1
|
Zhang H, Felthaus O, Prantl L. Adipose Tissue-Derived Therapies for Osteoarthritis: Multifaceted Mechanisms and Clinical Prospects. Cells 2025; 14:669. [PMID: 40358193 PMCID: PMC12071781 DOI: 10.3390/cells14090669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 04/28/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that significantly impacts quality of life and poses a growing economic burden. Adipose tissue-derived therapies, including both cell-based and cell-free products, have shown promising potential in promoting cartilage repair, modulating inflammation, and improving joint function. Recent studies and clinical trials have demonstrated their regenerative effects, highlighting their feasibility as a novel treatment approach for OA. This review summarises the therapeutic mechanisms and latest advancements in adipose tissue-derived therapies, providing insights into their clinical applications and future prospects.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | | | | |
Collapse
|
2
|
Jeyaraman N, Shrivastava S, Ravi VR, Nallakumarasamy A, Jeyaraman M. Current status of nanofat in the management of knee osteoarthritis: A systematic review. World J Orthop 2025; 16:99690. [PMID: 39850037 PMCID: PMC11752481 DOI: 10.5312/wjo.v16.i1.99690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/07/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent joint disorder requiring innovative treatment approaches. AIM To evaluate the use of nanofat, a specialized form of adipose tissue-derived cells, in the treatment of OA, by examining its efficacy, safety profile, mechanisms of action, comparative effectiveness, and long-term outcomes. METHODS A comprehensive review of preclinical studies, clinical trials, and in vitro investigations was conducted. The included studies provided insights into the potential role of nanofat in OA treatment, addressing its efficacy, safety profile, mechanisms of action, comparative effectiveness, and long-term outcomes. RESULTS Clinical studies consistently reported the efficacy of nanofat in providing pain relief and functional improvement in patients with OA. Local adverse events were limited to the injection site, such as localized pain and inflammation, and resolved within a few days to weeks. Systemic adverse events were rare, and no significant long-term complications were observed. Mechanistically, nanofat was found to enhance chondrocyte proliferation, reduce inflammation, and promote angiogenesis, thereby contributing to its therapeutic effects. CONCLUSION Nanofat therapy holds promise as a therapeutic option for managing OA, providing pain relief, functional improvement, and potential tissue regeneration. The safety profile of nanofat treatment appears favorable, but long-term data are still limited. Standardized protocols, larger randomized controlled trials, longer follow-up periods, and cost-effectiveness evaluations are warranted to establish optimal protocols, comparative effectiveness, and long-term outcomes. Despite current limitations, nanofat therapy demonstrates translational potential and should be considered in clinical practice for OA treatment, with careful patient selection and monitoring.
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Sandeep Shrivastava
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
| | - VR Ravi
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Madhan Jeyaraman
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
3
|
Jeyaraman M, Jeyaraman N, Ramasubramanian S, Balaji S, Muthu S. Evidence-based orthobiologic practice: Current evidence review and future directions. World J Orthop 2024; 15:908-917. [PMID: 39473516 PMCID: PMC11514545 DOI: 10.5312/wjo.v15.i10.908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024] Open
Abstract
The field of orthopedic and regenerative medicine is rapidly evolving with the increasing utilization of orthobiologic. These biologically derived therapies, including platelet-rich plasma, mesenchymal stem cells, bone marrow aspirate concentrate, stromal vascular fraction (SVF), and autologous chondrocyte implantation, are gaining traction for their potential to enhance the body's natural healing processes. They offer a promising alternative to traditional surgical interventions for musculoskeletal injuries and degenerative conditions. Current evidence suggests significant benefits of orthobiologics in treating conditions like osteoarthritis, tendon injuries, and spinal disorders, yet inconsistencies in treatment protocols and outcomes persist. The global market for orthobiologics is projected to grow substantially, driven by advancements in biologic therapies such as adipose-derived stem cells and SVF, and the demand for minimally invasive treatments. Despite their promise, regulatory and ethical challenges, as well as the need for high-quality, standardized research, remain significant obstacles. Future directions in the field include advancements in delivery systems, personalized medicine approaches, and the exploration of novel sources like induced pluripotent stem cells, aiming for more targeted and effective treatments. Collaborative efforts are crucial to overcoming these challenges and ensuring the safe and effective application of orthobiologics in clinical practice.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Research Methods, Orthopedic Research Group, Coimbatore 641045, Tamil Nadu, India
| | - Naveen Jeyaraman
- Department of Orthopedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
| | - Swaminathan Ramasubramanian
- Department of Orthopedic, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Sangeetha Balaji
- Department of Orthopedic, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Sathish Muthu
