1
|
Shaban N, Kamashev D, Emelianova A, Buzdin A. Targeted Inhibitors of EGFR: Structure, Biology, Biomarkers, and Clinical Applications. Cells 2023; 13:47. [PMID: 38201251 PMCID: PMC10778338 DOI: 10.3390/cells13010047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Members of the EGFR family of tyrosine kinase receptors are major regulators of cellular proliferation, differentiation, and survival. In humans, abnormal activation of EGFR is associated with the development and progression of many cancer types, which makes it an attractive target for molecular-guided therapy. Two classes of EGFR-targeted cancer therapeutics include monoclonal antibodies (mAbs), which bind to the extracellular domain of EGFR, and tyrosine kinase inhibitors (TKIs), which mostly target the intracellular part of EGFR and inhibit its activity in molecular signaling. While EGFR-specific mAbs and three generations of TKIs have demonstrated clinical efficacy in various settings, molecular evolution of tumors leads to apparent and sometimes inevitable resistance to current therapeutics, which highlights the need for deeper research in this field. Here, we tried to provide a comprehensive and systematic overview of the rationale, molecular mechanisms, and clinical significance of the current EGFR-targeting drugs, highlighting potential candidate molecules in development. We summarized the underlying mechanisms of resistance and available personalized predictive approaches that may lead to improved efficacy of EGFR-targeted therapies. We also discuss recent developments and the use of specific therapeutic strategies, such as multi-targeting agents and combination therapies, for overcoming cancer resistance to EGFR-specific drugs.
Collapse
Affiliation(s)
- Nina Shaban
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (D.K.); (A.B.)
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Dmitri Kamashev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (D.K.); (A.B.)
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Aleksandra Emelianova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
| | - Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (D.K.); (A.B.)
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| |
Collapse
|
2
|
Wang B, Liu L, Wu J, Mao X, Fang Z, Chen Y, Li W. Construction and Verification of a Combined Hypoxia and Immune Index for Clear Cell Renal Cell Carcinoma. Front Genet 2022; 13:711142. [PMID: 35222525 PMCID: PMC8863964 DOI: 10.3389/fgene.2022.711142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most aggressive malignancies in humans. Hypoxia-related genes are now recognized as a reflection of poor prognosis in cancer patients with cancer. Meanwhile, immune-related genes play an important role in the occurrence and progression of ccRCC. Nevertheless, reliable prognostic indicators based on hypoxia and immune status have not been well established in ccRCC. The aims of this study were to develop a new gene signature model using bioinformatics and open databases and to validate its prognostic value in ccRCC. The data used for the model structure can be accessed from The Cancer Genome Atlas database. Univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses were used to identify the hypoxia- and immune-related genes associated with prognostic risk, which were used to develop a characteristic model of prognostic risk. Kaplan-Meier and receiver-operating characteristic curve analyses were performed as well as independent prognostic factor analyses and correlation analyses of clinical characteristics in both the training and validation cohorts. In addition, differences in tumor immune cell infiltrates were compared between the high and low risk groups. Overall, 30 hypoxia- and immune-related genes were identified, and five hypoxia- and immune-related genes (EPO, PLAUR, TEK, TGFA, TGFB1) were ultimately selected. Survival analysis showed that the high-risk score on the hypoxia- and immune-related gene signature was significantly associated with adverse survival outcomes. Furthermore, clinical ccRCC samples from our medical center were used to validate the differential expression of the five genes in tumor tissue compared to normal tissue through quantitative real-time polymerase chain reaction (qRT-PCR). However, more clinical trials are needed to confirm these results, and future experimental studies must verify the potential mechanism behind the predictive value of the hypoxia- and immune-related gene signature.
