1
|
Smart D. Five consecutive cases of sensorineural hearing loss associated with inner ear barotrauma due to diving, successfully treated with hyperbaric oxygen. Diving Hyperb Med 2024; 54:360-367. [PMID: 39675746 DOI: 10.28920/dhm54.4.360-367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/08/2024] [Indexed: 12/17/2024]
Abstract
Introduction This report describes the outcomes of sensorineural hearing loss (SNHL) due to cochlear inner ear barotrauma (IEBt) in five divers treated with hyperbaric oxygen (HBOT). Methods The case histories of five consecutive divers presenting with SNHL from IEBt due to diving, were reviewed. All divers provided written consent for their data to be included in the study. All had reference pre-injury audiograms. All noted ear problems during or post-dive. Independent audiologists confirmed SNHL in all divers prior to HBOT, then assessed outcomes after HBOT. Results Three divers breathed compressed air on low risk dives, and two were breath-hold. None had symptoms or signs other than hearing loss, and none had vestibular symptoms. All could equalise their middle ears. Inner ear decompression sickness was considered unlikely for all cases. All were treated with HBOT 24 hours to 12 days after diving. Two divers received no steroid treatment, one was treated with HBOT after an unsuccessful 10-day course of steroids, and two divers received steroids two days after commencing HBOT. All divers responded positively to HBOT with substantial improvements in hearing across multiple frequencies and PTA4 measurements. Median improvement across all frequencies (for all divers) was 28 dB, and for PTA4 it was 38 dB. Conclusions This is the first case series describing use of HBOT for IEBt-induced SNHL. The variable treatment latency and use/timing of steroids affects data quality, but also reflects pragmatic reality, where steroids have minimal evidence of benefit for IEBt. HBOT may benefit diving related SNHL from IEBt with no evidence of perilymph fistula, and provided the divers can clear their ears effectively. A plausible mechanism is via correction of ischaemia within the cochlear apparatus. More study is required including data collection via national or international datasets, due to the rarity of IEBt.
Collapse
Affiliation(s)
- David Smart
- Department of Diving and Hyperbaric Medicine, Royal Hobart Hospital, Hobart, Tasmania, Australia
- Corresponding author: Clinical Professor David Smart, Department of Diving and Hyperbaric Medicine, Royal Hobart Hospital, Liverpool St, Hobart, Tasmania 7000, Australia, ORCiD: 0000-0001-6769-2791,
| |
Collapse
|
2
|
Rose KP, Manilla G, Milon B, Zalzman O, Song Y, Coate TM, Hertzano R. Spatially distinct otic mesenchyme cells show molecular and functional heterogeneity patterns before hearing onset. iScience 2023; 26:107769. [PMID: 37720106 PMCID: PMC10502415 DOI: 10.1016/j.isci.2023.107769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/29/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023] Open
Abstract
The cochlea consists of diverse cellular populations working in harmony to convert mechanical stimuli into electrical signals for the perception of sound. Otic mesenchyme cells (OMCs), often considered a homogeneous cell type, are essential for normal cochlear development and hearing. Despite being the most numerous cell type in the developing cochlea, OMCs are poorly understood. OMCs are known to differentiate into spatially and functionally distinct cell types, including fibrocytes of the lateral wall and spiral limbus, modiolar osteoblasts, and specialized tympanic border cells of the basilar membrane. Here, we show that OMCs are transcriptionally and functionally heterogeneous and can be divided into four distinct populations that spatially correspond to OMC-derived cochlear structures. We also show that this heterogeneity and complexity of OMCs commences during early phases of cochlear development. Finally, we describe the cell-cell communication network of the developing cochlea, inferring a major role for OMC in outgoing signaling.
Collapse
Affiliation(s)
- Kevin P. Rose
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gabriella Manilla
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beatrice Milon
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ori Zalzman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas M. Coate
- Department of Biology, Georgetown University, Washington, DC 20007, USA
| | - Ronna Hertzano
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Shi X. Research advances in cochlear pericytes and hearing loss. Hear Res 2023; 438:108877. [PMID: 37651921 PMCID: PMC10538405 DOI: 10.1016/j.heares.2023.108877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Pericytes are specialized mural cells surrounding endothelial cells in microvascular beds. They play a role in vascular development, blood flow regulation, maintenance of blood-tissue barrier integrity, and control of angiogenesis, tissue fibrosis, and wound healing. In recent decades, understanding of the critical role played by pericytes in retina, brain, lung, and kidney has seen significant progress. The cochlea contains a large population of pericytes. However, the role of cochlear pericytes in auditory pathophysiology is, by contrast, largely unknown. The present review discusses recent progress in identifying cochlear pericytes, mapping their distribution, and defining their role in regulating blood flow, controlling the blood-labyrinth barrier (BLB) and angiogenesis, and involvement in different types of hearing loss.