- Department of Research Methods, Orthopedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopedics, Government Medical College and Hospital, Karur 639004, Tamil Nadu, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| |
Collapse
|
4
|
Jeyaraman N, Shrivastava S, Ravi VR, Nallakumarasamy A, Pundkar A, Jeyaraman M. Understanding and controlling the variables for stromal vascular fraction therapy. World J Stem Cells 2024; 16:784-798. [PMID: 39219728 PMCID: PMC11362852 DOI: 10.4252/wjsc.v16.i8.784] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 08/26/2024] Open
Abstract
In regenerative medicine, the isolation of mesenchymal stromal cells (MSCs) from the adipose tissue's stromal vascular fraction (SVF) is a critical area of study. Our review meticulously examines the isolation process of MSCs, starting with the extraction of adipose tissue. The choice of liposuction technique, anatomical site, and immediate processing are essential to maintain cell functionality. We delve into the intricacies of enzymatic digestion, emphasizing the fine-tuning of enzyme concentrations to maximize cell yield while preventing harm. The review then outlines the filtration and centrifugation techniques necessary for isolating a purified SVF, alongside cell viability assessments like flow cytometry, which are vital for confirming the efficacy of the isolated MSCs. We discuss the advantages and drawbacks of using autologous vs allogeneic SVF sources, touching upon immunocompatibility and logistical considerations, as well as the variability inherent in donor-derived cells. Anesthesia choices, the selection between hypodermic needles vs liposuction cannulas, and the role of adipose tissue lysers in achieving cellular dissociation are evaluated for their impact on SVF isolation. Centrifugation protocols are also analyzed for their part in ensuring the integrity of the SVF. The necessity for standardized MSC isolation protocols is highlighted, promoting reproducibility and successful clinical application. We encourage ongoing research to deepen the understanding of MSC biology and therapeutic action, aiming to further the field of regenerative medicine. The review concludes with a call for rigorous research, interdisciplinary collaboration, and strict adherence to ethical and regulatory standards to safeguard patient safety and optimize treatment outcomes with MSCs.
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Sandeep Shrivastava
- Department of Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
| | - V R Ravi
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Aditya Pundkar
- Department of Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
| | - Madhan Jeyaraman
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
5
|
Bina V, Brancato AM, Caliogna L, Berni M, Gastaldi G, Mosconi M, Pasta G, Grassi FA, Jannelli E. Mesenchymal Stem Cells and Secretome as a New Possible Approach to Treat Cartilage Damage: An In Vitro Study. Biomolecules 2024; 14:1068. [PMID: 39334835 PMCID: PMC11430587 DOI: 10.3390/biom14091068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Introduction: Osteoarthritis is a degenerative condition of the cartilage, often common among the population and occurs frequently with aging. Many factors are decisive for the development of its pathogenesis such as age, obesity, trauma, mechanical load, and modification of synovial biology. The main features of osteoarthritis are chondrocytes and cartilage matrix loss, which lead to pain, loss of function of the whole joint, and disability, representing a relevant health problem. Recently, a new therapeutic approach based on cell therapy has been studying the regenerative ability of mesenchymal stem cells for osteoarthritic chondrocytes. Aim: This in vitro study clarifies the regenerative effects of multipotent adipose-derived stem cells and the pluripotent amniotic epithelial stem cells on arthrosis chondrocytes by performing co-culture experiments. Methods: We studied the regenerative potential of secretome (soluble factors and extracellular vesicles), mesenchymal stem cells, and the adipose stromal vascular fraction. The regenerative effects were evaluated by gene and protein expression analysis of articular cartilage-specific genes and proteins like col2a1, acan, and sox9. Results: Mesenchymal stem cells, secretome, and adipose stromal vascular fractions influenced the cartilage genes and protein expression. Conclusions: The results indicate that the treatment with mesenchymal stem cells could be the best biological approach for cartilage regenerative medicine.
Collapse
Affiliation(s)
- Valentina Bina
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.G.)
| | - Alice Maria Brancato
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (A.M.B.); (M.M.); (G.P.); (F.A.G.); (E.J.)
| | - Laura Caliogna
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (A.M.B.); (M.M.); (G.P.); (F.A.G.); (E.J.)
| | - Micaela Berni
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Giulia Gastaldi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.G.)
- Centre for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Mario Mosconi
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (A.M.B.); (M.M.); (G.P.); (F.A.G.); (E.J.)
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Gianluigi Pasta
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (A.M.B.); (M.M.); (G.P.); (F.A.G.); (E.J.)
| | - Federico Alberto Grassi
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (A.M.B.); (M.M.); (G.P.); (F.A.G.); (E.J.)
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
- Centre for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Eugenio Jannelli
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (A.M.B.); (M.M.); (G.P.); (F.A.G.); (E.J.)
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|