Collapse
Affiliation(s)
- Bin Wang
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lixiao Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinting Wu
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaolu Mao
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhen Fang
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yingyu Chen
- Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenfeng Li
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wenfeng Li,
| |
Collapse
|
3
|
Sun C, Gao W, Liu J, Cheng H, Hao J. FGL1 regulates acquired resistance to Gefitinib by inhibiting apoptosis in non-small cell lung cancer. Respir Res 2020; 21:210. [PMID: 32778129 PMCID: PMC7418324 DOI: 10.1186/s12931-020-01477-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Background This study investigated the role of fibrinogen-like protein 1 (FGL1) in regulating gefitinib resistance of PC9/GR non-small cell lung cancer (NSCLC). Methods The effect of different concentrations of gefitinib on cell proliferation were evaluated using the CCK-8 assay. FGL1 expression in the normal human bronchial epithelial cell line Beas-2B, as well as four lung tumor cell lines, H1975, A549, PC9, and PC9/GR, was investigated by using western blotting and qRT-PCR. FGL1 was knocked down using small interfering RNA to evaluate the effects of FGL1 on PC9 and PC9/GR. The correlation between FGL1 expression and gefitinib resistance was determined in vitro via CCK-8 and colony formation assays, and flow cytometry and in vivo via flow cytometry and immunohistochemistry. Results FGL1 expression was significantly upregulated in non-small cell lung cancer cells with EGFR mutation and higher in the gefitinib-resistant NSCLC cell line PC9/GR than in the gefitinib-sensitive NSCLC cell line PC9. Further, FGL1 expression in PC9 and PC9/GR cells increased in response to gefitinib treatment in a dose-dependent manner. Knockdown of FGL1 suppressed cell viability, reduced the gefitinib IC50 value, and enhanced apoptosis in PC9 and PC9/GR cells upon gefitinib treatment. Mouse xenograft experiments showed that FGL1 knockdown in PC9/GR tumor cells enhanced the inhibitory and apoptosis-inducing actions of gefitinib. The potential mechanism of gefitinib in inducing apoptosis of PC9/GR cells involves inhibition of PARP1 and caspase 3 expression via suppression of FGL1. Conclusions FGL1 confers gefitinib resistance in the NSCLC cell line PC9/GR by regulating the PARP1/caspase 3 pathway. Hence, FGL1 is a potential therapeutic target to improve the treatment response of NSCLC patients with acquired resistance to gefitinib.
Collapse
Affiliation(s)
- Cuilan Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Weiwei Gao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Jiatao Liu
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hao Cheng
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Jiqing Hao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
4
|
SNHG14 confers gefitinib resistance in non-small cell lung cancer by up-regulating ABCB1 via sponging miR-206-3p. Biomed Pharmacother 2019; 116:108995. [PMID: 31121484 DOI: 10.1016/j.biopha.2019.108995] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022] Open
Abstract
Gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), has been widely used as a first-line agent in EGFR-mutant non-small cell lung cancer (NSCLC). Nevertheless, the development of chemoresistance ultimately limited the curative effect of anti-cancer drugs. The present study aims to investigate the functions of SNHG14 in gefitinib resistance and gain insight into the underlying molecular mechanisms. In the present study, we found that SNHG14 expression was elevated and miR-206-3p expression was decreased in gefitinib-resistant NSCLC tumor tissues and cells. Functionally, SNHG14 overexpression increased gefitinib resistance by promoting cell viability, lowering apoptosis and enhancing colony forming ability, while SNHG14 knockdown reduced gefitinib resistance in NSCLC cells. Mechanistically, SNHG14 induced ABCB1 expression via interaction with miR-206-3p. Moreover, depletion of SNHG14 enhanced the sensitivity of NSCLC cells to gefitinib in vivo. Together, SNHG14 confers gefitinib resistance in NSCLC by regulating miR-206-3p/ABCB1 pathway, contributing to a better understanding of SNHG14 in acquired resistance and elucidating a candidate target to improve treatment response of NSCLC patients.
