1
|
Nguyen TD, Bordeau BM, Balthasar JP. Mechanisms of ADC Toxicity and Strategies to Increase ADC Tolerability. Cancers (Basel) 2023; 15:713. [PMID: 36765668 PMCID: PMC9913659 DOI: 10.3390/cancers15030713] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Anti-cancer antibody-drug conjugates (ADCs) aim to expand the therapeutic index of traditional chemotherapy by employing the targeting specificity of monoclonal antibodies (mAbs) to increase the efficiency of the delivery of potent cytotoxic agents to malignant cells. In the past three years, the number of ADCs approved by the Food and Drug Administration (FDA) has tripled. Although several ADCs have demonstrated sufficient efficacy and safety to warrant FDA approval, the clinical use of all ADCs leads to substantial toxicity in treated patients, and many ADCs have failed during clinical development due to their unacceptable toxicity profiles. Analysis of the clinical data has demonstrated that dose-limiting toxicities (DLTs) are often shared by different ADCs that deliver the same cytotoxic payload, independent of the antigen that is targeted and/or the type of cancer that is treated. DLTs are commonly associated with cells and tissues that do not express the targeted antigen (i.e., off-target toxicity), and often limit ADC dosage to levels below those required for optimal anti-cancer effects. In this manuscript, we review the fundamental mechanisms contributing to ADC toxicity, we summarize common ADC treatment-related adverse events, and we discuss several approaches to mitigating ADC toxicity.
Collapse
Affiliation(s)
| | | | - Joseph P. Balthasar
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
2
|
Histopathological and Immunological Findings in the Common Marmoset Following Exposure to Aerosolized SARS-CoV-2. Viruses 2022; 14:v14071580. [PMID: 35891560 PMCID: PMC9322862 DOI: 10.3390/v14071580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 12/05/2022] Open
Abstract
There is an enduring requirement to develop animal models of COVID-19 to assess the efficacy of vaccines and therapeutics that can be used to treat the disease in humans. In this study, six marmosets were exposed to a small particle aerosol (1–3 µm) of SARS-CoV-2 VIC01 that delivered the virus directly to the lower respiratory tract. Following the challenge, marmosets did not develop clinical signs, although a disruption to the normal diurnal temperature rhythm was observed in three out of six animals. Early weight loss and changes to respiratory pattern and activity were also observed, yet there was limited evidence of viral replication or lung pathology associated with infection. There was a robust innate immunological response to infection, which included an early increase in circulating neutrophils and monocytes and a reduction in the proportion of circulating T-cells. Expression of the ACE2 receptor in respiratory tissues was almost absent, but there was ubiquitous expression of TMPRSS2. The results of this study indicate that exposure of marmosets to high concentrations of aerosolised SARS-CoV-2 did not result in the development of clear, reproducible signs of COVID-19.
Collapse
|
3
|
Cuppen JJM, Gradinaru C, Raap-van Sleuwen BE, de Wit ACE, van der Vegt TAAJ, Savelkoul HFJ. LF-EMF Compound Block Type Signal Activates Human Neutrophilic Granulocytes In Vivo. Bioelectromagnetics 2022; 43:309-316. [PMID: 35481557 PMCID: PMC9324799 DOI: 10.1002/bem.22406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/07/2022]
Abstract
This research aims to demonstrate in a randomized, placebo-controlled crossover design study that a nominal 5 μT low-frequency electromagnetic field (LF-EMF) signal for 30 min activates neutrophils in vivo in humans. Granularity of neutrophils was measured in blood samples of healthy human volunteers (n = 32) taken before and after exposure for both the exposure and control sessions. A significant decrease in the granularity, indicative of neutrophil activation, was observed both in the exposure measurements and the exposure minus control measurements. Earlier EMF publications show immune function increase in isolated cells and more effective immune responses in animals with infections. This result, therefore, supports the thesis that the exposure can activate the innate immune system in humans, speed up the innate immune response, and may have potential beneficial effects in infectious disease. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Jan J M Cuppen
- Umani Medical BV, Waalre, The Netherlands.,Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | | | | | | | | | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
4
|
Marković D, Maslovarić I, Djikić D, Čokić VP. Neutrophil Death in Myeloproliferative Neoplasms: Shedding More Light on Neutrophils as a Pathogenic Link to Chronic Inflammation. Int J Mol Sci 2022; 23:1490. [PMID: 35163413 PMCID: PMC8836089 DOI: 10.3390/ijms23031490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/15/2022] Open
Abstract
Neutrophils are an essential component of the innate immune response, but their prolonged activation can lead to chronic inflammation. Consequently, neutrophil homeostasis is tightly regulated through balance between granulopoiesis and clearance of dying cells. The bone marrow is both a site of neutrophil production and the place they return to and die. Myeloproliferative neoplasms (MPN) are clonal hematopoietic disorders characterized by the mutations in three types of molecular markers, with emphasis on Janus kinase 2 gene mutation (JAK2V617F). The MPN bone marrow stem cell niche is a site of chronic inflammation, with commonly increased cells of myeloid lineage, including neutrophils. The MPN neutrophils are characterized by the upregulation of JAK target genes. Additionally, MPN neutrophils display malignant nature, they are in a state of activation, and with deregulated apoptotic machinery. In other words, neutrophils deserve to be placed in the midst of major events in MPN. Our crucial interest in this review is better understanding of how neutrophils die in MPN mirrored by defects in apoptosis and to what possible extent they can contribute to MPN pathophysiology. We tend to expect that reduced neutrophil apoptosis will establish a pathogenic link to chronic inflammation in MPN.
