of oxazaphosphorine drugs in hepatocellular carcinoma. Therefore, the main objective of the current study is to assess the cytotoxic potential of GLU for the first time in the hepatocellular carcinoma HepG2 cell line model. METHODS Cytotoxicity was assayed by the MTT method, and half-maximal inhibitory concentration (IC50) was calculated. Flow cytometric analysis of apoptosis frequencies was measured by using Annexin V/PI double stain, an immunocytochemical assay of caspase-9, visualization of caspase-3, and Bcl2 gene expression were undertaken as apoptotic markers. Mitochondrial membrane potential was measured using the potentiometric dye; JC-1, as a clue for early apoptosis as well as ATP production, was measured by the luciferase-chemiluminescence assay. RESULTS Glufosfamide induced cytotoxicity in HepG2 cells in a concentration- and time-dependent manner. The IC50 values for glufosfamide were significantly lower compared to ifosfamide. The frequency of apoptosis was much higher for glufosfamide than that of ifosfamide. The contents of caspase-9 and caspase-3 were elevated following exposure to GLU more than IFO. The anti-apoptotic Bcl2 gene expression, the mitochondrial membrane potential, and the cellular ATP levels were significantly decreased than in case of ifosfamide. CONCLUSIONS The current study reported for the first time cytotoxicity activity of glufosfamide in HepG2 cells in vitro. The obtained results confirmed the higher oncolytic activity of glufosfamide than its aglycone ifosfamide. The generated data warrants further elucidations by in vivo study.
Collapse
Affiliation(s)
- Doaa E Ahmed
- Department of Biochemistry, Misr University for Science & Technology (MUST), Giza, Egypt
| | - Fatma B Rashidi
- Biochemistry Lab.Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.
| | - Heba K Abdelhakim
- Biochemistry Lab.Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Amr S Mohamed
- Biochemistry Lab.Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Hossam M M Arafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Ahram Canadian University, Giza, 267119, Egypt
| |
Collapse
|
13
|
Molinaro C, Martoriati A, Cailliau K. Proteins from the DNA Damage Response: Regulation, Dysfunction, and Anticancer Strategies. Cancers (Basel) 2021; 13:3819. [PMID: 34359720 PMCID: PMC8345162 DOI: 10.3390/cancers13153819] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Cells respond to genotoxic stress through a series of complex protein pathways called DNA damage response (DDR). These monitoring mechanisms ensure the maintenance and the transfer of a correct genome to daughter cells through a selection of DNA repair, cell cycle regulation, and programmed cell death processes. Canonical or non-canonical DDRs are highly organized and controlled to play crucial roles in genome stability and diversity. When altered or mutated, the proteins in these complex networks lead to many diseases that share common features, and to tumor formation. In recent years, technological advances have made it possible to benefit from the principles and mechanisms of DDR to target and eliminate cancer cells. These new types of treatments are adapted to the different types of tumor sensitivity and could benefit from a combination of therapies to ensure maximal efficiency.
Collapse
Affiliation(s)
| | | | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| |
Collapse
|
14
|
Song Y, Zhang F, Linhardt RJ. Glycosaminoglycans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:103-116. [PMID: 34495531 DOI: 10.1007/978-3-030-70115-4_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycosaminoglycans (GAGs) are important constituents of human glycome. They are negatively charged unbranched polysaccharides that are usually covalently attached to proteins, forming glycan-protein conjugates, called proteoglycans. Glycosaminoglycans play critical roles in numerous biological processes throughout individual development and are also involved in the pathological processes of various diseases. Based on their remarkable bioactivities and their universal involvement in disease progression, GAGs are applied as therapeutics or are being targeted or used in treating diseases. In this chapter, we introduce the characteristics of the four classes of GAGs that constitute the glycosaminoglycan family. The pathological roles of glycosaminoglycans in major diseases including innate disease, infectious disease, and cancer are discussed. The application of GAGs and their mimetics as therapeutics is introduced, as well as those therapeutic methods developed based on GAGs' role in pathogenesis. In addition, we provide a brief and overall lookback at the history of GAG research and sort out some critical techniques that facilitated GAG and glycomics studies.
Collapse
Affiliation(s)
- Yuefan Song
- National R&D Branch Center for Seaweed Processing, College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China. .,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
15
|
Cuffaro D, Nuti E, D’Andrea F, Rossello A. Developments in Carbohydrate-Based Metzincin Inhibitors. Pharmaceuticals (Basel) 2020; 13:ph13110376. [PMID: 33182755 PMCID: PMC7696829 DOI: 10.3390/ph13110376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023] Open
Abstract
Matrix metalloproteinases (MMPs) and A disintegrin and Metalloproteinase (ADAMs) are zinc-dependent endopeptidases belonging to the metzincin superfamily. Upregulation of metzincin activity is a major feature in many serious pathologies such as cancer, inflammations, and infections. In the last decades, many classes of small molecules have been developed directed to inhibit these enzymes. The principal shortcomings that have hindered clinical development of metzincin inhibitors are low selectivity for the target enzyme, poor water solubility, and long-term toxicity. Over the last 15 years, a novel approach to improve solubility and bioavailability of metzincin inhibitors has been the synthesis of carbohydrate-based compounds. This strategy consists of linking a hydrophilic sugar moiety to an aromatic lipophilic scaffold. This review aims to describe the development of sugar-based and azasugar-based derivatives as metzincin inhibitors and their activity in several pathological models.
Collapse
|