Collapse
|
5
|
Jin L, Liu Y, Wang X, Qi X. Immunohistochemical analysis and comparison of napsin A, TTF1, SPA and CK7 expression in primary lung adenocarcinoma. Biotech Histochem 2018; 93:364-372. [PMID: 29956575 DOI: 10.1080/10520295.2018.1444790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- L Jin
- Department of Pathology, Affiliated Hospital of Jiangnan University (The Fourth People’s Hospital of WuXi), PR China
| | - Y Liu
- Department of Pathology, Affiliated Hospital of Jiangnan University (The Fourth People’s Hospital of WuXi), PR China
| | - X Wang
- Department of Pathology, Affiliated Hospital of Jiangnan University (The Fourth People’s Hospital of WuXi), PR China
| | - X Qi
- Department of Pathology, Affiliated Hospital of Jiangnan University (The Fourth People’s Hospital of WuXi), PR China
| |
Collapse
|
6
|
Dai D, Xu W, Wang Q, Li X, Zhu Y. [Current Status and Progress in Molecular Imaging of Non-small Cell Lung
Cancer for Molecular Targeted EGFR-TKI Treatment Sensitivity and
Treatment Tolerance Prediction]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017; 20:852-856. [PMID: 29277186 PMCID: PMC5973391 DOI: 10.3779/j.issn.1009-3419.2017.12.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
肺癌80%以上为非小细胞肺癌(non-small cell lung cancer, NSCLC),表皮生长因子受体(epidermal growth factor receptor, EGFR)介导的信号通路与NSCLC发生发展密切相关。针对EGFR的小分子EGFR赖氨酸激酶抑制剂(EGFR-tyrosine kinase inhibitor, EGFR-TKI)被应用于NSCLC的临床治疗,正电子发射计算机断层显像(positron emission tomography/computed tomgraphy, PET/CT)能够无创地对NSCLC患者全身EGFR表达及突变状况进行连续动态监测。18F-FDG PET/CT显像对于EGFR活化突变、EGFR-TKI治疗疗效具有预测价值,并且能够在体直接观察到药物与全身肿瘤病灶EGFR靶向结合的具体情况,通过治疗前后的PET-CT显像,实现治疗前高敏人群筛选和治疗全过程的动态监测、治疗策略指导,对实现NSCLC的EGFR-TKI精准治疗至关重要。
Collapse
Affiliation(s)
- Dong Dai
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Qi Wang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yanjia Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|
7
|
Friese-Hamim M, Bladt F, Locatelli G, Stammberger U, Blaukat A. The selective c-Met inhibitor tepotinib can overcome epidermal growth factor receptor inhibitor resistance mediated by aberrant c-Met activation in NSCLC models. Am J Cancer Res 2017; 7:962-972. [PMID: 28469968 PMCID: PMC5411803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) sensitive to first-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) often acquires resistance through secondary EGFR mutations, including the T790M mutation, aberrant c-Met receptor activity, or both. We assessed the ability of the highly selective c-Met inhibitor tepotinib to overcome EGFR TKI resistance in various xenograft models of NSCLC. In models with EGFR-activating mutations and low c-Met expression (patient explant-derived LU342, cell line PC-9), EGFR TKIs caused tumors to shrink, but growth resumed upon cessation of treatment. Tepotinib combined with EGFR TKIs delayed tumor regrowth, while tepotinib alone was ineffective. In patient explant-derived LU858, which has an EGFR-activating mutation and expresses high levels of c-Met/HGF, EGFR TKIs had no effect on tumor growth. Tepotinib combined with EGFR TKIs caused complete tumor regression and tepotinib alone caused tumor stasis. In cell line DFCI081 (activating EGFR mutation, c-Met amplification), EGFR TKIs were ineffective, whereas tepotinib alone induced complete tumor regression. Finally, in a 'double resistant' EGFR T790M-positive, high c-Met model (cell line HCC827-GR-T790M), the EGFR TKIs erlotinib, afatinib, and rociletinib, as well as tepotinib as a single agent or in combination with erlotinib or afatinib, slowed tumor growth, but only tepotinib in combination with rociletinib induced complete tumor regression. We conclude that tepotinib can overcome acquired resistance to EGFR TKIs. Based on these data, clinical trials of tepotinib in combination with EGFR TKIs in patients with NSCLC with acquired resistance to first-generation EGFR TKIs are warranted.