Collapse
Affiliation(s)
- Dragana Marković
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr Subotića 4, POB 39, 11129 Belgrade, Serbia;
| | - Irina Maslovarić
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr Subotića 4, POB 39, 11129 Belgrade, Serbia;
| | - Dragoslava Djikić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr Subotića 4, POB 39, 11129 Belgrade, Serbia; (D.D.); (V.P.Č.)
| | - Vladan P. Čokić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr Subotića 4, POB 39, 11129 Belgrade, Serbia; (D.D.); (V.P.Č.)
| |
Collapse
|
5
|
Abbiati RA, Pourdehnad M, Carrancio S, Pierce DW, Kasibhatla S, McConnell M, Trotter MWB, Loos R, Santini CC, Ratushny AV. Quantitative Systems Pharmacology Modeling of Avadomide-Induced Neutropenia Enables Virtual Clinical Dose and Schedule Finding Studies. AAPS J 2021; 23:103. [PMID: 34453265 PMCID: PMC8397660 DOI: 10.1208/s12248-021-00623-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/03/2021] [Indexed: 01/02/2023] Open
Abstract
Avadomide is a cereblon E3 ligase modulator and a potent antitumor and immunomodulatory agent. Avadomide trials are challenged by neutropenia as a major adverse event and a dose-limiting toxicity. Intermittent dosing schedules supported by preclinical data provide a strategy to reduce frequency and severity of neutropenia; however, the identification of optimal dosing schedules remains a clinical challenge. Quantitative systems pharmacology (QSP) modeling offers opportunities for virtual screening of efficacy and toxicity levels produced by alternative dose and schedule regimens, thereby supporting decision-making in translational drug development. We formulated a QSP model to capture the mechanism of avadomide-induced neutropenia, which involves cereblon-mediated degradation of transcription factor Ikaros, resulting in a maturation block of the neutrophil lineage. The neutropenia model was integrated with avadomide-specific pharmacokinetic and pharmacodynamic models to capture dose-dependent effects. Additionally, we generated a disease-specific virtual patient population to represent the variability in patient characteristics and response to treatment observed for a diffuse large B-cell lymphoma trial cohort. Model utility was demonstrated by simulating the avadomide effect in the virtual population for various dosing schedules and determining the incidence of high-grade neutropenia, its duration, and the probability of recovery to low-grade neutropenia.
Collapse
Affiliation(s)
- Roberto A Abbiati
- Bristol Myers Squibb, Center for Innovation and Translational Research Europe (CITRE), Seville, Spain.
| | | | | | | | | | | | - Matthew W B Trotter
- Bristol Myers Squibb, Center for Innovation and Translational Research Europe (CITRE), Seville, Spain
| | - Remco Loos
- Bristol Myers Squibb, Center for Innovation and Translational Research Europe (CITRE), Seville, Spain
| | - Cristina C Santini
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | | |
Collapse
|
6
|
Widya RA, Nugroho S, Winarsih S, Yulistiani Y. Analysis of ANC Levels after Filgrastim Therapy in Acute Leukemia Children with Neutropenia. FOLIA MEDICA INDONESIANA 2021. [DOI: 10.20473/fmi.v55i1.24287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytotoxic chemotherapy suppresses the hematopoietic system, and the most serious hematologic toxicity is neutropenia. This can decrease a risk of infection that causes delays in treatment and reduction of dose intensity, which reduces therapeutic outcome. Filgrastim is used to increase neutrophils level whose therapeutic effect is unknown. The effectiveness of filgrastim is based on the ANC level pre- and post-therapy. This study aimed to analyze the use of filgrastim on ANC level changes in acute leukemia children with neutropenia, and to analyze the patient that achieve ANC level’s targeted therapy = 1000 cell/mm3. A prospective observational study with a longitudinal design was conducted from June to October 2016. The inclusion criteria of the study were patients who diagnosed acute leukemia with neutropenia and received filgrastim 10 µg/kgBW for 3, 4, 5 days. Patients’ ANC levels were measured before and after filgrastim therapy. This study has been approved its ethical clearance by Dr. Saiful Anwar Hospital, Malang. Data were obtained on the basis of neutropenic episodes, followed by 7 episodes of obtaining filgrastim for 3 days, 1 episode of obtaining filgrastim for 4 days, and 7 episodes of obtaining filgrastim for 5 days. Thus, it consists of 15 episodes. In 3 days, ANC levels increased by 9.5 fold from 381.3 ± 91.8 cell/mm3 to 3984.9 ± 426.8 cell/mm3, but in 5 days, ANC levels decreased by 0.9 fold from 200.9 cell/mm3 ± 98.2 to 189.7 ± 14.2 cell/mm3. Filgrastim was able to increased the ANC levels around nine fold for 3 days of theraphy. There were 53% neutropenia patients who achieved the goal of therapy. Filgrastim therapy with dose 10 µg/kgBW for 3 to 5 days has been able to reach the therapeutic target of 53% in acute leukemia children with neutropenia. The increased levels of ANC maximum was reached on the third day with increased levels of 9.5 fold.