Collapse
Affiliation(s)
- Xiaorui Shi
- Department of Otolaryngology/Head & Neck Surgery, Oregon Hearing Research Center (NRC04), Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA.
| |
Collapse
|
4
|
Analysis of NFKB1 and NFKB2 gene expression in the blood of patients with sudden sensorineural hearing loss. Int J Pediatr Otorhinolaryngol 2023; 166:111470. [PMID: 36773447 DOI: 10.1016/j.ijporl.2023.111470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Sudden Sensorineural Hearing Loss (SSNHL) is an increasingly common health problem today. Although the direct mortality rate of this disorder is relatively low, its impact on quality of life is enormous; this is why accurate identification of pathogenesis and influencing factors in the disease process can play an essential role in preventing and treating the disease. Acute inflammation, which leads to chronic inflammation due to aberrant expression of inflammation-mediating genes, may play a significant role in the pathogenesis of the disease. The essential Nuclear factor kappa B (NF-kB) pathway genes, NFKB1 and NFKB2, serve as prothrombotic agents when expressed abnormally, compromising the cochlea by disrupting the endolymphatic potential and causing SSNHL. METHODS This study investigates the expression levels of NFKB1 and NFKB2 in peripheral blood (PB) through a quantitative polymerase chain reaction in 50 Iranian patients with SSNHL, and 50 healthy volunteers were of the same age and sex as controls. RESULTS As a result, NFKB2 expression levels in patients were higher than in controls, regardless of sex or age (posterior beta = 0.619, adjusted P-value = 0.016), and NFKB1 expression levels did not show significant differences between patients and controls. The expression levels of NFKB1 and NFKB2 had significantly strong positive correlations in both SSNHL patients and healthy individuals (r = 0.620, P = 0.001 and r = 0.657, P 0.001, respectively), suggesting the presence of an interconnected network. CONCLUSION NFKB2 has been identified as a significant inflammatory factor in the pathophysiology of SSNHL disease. Inflammation can play an essential role in developing SSNHL, and our findings could be used as a guide for future research.
Collapse
|
5
|
Zhang Y, Neng L, Sharma K, Hou Z, Johnson A, Song J, Dabdoub A, Shi X. Pericytes control vascular stability and auditory spiral ganglion neuron survival. eLife 2023; 12:e83486. [PMID: 36719173 PMCID: PMC9940910 DOI: 10.7554/elife.83486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
The inner ear has a rich population of pericytes, a multi-functional mural cell essential for sensory hair cell heath and normal hearing. However, the mechanics of how pericytes contribute to the homeostasis of the auditory vascular-neuronal complex in the spiral ganglion are not yet known. In this study, using an inducible and conditional pericyte depletion mouse (PDGFRB-CreERT2; ROSA26iDTR) model, we demonstrate, for the first time, that pericyte depletion causes loss of vascular volume and spiral ganglion neurons (SGNs) and adversely affects hearing sensitivity. Using an in vitro trans-well co-culture system, we show pericytes markedly promote neurite and vascular branch growth in neonatal SGN explants and adult SGNs. The pericyte-controlled neural growth is strongly mediated by pericyte-released exosomes containing vascular endothelial growth factor-A (VEGF-A). Treatment of neonatal SGN explants or adult SGNs with pericyte-derived exosomes significantly enhances angiogenesis, SGN survival, and neurite growth, all of which were inhibited by a selective blocker of VEGF receptor 2 (Flk1). Our study demonstrates that pericytes in the adult ear are critical for vascular stability and SGN health. Cross-talk between pericytes and SGNs via exosomes is essential for neuronal and vascular health and normal hearing.