Collapse
Affiliation(s)
| | - Friedhelm Bladt
- Translational and Biomarker Research, Merck KGaADarmstadt, Germany
| | | | - Uz Stammberger
- Global Research and Development, Merck KGaADarmstadt, Germany
| | - Andree Blaukat
- Global Research and Development, Merck KGaADarmstadt, Germany
| |
Collapse
|
8
|
Ruiz-Ceja KA, Chirino YI. Current FDA-approved treatments for non-small cell lung cancer and potential biomarkers for its detection. Biomed Pharmacother 2017; 90:24-37. [PMID: 28340378 DOI: 10.1016/j.biopha.2017.03.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/21/2017] [Accepted: 03/07/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Lung cancer is the leading worldwide cancer with almost 1.5 million deaths every year. Some drugs for lung cancer treatment have been available on the market for decades, but novel drugs have emerged promising better outcomes, especially for Non-Small Cell Lung Cancer (NSCLC), which represents 75% of lung cancer cases. However, how much do drugs have evolved for NSCLC treatment? Are they sharing the same mechanism of action? AIM In this review we analyzed how the approved drugs by Federal Drug Agency for NSCLC have advanced in the last four decades identifying shared mechanism of action of medicines against NSCLC treatment and some of the potential biomarkers for early detection. RESULTS Cisplatin and its derivatives are still the most used therapy in combination with some other more specific drugs. However, increasing the survival rates seems to be a great challenge and research is moving into early detection through biomarkers but also trying to identify molecules such as those derived from the immune system, cell-free DNA, non-coding RNAs, but also polymorphisms to detect early tumor formation. CONCLUSIONS Cisplatin and derivatives have been one of the most successful therapies in spite of their side effects and low specificity. Some of the drugs developed after cisplatin discovery, have been targeted the epidermal growth factor receptor, anaplastic lymphoma kinase, programmed cell death 1 ligand and vascular endothelial growth factor. Since none of the pharmacological treatments in combination with radiation/surgery have extended dramatically the survival rate, research is now focused in early cancer detection in combination with precision medicine, which attempts to treat patients individually according to their stage and tumor characteristics.
Collapse
Affiliation(s)
- Karla A Ruiz-Ceja
- Licenciatura en Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, CP 54059, Estado de México, Mexico
| | - Yolanda I Chirino
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, CP 54059, Estado de México, Mexico.
| |
Collapse
|
9
|
Stache C, Bils C, Fahlbusch R, Flitsch J, Buchfelder M, Stefanits H, Czech T, Gaipl U, Frey B, Buslei R, Hölsken A. Drug priming enhances radiosensitivity of adamantinomatous craniopharyngioma via downregulation of survivin. Neurosurg Focus 2017; 41:E14. [PMID: 27903123 DOI: 10.3171/2016.9.focus16316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In this study, the authors investigated the underlying mechanisms responsible for high tumor recurrence rates of adamantinomatous craniopharyngioma (ACP) after radiotherapy and developed new targeted treatment protocols to minimize recurrence. ACPs are characterized by the activation of the receptor tyrosine kinase epidermal growth factor receptor (EGFR), known to mediate radioresistance in various tumor entities. The impact of tyrosine kinase inhibitors (TKIs) gefitinib or CUDC-101 on radiation-induced cell death and associated regulation of survivin gene expression was evaluated. METHODS The hypothesis that activated EGFR promotes radioresistance in ACP was investigated in vitro using human primary cell cultures of ACP (n = 10). The effects of radiation (12 Gy) and combined radiochemotherapy on radiosensitivity were assessed via cell death analysis using flow cytometry. Changes in target gene expression were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Survivin, identified in qRT-PCR to be involved in radioresistance of ACP, was manipulated by small interfering RNA (siRNA), followed by proliferation and vitality assays to further clarify its role in ACP biology. Immunohistochemically, survivin expression was assessed in patient tumors used for primary cell cultures. RESULTS In primary human ACP cultures, activation of EGFR resulted in significantly reduced cell death levels after radiotherapy. Treatment with TKIs alone and in combination with radiotherapy increased cell death response remarkably, assessed by flow cytometry. CUDC-101 was significantly more effective than gefitinib. The authors identified regulation of survivin expression after therapeutic intervention as the underlying molecular mechanism of radioresistance in ACP. EGFR activation promoting ACP cell survival and proliferation in vitro is consistent with enhanced survivin gene expression shown by qRT-PCR. TKI treatment, as well as the combination with radiotherapy, reduced survivin levels in vitro. Accordingly, ACP showed reduced cell viability and proliferation after survivin downregulation by siRNA. CONCLUSIONS These results indicate an impact of EGFR signaling on radioresistance in ACP. Inhibition of EGFR activity by means of TKI treatment acts as a radiosensitizer on ACP tumor cells, leading to increased cell death. Additionally, the results emphasize the antiapoptotic and pro-proliferative role of survivin in ACP biology and its regulation by EGFR signaling. The suppression of survivin by treatment with TKI and combined radiotherapy represents a new promising treatment strategy that will be further assessed in in vivo models of ACP.