Collapse
|
7
|
Rawat K, Syeda S, Shrivastava A. Neutrophil-derived granule cargoes: paving the way for tumor growth and progression. Cancer Metastasis Rev 2021; 40:221-244. [PMID: 33438104 PMCID: PMC7802614 DOI: 10.1007/s10555-020-09951-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/22/2020] [Indexed: 01/31/2023]
Abstract
Neutrophils are the key cells of our innate immune system mediating host defense via a range of effector functions including phagocytosis, degranulation, and NETosis. For this, they employ an arsenal of anti-microbial cargoes packed in their readily mobilizable granule subsets. Notably, the release of granule content is tightly regulated; however, under certain circumstances, their unregulated release can aggravate tissue damage and could be detrimental to the host. Several constituents of neutrophil granules have also been associated with various inflammatory diseases including cancer. In cancer setting, their excessive release may modulate tissue microenvironment which ultimately leads the way for tumor initiation, growth and metastasis. Neutrophils actively infiltrate within tumor tissues, wherein they show diverse phenotypic and functional heterogeneity. While most studies are focused at understanding the phenotypic heterogeneity of neutrophils, their functional heterogeneity, much of which is likely orchestrated by their granule cargoes, is beginning to emerge. Therefore, a better understanding of neutrophil granules and their cargoes will not only shed light on their diverse role in cancer but will also reveal them as novel therapeutic targets. This review provides an overview on existing knowledge of neutrophil granules and detailed insight into the pathological relevance of their cargoes in cancer. In addition, we also discuss the therapeutic approach for targeting neutrophils or their microenvironment in disease setting that will pave the way forward for future research.
Collapse
Affiliation(s)
- Kavita Rawat
- grid.8195.50000 0001 2109 4999Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Saima Syeda
- grid.8195.50000 0001 2109 4999Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Anju Shrivastava
- grid.8195.50000 0001 2109 4999Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
8
|
Bayani A, Dunster JL, Crofts JJ, Nelson MR. Spatial considerations in the resolution of inflammation: Elucidating leukocyte interactions via an experimentally-calibrated agent-based model. PLoS Comput Biol 2020; 16:e1008413. [PMID: 33137107 PMCID: PMC7660912 DOI: 10.1371/journal.pcbi.1008413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 11/12/2020] [Accepted: 10/01/2020] [Indexed: 01/13/2023] Open
Abstract
Many common medical conditions (such as cancer, arthritis, chronic obstructive pulmonary disease (COPD), and others) are associated with inflammation, and even more so when combined with the effects of ageing and multimorbidity. While the inflammatory response varies in different tissue types, under disease and in response to therapeutic interventions, it has common interactions that occur between immune cells and inflammatory mediators. Understanding these underlying inflammatory mechanisms is key in progressing treatments and therapies for numerous inflammatory conditions. It is now considered that constituent mechanisms of the inflammatory response can be actively manipulated in order to drive resolution of inflammatory damage; particularly, those mechanisms related to the pro-inflammatory role of neutrophils and the anti-inflammatory role of macrophages. In this article, we describe the assembly of a hybrid mathematical model in which the spatial spread of inflammatory mediators is described through partial differential equations, and immune cells (neutrophils and macrophages) are described individually via an agent-based modelling approach. We pay close attention to how immune cells chemotax toward pro-inflammatory mediators, presenting a model for cell chemotaxis that is calibrated against experimentally observed cell trajectories in healthy and COPD-affected scenarios. We illustrate how variations in key model parameters can drive the switch from resolution of inflammation to chronic outcomes, and show that aberrant neutrophil chemotaxis can move an otherwise healthy outcome to one of chronicity. Finally, we reflect on our results in the context of the on-going hunt for new therapeutic interventions. Inflammation is the body’s primary defence to harmful stimuli such as infections, toxins and tissue strain but also underlies a much broader range of conditions, including asthma, arthritis and cancer. The inflammatory response is key in resolving injury to facilitate recovery, and involves a range of interactions between immune cells (leukocytes, neutrophils and macrophages in particular) and inflammatory mediators. Immune cells are recruited from the blood stream in response to injury. Once in tissue, neutrophils release toxins to kill invading agents and resolve damage; however, if not carefully managed by other immune cells (mainly macrophages), their responses can increase inflammation instead of helping to resolve it. We model these interactions in response to damage using a spatial model, examining how a healthy response can prevent localised inflammation from spreading. We pay close attention to how cells migrate toward the damaged area, as many inflammatory conditions are associated with impairment of this process. We calibrate our model against experimentally-observed cell trajectories from healthy patients and patients with chronic obstructive pulmonary disease. We illustrate that a healthy outcome depends strongly upon efficient cell migration and a delicate balance between the pro- and anti-inflammatory effects of neutrophils and macrophages.