Collapse
Affiliation(s)
- Christina Stache
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Institute of Child Health, University College London, United Kingdom
| | - Christiane Bils
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Jörg Flitsch
- Department of Neurosurgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Buchfelder
- Department of Neurosurgery, University Hospital Erlangen-Nuremberg, Erlangen, Germany
| | - Harald Stefanits
- Department of Neurosurgery, Medical University of Vienna, Austria; and
| | - Thomas Czech
- Department of Neurosurgery, Medical University of Vienna, Austria; and
| | - Udo Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rolf Buslei
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Annett Hölsken
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
Wang X, Goldstein D, Crowe PJ, Yang JL. Next-generation EGFR/HER tyrosine kinase inhibitors for the treatment of patients with non-small-cell lung cancer harboring EGFR mutations: a review of the evidence. Onco Targets Ther 2016; 9:5461-73. [PMID: 27660463 PMCID: PMC5021053 DOI: 10.2147/ott.s94745] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) against human epidermal growth factor receptor (EGFR/HER) family have been introduced into the clinic to treat cancers, particularly non-small-cell lung cancer (NSCLC). There have been three generations of the EGFR/HER-TKIs. First-generation EGFR/HER-TKIs, binding competitively and reversibly to the ATP-binding site of the EGFR TK domain, show a significant breakthrough treatment in selected NSCLC patients with activating EGFR mutations (actEGFRm) EGFR (L858R) and EGFR (Del19), in terms of safety, efficacy, and quality of life. However, all those responders inevitably develop acquired resistance within 12 months, because of the EGFR (T790M) mutation, which prevents TKI binding to ATP-pocket of EGFR by steric hindrance. The second-generation EGFR/HER-TKIs were developed to prolong and maintain more potent response as well as overcome the resistance to the first-generation EGFR/HER-TKIs. They are different from the first-generation EGFR/HER-TKIs by covalently binding to the ATP-binding site, irreversibly blocking enzymatic activation, and targeting EGFR/HER family members, including EGFR, HER2, and HER4. Preclinically, these compounds inhibit the enzymatic activation for actEGFRm, EGFR (T790M), and wtEGFR. The second-generation EGFR/HER-TKIs improve overall survival in cancer patients with actEGFRm in a modest way. However, they are not clinically active in overcoming EGFR (T790M) resistance, mainly because of dose-limiting toxicity due to simultaneous inhibition against wtEGFR. The third-generation EGFR/HER-TKIs selectively and irreversibly target EGFR (T790M) and actEGFRm while sparing wtEGFR. They yield promising efficacy in NSCLC patients with actEGFRm as well as EGFR (T790M) resistant to the first- and second-generation EGFR-TKIs. They also appear to have a lower incidence of toxicity due to the reduced inhibitory effect on wtEGFR. Currently, the first-generation EGFR/HER-TKIs gefitinib and erlotinib and second-generation EGFR/HER-TKI afatinib have been approved for use as the first-line treatment of metastatic NSCLC with actEGFRm. This review will summarize and evaluate a broad range of evidence of recent development of EGFR/HER-TKIs, with a focus on the second- and third-generation EGFR/HER-TKIs, in the treatment of patients with NSCLC harboring EGFR mutations.
Collapse
Affiliation(s)
- Xiaochun Wang
- Department of Surgery; Sarcoma and Nanooncology Group, Adult Cancer Program, Lowy Cancer Research Centre
| | - David Goldstein
- Department of Medical Oncology, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Philip J Crowe
- Department of Surgery; Sarcoma and Nanooncology Group, Adult Cancer Program, Lowy Cancer Research Centre
| | - Jia-Lin Yang
- Department of Surgery; Sarcoma and Nanooncology Group, Adult Cancer Program, Lowy Cancer Research Centre
| |
Collapse
|
11
|
Wu H, Liu Y, Shu XO, Cai Q. MiR-374a suppresses lung adenocarcinoma cell proliferation and invasion by targeting TGFA gene expression. Carcinogenesis 2016; 37:567-75. [PMID: 27207663 DOI: 10.1093/carcin/bgw038] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/27/2016] [Indexed: 12/25/2022] Open
Abstract
Aberrant expression of miR-374a has been reported in several types of human cancers, including lung cancer. However, the functional significance and molecular mechanisms underlying the role of miR-374a in lung cancer remain largely unknown. We found that the expression of miR-374a was significantly downregulated in lung adenocarcinoma tissues compared to adjacent normal lung tissues in samples included in The Cancer Genome Atlas. Functional studies revealed that overexpression of miR-374a led to inhibition of lung adenocarcinoma cell proliferation, migration and invasion and that miR-374a negatively regulated transforming growth factor-alpha (TGFA) gene expression by directly targeting the 3'-UTR of TGFA mRNA. Treating lung adenocarcinoma cells with TGF-α neutralizing antibody resulted in suppression of cell proliferation and invasion, which mimicked the action of miR-374a. Additionally, TGFA gene expression was significantly higher in tumor tissues compared to adjacent normal tissue and high TGFA gene expression strongly correlated with poor survival in patients with lung adenocarcinoma. Taken together, our studies suggest that miR-374a suppresses lung adenocarcinoma cell proliferation and invasion via targeting TGFA gene expression. Our findings may provide novel treatment strategies for lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Haijian Wu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA and Department of Radiation Oncology, Qilu Hospital Affiliated to Shandong University, 107#, Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Yan Liu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA and
| | - Xiao Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA and
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA and
| |
Collapse
|
12
|
Zhou X, Guo J, Ji Y, Pan G, Liu T, Zhu H, Zhao J. Reciprocal Negative Regulation between EGFR and DEPTOR Plays an Important Role in the Progression of Lung Adenocarcinoma. Mol Cancer Res 2016; 14:448-57. [PMID: 26896556 DOI: 10.1158/1541-7786.mcr-15-0480] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/10/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Xuefeng Zhou
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Jialong Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Yanmei Ji
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Gaofeng Pan
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Tao Liu
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| | - Jinping Zhao
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
| |
Collapse
|
13
|
ZHOU BO, NIE JUN, YANG WEIDONG, HUANG CHENHONG, HUANG YE, ZHAO HONGFEI. Effect of hydrothorax EGFR gene mutation and EGFR-TKI targeted therapy on advanced non-small cell lung cancer patients. Oncol Lett 2016; 11:1413-1417. [PMID: 26893752 PMCID: PMC4734265 DOI: 10.3892/ol.2015.4066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/30/2015] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is a malignancy with the highest incidence of morbidity and mortality worldwide. The lack of effective detection methods leads to the ineffectiveness of convetional therapy. The aim of the current study was to analyze the hydrothorax epidermal growth factor receptor (EGFR) mutation in patients with advanced non-small lung cancer (NSCLC) and malignant pleural effusion. A new method for clinical treatment was developed through a comparison of the difference of EGFR tyrosine kinase inhibitor (EGFR-TKI)-targeted therapy. Between January 2013 and January 2015, 68 cases diagnosed with advanced non-small lung cancer and malignant pleural effusion, were enrolled in the study. Previous first-line chemotherapeutic treatment schemes had been unsuccessful. EGFR 19 and EGFR 21 sites were detected for all the patients. Platinum-based drugs were provided for patients with wild-type EGFR. These patients served as the control group and underwent four cycles of treatments, with each cycle lasting 3 weeks. TKI medicine Gefitinib (Iressa™) was administered to patients with mutant EGFR tid, po, for a duration of 4-8 months. These patients served as the experimental group. There were 41 cases of EGFR mutations, of which 13 cases had EGFR 19 site mutations, 16 cases EGFR 21 site mutations, and the remaining 12 cases had 2 site mutations. EGFR mutations were not significant for gender, age, tumor type, stage and diameter (P>0.05). The results showed that the six-month survival rate, progression-free survival time (PFS), objective response rate (RP) and disease control rate (DCR) in the experimental group were higher than those in the control group. The drug side-effects in the experimental group indicated no statistical differences compared to the control group (P>0.05). The incidence of EGFR mutation was higher in patients with advanced non-small lung cancer and malignant pleural effusion. Targeted therapy improved the survival rate and was deemed to be a safe and effective method for patients with EGFR mutations.
Collapse
Affiliation(s)
- BO ZHOU
- Department of Cardiothoracic Surgery, People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000, P.R. China
| | - JUN NIE
- Department of Cardiothoracic Surgery, People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000, P.R. China
| | - WEIDONG YANG
- Department of Cardiothoracic Surgery, People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000, P.R. China
| | - CHENHONG HUANG
- Department of Cardiothoracic Surgery, People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000, P.R. China
| | - YE HUANG
- Department of Cardiothoracic Surgery, People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000, P.R. China
| | - HONGFEI ZHAO
- Department of Nephrology, People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
14
|
Li J, Deng H, Hu M, Fang Y, Vaughn A, Cai X, Xu L, Wan W, Li Z, Chen S, Yang X, Wu S, Xiao J. Inhibition of non-small cell lung cancer (NSCLC) growth by a novel small molecular inhibitor of EGFR. Oncotarget 2016; 6:6749-61. [PMID: 25730907 PMCID: PMC4466647 DOI: 10.18632/oncotarget.3155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/16/2015] [Indexed: 01/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is a therapeutic target (oncotarget) in NSCLC. Using in vitro EGFR kinase activity system, we identified a novel small molecule, WB-308, as an inhibitor of EGFR. WB-308 decreased NSCLC cell proliferation and colony formation, by causing G2/M arrest and apoptosis. Furthermore, WB-308 inhibited the engraft tumor growths in two animal models in vivo (lung orthotopic transplantation model and patient-derived engraft mouse model). WB-308 impaired the phosphorylation of EGFR, AKT, and ERK1/2 protein. WB-308 was less cytotoxic than Gefitinib. Our study suggests that WB-308 is a novel EGFR-TKI and may be considered to substitute for Gefitinib in clinical therapy for NSCLC.
Collapse
Affiliation(s)
- Jinsong Li
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China.,The Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China.,Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Huayun Deng
- The Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Meichun Hu
- The Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanzhang Fang
- The Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Amanda Vaughn
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xiaopan Cai
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Leqin Xu
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Wei Wan
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Zhenxi Li
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Shijie Chen
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Xinghai Yang
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Song Wu
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
15
|
Kanthala S, Pallerla S, Jois S. Current and future targeted therapies for non-small-cell lung cancers with aberrant EGF receptors. Future Oncol 2015; 11:865-78. [PMID: 25757687 DOI: 10.2217/fon.14.312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Expression of the EGF receptors (EGFRs) is abnormally high in many types of cancer, including 25% of lung cancers. Successful treatments target mutations in the EGFR tyrosine kinase domain with EGFR tyrosine kinase inhibitors (TKIs). However, almost all patients develop resistance to this treatment, and acquired resistance to first-generation TKI has prompted the clinical development of a second generation of EGFR TKI. Because of the development of resistance to treatment of TKIs, there is a need to collect genomic information about EGFR levels in non-small-cell lung cancer patients. Herein, we focus on current molecular targets that have therapies available as well as other targets for which therapies will be available in the near future.