Collapse
Affiliation(s)
- Anahita Bayani
- Department of Physics & Mathematics, Nottingham Trent University, Clifton Campus, Nottingham, NG11 8NS, United Kingdom
| | - Joanne L. Dunster
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6AS, United Kingdom
| | - Jonathan J. Crofts
- Department of Physics & Mathematics, Nottingham Trent University, Clifton Campus, Nottingham, NG11 8NS, United Kingdom
| | - Martin R. Nelson
- Department of Physics & Mathematics, Nottingham Trent University, Clifton Campus, Nottingham, NG11 8NS, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Oxidative stress exacerbates dextran sulfate sodium-induced ulcerative colitis in ICR mice. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00524-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Alsassa S, Lefèvre T, Laugier V, Stindel E, Ansart S. Modeling Early Stages of Bone and Joint Infections Dynamics in Humans: A Multi-Agent, Multi-System Based Model. Front Mol Biosci 2020; 7:26. [PMID: 32226790 PMCID: PMC7080862 DOI: 10.3389/fmolb.2020.00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/07/2020] [Indexed: 11/13/2022] Open
Abstract
Diagnosis and management of bone and joint infections (BJI) is a challenging task. The high intra and inter patient's variability in terms of clinical presentation makes it impossible to rely on a systematic description or classical statistical analysis for its diagnosis. Advances can be achieved through a better understanding of the system behavior that results from the interactions between the components at a micro-scale level, which is difficult to mastered using traditional methods. Multiple studies from the literature report factors and interactions that affect the dynamics of the BJI system. The objectives of this study were (i) to perform a systematic review to identify relevant interactions between agents (cells, pathogens) and parameters values that characterize agents and interactions, and (ii) to develop a two dimensional computational model of the BJI system based on the results of the systematic review. The model would simulate the behavior resulting from the interactions on the cellular and molecular levels to explore the BJI dynamics, using an agent-based modeling approach. The BJI system's response to different microbial inoculum levels was simulated. The model succeeded in mimicking the dynamics of bacteria, the innate immune cells, and the bone mass during the first stage of infection and for different inoculum levels in a consistent manner. The simulation displayed the destruction in bone tissue as a result of the alteration in bone remodeling process during the infection. The model was used to generate different patterns of system behaviors that could be analyzed in further steps. Simulations results suggested evidence for the existence of latent infections. Finally, we presented a way to analyze and synthesize massive simulated data in a concise and comprehensive manner based on the semi-supervised identification of ordinary differential equations (ODE) systems. It allows to use the known framework for temporal and structural ODE analyses and therefore summarize the whole simulated system dynamical behavior. This first model is intended to be validated by in vivo or in vitro data and expected to generate hypotheses to be challenged by real data. Step by step, it can be modified and complexified based on the test/validation iteration cycles.