Collapse
Affiliation(s)
- Shanthi Kanthala
- Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | | | | |
Collapse
|
16
|
Abstract
The recent discovery of oncogenic drivers and subsequent development of novel targeted strategies has significantly added to the therapeutic armamentarium of anti-cancer therapies. Targeting BCR-ABL in chronic myeloid leukemia (CML) or HER2 in breast cancer has led to practice-changing clinical benefits, while promising therapeutic responses have been achieved by precision medicine approaches in EGFR mutant lung cancer, colorectal cancer and BRAF mutant melanoma. However, although initial therapeutic responses to targeted therapies can be substantial, many patients will develop disease progression within 6-12 months. An increasing application of powerful omics-based approaches and improving preclinical models have enabled the rapid identification of secondary resistance mechanisms. Herein, we discuss how this knowledge has translated into rational, novel treatment strategies for relapsed patients in genomically selected cancer populations.
Collapse
Affiliation(s)
- Keara L Redmond
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Anastasia Papafili
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Mark Lawler
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Sandra Van Schaeybroeck
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
17
|
Hartmann S, Brands RC, Küchler N, Fuchs A, Linz C, Kübler AC, Müller-Richter UDA. Melanoma-associated antigen expression and the efficacy of tyrosine kinase inhibitors in head and neck cancer. Oncol Lett 2015; 10:1211-1217. [PMID: 26622654 DOI: 10.3892/ol.2015.3345] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/26/2015] [Indexed: 02/05/2023] Open
Abstract
Melanoma-associated antigen (MAGE) has been identified in a variety of types of cancer. The expression of several MAGE subgroups is correlated with poor prognosis and chemotherapeutic resistance. One target of chemotherapeutic treatment in head and neck cancer is the epidermal growth factor receptor (EGFR). The efficacy of tyrosine kinase inhibitors (TKI) in the context of melanoma-associated antigens is discussed in the present study. Five human squamous cell carcinoma cell lines were treated with the EGFR TKIs, erlotinib and gefitinib. The efficacy of these agents was measured using a crystal violet assay. Furthermore, the expression levels of MAGE-A1, -A5, -A8, -A9, -A11 and -A12 were determined by reverse transcription-quantitative polymerase chain reaction. The association between TKI efficacy and MAGE-A expression was analyzed by linear regression. The cell lines revealed inhomogeneous expression patterns for the MAGE-A subgroups. Four of the five cell lines demonstrated a good response to erlotinib and gefitinib. However, treatment with erlotinib induced better results than those of gefitinib, and revealed a concentration-dependent effect. The expression of MAGE-A5 and -A11 were significantly correlated with lower efficacy of erlotinib and gefitinib. By contrast, MAGE-A12 was associated with a superior response to these two drugs. One cell line, which expressed all investigated MAGE-A subgroups, was entirely resistant to the two TKIs. These results revealed a notable correlation between MAGE-A5 and -A11 and lower efficacy of EGFR TKIs. Pretreatment analysis of MAGE-A status may therefore aid improvement of chemoprevention using erlotinib and gefitinib in head and neck cancer.
Collapse
Affiliation(s)
- Stefan Hartmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital of Würzburg, Würzburg, Franconia D-97070, Germany
| | - Roman C Brands
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital of Würzburg, Würzburg, Franconia D-97070, Germany
| | - Nora Küchler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital of Würzburg, Würzburg, Franconia D-97070, Germany
| | - Andreas Fuchs
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital of Würzburg, Würzburg, Franconia D-97070, Germany
| | - Christian Linz
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital of Würzburg, Würzburg, Franconia D-97070, Germany
| | - Alexander C Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital of Würzburg, Würzburg, Franconia D-97070, Germany
| | - Urs D A Müller-Richter
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital of Würzburg, Würzburg, Franconia D-97070, Germany
| |
Collapse
|