Collapse
Affiliation(s)
- Salma Alsassa
- Laboratory of Medical Information Processing (LaTIM - UMR 1101 INSERM), IBRS, Université de Bretagne Occidentale, Department of Medicine, Brest, France
- Tekliko SARL, Paris, France
| | - Thomas Lefèvre
- Iris UMR 8156 CNRS - U997 Inserm - EHESS - UP 13, Paris, France
- AP-HP, Jean Verdier Teaching Hospital, Department of Legal and Social Medicine, Bondy, France
| | | | - Eric Stindel
- Laboratory of Medical Information Processing (LaTIM - UMR 1101 INSERM), IBRS, Université de Bretagne Occidentale, Department of Medicine, Brest, France
- La Cavale Blanche University Hospital, Infection Diseases Unit, Brest, France
| | - Séverine Ansart
- Laboratory of Medical Information Processing (LaTIM - UMR 1101 INSERM), IBRS, Université de Bretagne Occidentale, Department of Medicine, Brest, France
- La Cavale Blanche University Hospital, Infection Diseases Unit, Brest, France
| |
Collapse
|
11
|
Zhu YP, Padgett L, Dinh HQ, Marcovecchio P, Blatchley A, Wu R, Ehinger E, Kim C, Mikulski Z, Seumois G, Madrigal A, Vijayanand P, Hedrick CC. Identification of an Early Unipotent Neutrophil Progenitor with Pro-tumoral Activity in Mouse and Human Bone Marrow. Cell Rep 2020; 24:2329-2341.e8. [PMID: 30157427 DOI: 10.1016/j.celrep.2018.07.097] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/18/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022] Open
Abstract
Neutrophils are short-lived cells that play important roles in both health and disease. Neutrophils and monocytes originate from the granulocyte monocyte progenitor (GMP) in bone marrow; however, unipotent neutrophil progenitors are not well defined. Here, we use cytometry by time of flight (CyTOF) and single-cell RNA sequencing (scRNA-seq) methodologies to identify a committed unipotent early-stage neutrophil progenitor (NeP) in adult mouse bone marrow. Importantly, we found a similar unipotent NeP (hNeP) in human bone marrow. Both NeP and hNeP generate only neutrophils. NeP and hNeP both significantly increase tumor growth when transferred into murine cancer models, including a humanized mouse model. hNeP are present in the blood of treatment-naive melanoma patients but not of healthy subjects. hNeP can be readily identified by flow cytometry and could be used as a biomarker for early cancer discovery. Understanding the biology of hNeP should allow the development of new therapeutic targets for neutrophil-related diseases, including cancer.
Collapse
Affiliation(s)
- Yanfang Peipei Zhu
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | - Lindsey Padgett
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Huy Q Dinh
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Paola Marcovecchio
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Amy Blatchley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Runpei Wu
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Erik Ehinger
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Cheryl Kim
- Flow Cytometry Core Facility, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Zbigniew Mikulski
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Gregory Seumois
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Ariel Madrigal
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Pandurangan Vijayanand
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
12
|
Pereira M, Valério-Bolas A, Saraiva-Marques C, Alexandre-Pires G, Pereira da Fonseca I, Santos-Gomes G. Development of Dog Immune System: From in Uterus to Elderly. Vet Sci 2019; 6:E83. [PMID: 31640234 PMCID: PMC6958461 DOI: 10.3390/vetsci6040083] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 12/12/2022] Open
Abstract
Immune system recognize and fight back foreign microorganisms and inner modifications that lead to deficient cell and tissue functions. During a dog's life, the immune system needs to adapt to different physiological conditions, assuring surveillance and protection in a careful and controlled way. Pregnancy alters normal homeostasis, requiring a balance between immunity and tolerance. The embryos and fetus should be protected from infections, while the female dog must tolerate the growing of semi-allografts in her uterus. After birth, newborn puppies are at great risk of developing infectious diseases, because their immune system is in development and immune memory is absent. Passive transfer of immunity through colostrum is fundamental for puppy survival in the first weeks of life, but hampers the development of an active immune response to vaccination. At the end of life, dogs experience a decline in the structure and functional competence of the immune system, compromising the immune responses to novel antigenic challenges, such as infections and vaccines. Therefore, the current article reviews the general processes related to the development of the dog´s immune system, providing an overview of immune activity throughout the dog's life and its implications in canine health, and highlighting priority research goals.
Collapse
Affiliation(s)
- Maria Pereira
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), R. da Junqueira 100, 1349-008 Lisboa, Portugal.
- Instituto Politécnico de Portalegre (IPP), Praça do Município 11, 7300-110 Portalegre, Portugal.
- Agrarian School of the Polytechnic Institute of Viseu, Quinta da Alagoa-Estrada de Nelas Ranhados, 3500-606 Viseu, Portugal.
| | - Ana Valério-Bolas
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), R. da Junqueira 100, 1349-008 Lisboa, Portugal.
| | - Cátia Saraiva-Marques
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Av. Universidade Técnica, 1300-477 Lisboa, Portugal.
| | - Graça Alexandre-Pires
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Av. Universidade Técnica, 1300-477 Lisboa, Portugal.
| | - Isabel Pereira da Fonseca
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Av. Universidade Técnica, 1300-477 Lisboa, Portugal.
| | - Gabriela Santos-Gomes
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), R. da Junqueira 100, 1349-008 Lisboa, Portugal.
| |
Collapse
|
13
|
Andryukov BG, Bogdanova VD, Lyapun IN. PHENOTYPIC HETEROGENEITY OF NEUTROPHILS: NEW ANTIMICROBIC CHARACTERISTICS AND DIAGNOSTIC TECHNOLOGIES. RUSSIAN JOURNAL OF HEMATOLOGY AND TRANSFUSIOLOGY 2019. [DOI: 10.35754/0234-5730-2019-64-2-211-221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction. Neutrophils are the most numerous subpopulation of leukocytes circulating in the blood; they constitute the first line of defence of the innate link of the immune system.Aim. To generalize basic concepts about phenotypic and functional heterogeneity of neutrophils.General findings. According to contemporary concepts, this type of blood cells performs not only antimicrobial functions, but also participates in capture and destruction of various microorganisms, including such processes as phagocytosis and intracellular degradation, degranulation and formation of extracellular neutrophilic traps after the detection of microorganisms. Neutrophils are considered to be a phenotypically heterogeneous pool of blood cells featuring a significant functional variability. Under pathological conditions, they can differentiate into discrete subpopulations with va rious phenotypic and functional characteristics. They are capable of interaction with macrophages, natural killers, dendritic and mesenchymal stem cells, B and T lymphocytes or platelets. In addition, neutrophils exhibit vector properties with respect to cancerous tumours. They possess a high morphological and functional variability, being modulators of both inflammation and active triggers of immune responses. A search for molecular markers able to efficiently differentiate neutrophil phenotypes and establish the degree of their diagnostic specificity for various pathologies is of a particular importance.
Collapse
Affiliation(s)
- B. G. Andryukov
- G.P. Somov Research Institute of Epidemiology and Microbiology;
Far Eastern Federal University, School of Biomedicine, Department of Basic Sciences
| | - V. D. Bogdanova
- Far Eastern Federal University, School of Biomedicine, Department of Basic Sciences
| | - I. N. Lyapun
- G.P. Somov Research Institute of Epidemiology and Microbiology
| |
Collapse
|
14
|
Abstract
Introduction: Neutrophils are the most abundant inflammatory cells in the lungs of patients with chronic lung diseases, especially COPD, yet despite this, patients often experience repeated chest infections. Neutrophil function may be altered in disease, but the reasons are unclear. In chronic disease, sequential pro-inflammatory and pro-repair responses appear distorted. As understanding of neutrophil heterogeneity has expanded, it is suggested that different neutrophil phenotypes may impact on health and disease. Areas covered: In this review, the definition of cellular phenotype, the implication of neutrophil surface markers and functions in chronic lung disease and the complex influences of external, local and genetic factors on these changes are discussed. Literature was accessed up to the 19 July 2019 using: PubMed, US National Library of Medicine National Institutes of Health and the National Centre for Biotechnology Information. Expert opinion: As more is learned about neutrophils, the further we step from the classical view of neutrophils being unrefined killing machines to highly complex and finely tuned cells. Future therapeutics may aim to normalize neutrophil function, but to achieve this, knowledge of phenotypes in humans and how these relate to observed pathology and disease processes is required.
Collapse
Affiliation(s)
- Michael J Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Robert Stockley
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| |
Collapse
|
15
|
Swierczak A, Pollard JW. FACS isolation and analysis of human circulating and tumor neutrophils. Methods Enzymol 2019; 632:229-257. [PMID: 32000898 DOI: 10.1016/bs.mie.2019.07.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The role of neutrophils in tumor growth and metastasis is still controversial. Studies in clinically relevant models of cancer have shown that neutrophils can promote tumor growth and development and metastasis, or inhibit it. Thus, further analysis is required to fully elucidate the role of neutrophils in cancer. A number of different methods are available for neutrophil isolation and characterization. However, Fluorescence-activated cell sorting (FACS) is particularly effective for isolating neutrophils and assessing their phenotype as it allows for the simultaneous use of multiple cell surface markers, can be used for isolation of both blood and tumor neutrophils and features a high purity and high yields.
Collapse
Affiliation(s)
- Agnieszka Swierczak
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jeffrey W Pollard
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
16
|
Kajiume T, Kobayashi M. Human granulocytes undergo cell death via autophagy. Cell Death Discov 2018; 4:111. [PMID: 30534419 PMCID: PMC6281597 DOI: 10.1038/s41420-018-0131-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022] Open
Abstract
Mature neutrophils must be quickly removed from inflammatory sites to prevent tissue damage. Neutrophil removal is thought to be accomplished primarily through caspase-dependent apoptosis, which involves several genes of mitochondrial origin. However, mature neutrophils show reduced gene transcription and mitochondrial numbers. We predicted that neutrophils utilize other cell death mechanisms and investigated programmed cell death in human peripheral blood mononuclear cells (MNCs) and polymorphonuclear cells (PMNCs or neutrophil fractions). Unlike MNCs, PMNCs did not undergo DNA fragmentation and were not TUNEL positive, but expressed LC3-II, an autophagy marker. We also found that during differentiation, autophagy inhibitor 3-MA, and not caspase inhibitor zVAD-fmk, prevented segmentation of the nucleus, indicating that these cells undergo autophagy during maturation. Therefore, human neutrophils may undergo spontaneous autophagic cell death rather than apoptosis, during which autophagy may be essential for both maturation and death.
Collapse
Affiliation(s)
- Teruyuki Kajiume
- Mukainada Child Clinic, Hiroshima, Japan
- Department of Pediatrics, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
17
|
Palmér R, Mäenpää J, Jauhiainen A, Larsson B, Mo J, Russell M, Root J, Prothon S, Chialda L, Forte P, Egelrud T, Stenvall K, Gardiner P. Dipeptidyl Peptidase 1 Inhibitor AZD7986 Induces a Sustained, Exposure-Dependent Reduction in Neutrophil Elastase Activity in Healthy Subjects. Clin Pharmacol Ther 2018; 104:1155-1164. [PMID: 29484635 PMCID: PMC6282495 DOI: 10.1002/cpt.1053] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 11/30/2022]
Abstract
Neutrophil serine proteases (NSPs), such as neutrophil elastase (NE), are activated by dipeptidyl peptidase 1 (DPP1) during neutrophil maturation. High NSP levels can be detrimental, particularly in lung tissue, and inhibition of NSPs is therefore an interesting therapeutic opportunity in multiple lung diseases, including chronic obstructive pulmonary disease (COPD) and bronchiectasis. We conducted a randomized, placebo‐controlled, first‐in‐human study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of single and multiple oral doses of the DPP1 inhibitor AZD7986 in healthy subjects. Pharmacokinetic and pharmacodynamic data were analyzed using nonlinear mixed effects modeling and showed that AZD7986 inhibits whole blood NE activity in an exposure‐dependent, indirect manner—consistent with in vitro and preclinical predictions. Several dose‐dependent, possibly DPP1‐related, nonserious skin findings were observed, but these were not considered to prevent further clinical development. Overall, the study results provided confidence to progress AZD7986 to phase II and supported selection of a clinically relevant dose.
Collapse
Affiliation(s)
- Robert Palmér
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Jukka Mäenpää
- Patient Safety, Respiratory, Inflammation, Autoimmunity, Infections and Vaccines Therapeutic Area, AstraZeneca, Gothenburg, Sweden
| | - Alexandra Jauhiainen
- Early Clinical Biometrics, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Bengt Larsson
- RIA Translational Medicines Unit, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - John Mo
- Translational Biology, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Muir Russell
- Precision Medicine Laboratories, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - James Root
- Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Susanne Prothon
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ligia Chialda
- Parexel Early Phase Clinical Unit, Harrow, London, UK
| | - Pablo Forte
- Parexel Early Phase Clinical Unit, Harrow, London, UK
| | | | - Kristina Stenvall
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Philip Gardiner
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
18
|
Ekpenyong AE, Toepfner N, Fiddler C, Herbig M, Li W, Cojoc G, Summers C, Guck J, Chilvers ER. Mechanical deformation induces depolarization of neutrophils. SCIENCE ADVANCES 2017; 3:e1602536. [PMID: 28630905 PMCID: PMC5470826 DOI: 10.1126/sciadv.1602536] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The transition of neutrophils from a resting state to a primed state is an essential requirement for their function as competent immune cells. This transition can be caused not only by chemical signals but also by mechanical perturbation. After cessation of either, these cells gradually revert to a quiescent state over 40 to 120 min. We use two biophysical tools, an optical stretcher and a novel microcirculation mimetic, to effect physiologically relevant mechanical deformations of single nonadherent human neutrophils. We establish quantitative morphological analysis and mechanical phenotyping as label-free markers of neutrophil priming. We show that continued mechanical deformation of primed cells can cause active depolarization, which occurs two orders of magnitude faster than by spontaneous depriming. This work provides a cellular-level mechanism that potentially explains recent clinical studies demonstrating the potential importance, and physiological role, of neutrophil depriming in vivo and the pathophysiological implications when this deactivation is impaired, especially in disorders such as acute lung injury.
Collapse
Affiliation(s)
- Andrew E. Ekpenyong
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Biotechnology Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Physics, Creighton University, Omaha, NE 68178, USA
| | - Nicole Toepfner
- Klinik und Poliklinik für Kinder-und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Medicine, Addenbrooke’s and Papworth Hospitals, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Christine Fiddler
- Department of Medicine, Addenbrooke’s and Papworth Hospitals, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Maik Herbig
- Biotechnology Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Wenhong Li
- Biotechnology Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Gheorghe Cojoc
- Biotechnology Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Charlotte Summers
- Department of Medicine, Addenbrooke’s and Papworth Hospitals, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Jochen Guck
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Biotechnology Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
- Corresponding author.
| | - Edwin R. Chilvers
- Department of Medicine, Addenbrooke’s and Papworth Hospitals, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| |
Collapse
|
19
|
Zhao H, Gulesserian S, Malinao MC, Ganesan SK, Song J, Chang MS, Williams MM, Zeng Z, Mattie M, Mendelsohn BA, Stover DR, Doñate F. A Potential Mechanism for ADC-Induced Neutropenia: Role of Neutrophils in Their Own Demise. Mol Cancer Ther 2017; 16:1866-1876. [DOI: 10.1158/1535-7163.mct-17-0133] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 11/16/2022]
|
20
|
Gardiner P, Wikell C, Clifton S, Shearer J, Benjamin A, Peters SA. Neutrophil maturation rate determines the effects of dipeptidyl peptidase 1 inhibition on neutrophil serine protease activity. Br J Pharmacol 2016; 173:2390-401. [PMID: 27186823 PMCID: PMC4945769 DOI: 10.1111/bph.13515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 04/01/2016] [Accepted: 04/20/2016] [Indexed: 12/31/2022] Open
Abstract
Background and Purpose Neutrophil serine proteases (NSPs) are activated by dipeptidyl peptidase 1 (DPP1) during neutrophil maturation. The effects of neutrophil turnover rate on NSP activity following DPP1 inhibition was studied in a rat pharmacokinetic/pharmacodynamic model. Experimental Approach Rats were treated with a DPP1 inhibitor twice daily for up to 14 days; NSP activity was measured in onset or recovery studies, and an indirect response model was fitted to the data to estimate the turnover rate of the response. Key Results Maximum NSP inhibition was achieved after 8 days of treatment and a reduction of around 75% NSP activity was achieved at 75% in vitro DPP1 inhibition. Both the rate of inhibition and recovery of NSP activity were consistent with a neutrophil turnover rate of between 4–6 days. Using human neutrophil turnover rate, it is predicted that maximum NSP inhibition following DPP1 inhibition takes around 20 days in human. Conclusions and Implications Following inhibition of DPP1 in the rat, the NSP activity was determined by the amount of DPP1 inhibition and the turnover of neutrophils and is thus supportive of the role of neutrophil maturation in the activation of NSPs. Clinical trials to monitor the effect of a DPP1 inhibitor on NSPs should take into account the delay in maximal response on the one hand as well as the potential delay in a return to baseline NSP levels following cessation of treatment.
Collapse
Affiliation(s)
| | | | - S Clifton
- BioFocus, A Charles River Company, UK
| | - J Shearer
- BioFocus, A Charles River Company, UK
| | | | - S A Peters
- AstraZeneca, Mölndal, Sweden.,Merck Serono R&D, Darmstadt, Germany
| |
Collapse
|
21
|
Ekpenyong AE, Toepfner N, Chilvers ER, Guck J. Mechanotransduction in neutrophil activation and deactivation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015. [PMID: 26211453 DOI: 10.1016/j.bbamcr.2015.07.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mechanotransduction refers to the processes through which cells sense mechanical stimuli by converting them to biochemical signals and, thus, eliciting specific cellular responses. Cells sense mechanical stimuli from their 3D environment, including the extracellular matrix, neighboring cells and other mechanical forces. Incidentally, the emerging concept of mechanical homeostasis,long term or chronic regulation of mechanical properties, seems to apply to neutrophils in a peculiar manner, owing to neutrophils' ability to dynamically switch between the activated/primed and deactivated/deprimed states. While neutrophil activation has been known for over a century, its deactivation is a relatively recent discovery. Even more intriguing is the reversibility of neutrophil activation and deactivation. We review and critically evaluate recent findings that suggest physiological roles for neutrophil activation and deactivation and discuss possible mechanisms by which mechanical stimuli can drive the oscillation of neutrophils between the activated and resting states. We highlight several molecules that have been identified in neutrophil mechanotransduction, including cell adhesion and transmembrane receptors, cytoskeletal and ion channel molecules. The physiological and pathophysiological implications of such mechanically induced signal transduction in neutrophils are highlighted as a basis for future work. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
Affiliation(s)
- Andrew E Ekpenyong
- Department of Physics, Creighton University, Omaha, NE 68178, USA; Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Nicole Toepfner
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany; Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Edwin R Chilvers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge CB2 0QQ, UK
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
22
|
Sima C, Glogauer M. Neutrophil Dysfunction and Host Susceptibility to Periodontal Inflammation: Current State of Knowledge. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s40496-014-0015-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|