Collapse
Affiliation(s)
- Yunpei Zhang
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| | - Lingling Neng
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| | - Kushal Sharma
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| | - Zhiqiang Hou
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| | - Anatasiya Johnson
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| | - Junha Song
- Life Sciences Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Alain Dabdoub
- Biological Sciences, Sunnybrook Research InstituteTorontoCanada
- Department of Otolaryngology-Head & Neck Surgery, University of TorontoTorontoCanada
- Department of Laboratory Medicine and Pathobiology, University of TorontoTorontoCanada
| | - Xiaorui Shi
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
6
|
Astaxanthin Confers a Significant Attenuation of Hippocampal Neuronal Loss Induced by Severe Ischemia-Reperfusion Injury in Gerbils by Reducing Oxidative Stress. Mar Drugs 2022; 20:md20040267. [PMID: 35447940 PMCID: PMC9030631 DOI: 10.3390/md20040267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/27/2023] Open
Abstract
Astaxanthin is a powerful biological antioxidant and is naturally generated in a great variety of living organisms. Some studies have demonstrated the neuroprotective effects of ATX against ischemic brain injury in experimental animals. However, it is still unknown whether astaxanthin displays neuroprotective effects against severe ischemic brain injury induced by longer (severe) transient ischemia in the forebrain. The purpose of this study was to evaluate the neuroprotective effects of astaxanthin and its antioxidant activity in the hippocampus of gerbils subjected to 15-min transient forebrain ischemia, which led to the massive loss (death) of pyramidal cells located in hippocampal cornu Ammonis 1-3 (CA1-3) subfields. Astaxanthin (100 mg/kg) was administered once daily for three days before the induction of transient ischemia. Treatment with astaxanthin significantly attenuated the ischemia-induced loss of pyramidal cells in CA1-3. In addition, treatment with astaxanthin significantly reduced ischemia-induced oxidative DNA damage and lipid peroxidation in CA1-3 pyramidal cells. Moreover, the expression of the antioxidant enzymes superoxide dismutase (SOD1 and SOD2) in CA1-3 pyramidal cells were gradually and significantly reduced after ischemia. However, in astaxanthin-treated gerbils, the expression of SOD1 and SOD2 was significantly high compared to in-vehicle-treated gerbils before and after ischemia induction. Collectively, these findings indicate that pretreatment with astaxanthin could attenuate severe ischemic brain injury induced by 15-min transient forebrain ischemia, which may be closely associated with the decrease in oxidative stress due to astaxanthin pretreatment.
Collapse
|
7
|
Deafness-in-a-dish: modeling hereditary deafness with inner ear organoids. Hum Genet 2021; 141:347-362. [PMID: 34342719 PMCID: PMC9035009 DOI: 10.1007/s00439-021-02325-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/24/2021] [Indexed: 12/27/2022]
Abstract
Sensorineural hearing loss (SNHL) is a major cause of functional disability in both the developed and developing world. While hearing aids and cochlear implants provide significant benefit to many with SNHL, neither targets the cellular and molecular dysfunction that ultimately underlies SNHL. The successful development of more targeted approaches, such as growth factor, stem cell, and gene therapies, will require a yet deeper understanding of the underlying molecular mechanisms of human hearing and deafness. Unfortunately, the human inner ear cannot be biopsied without causing significant, irreversible damage to the hearing or balance organ. Thus, much of our current understanding of the cellular and molecular biology of human deafness, and of the human auditory system more broadly, has been inferred from observational and experimental studies in animal models, each of which has its own advantages and limitations. In 2013, researchers described a protocol for the generation of inner ear organoids from pluripotent stem cells (PSCs), which could serve as scalable, high-fidelity alternatives to animal models. Here, we discuss the advantages and limitations of conventional models of the human auditory system, describe the generation and characteristics of PSC-derived inner ear organoids, and discuss several strategies and recent attempts to model hereditary deafness in vitro. Finally, we suggest and discuss several focus areas for the further, intensive characterization of inner ear organoids and discuss the translational applications of these novel models of the human inner ear.
Collapse
|
8
|
|
9
|
Basta D, Gröschel M, Strübing I, Boyle P, Fröhlich F, Ernst A, Seidl R. Near-infrared-light pre-treatment attenuates noise-induced hearing loss in mice. PeerJ 2020; 8:e9384. [PMID: 32596055 PMCID: PMC7305775 DOI: 10.7717/peerj.9384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/28/2020] [Indexed: 12/02/2022] Open
Abstract
Noise induced hearing loss (NIHL) is accompanied by a reduction of cochlear hair cells and spiral ganglion neurons. Different approaches have been applied to prevent noise induced apoptosis / necrosis. Physical intervention is one technique currently under investigation. Specific wavelengths within the near-infrared light (NIR)-spectrum are known to influence cytochrome-c-oxidase activity, which leads in turn to a decrease in apoptotic mechanisms. It has been shown recently that NIR can significantly decrease the cochlear hair cell loss if applied daily for 12 days after a noise exposure. However, it is still unclear if a single NIR-treatment, just before a noise exposure, could induce similar protective effects. Therefore, the present study was conducted to investigate the effect of a single NIR-pre-treatment aimed at preventing or limiting NIHL. The cochleae of adult NMRI-mice were pre-treated with NIR-light (808 nm, 120 mW) for 5, 10, 20, 30 or 40 minutes via the external ear canal. All animals were noised exposed immediately after the pre-treatment by broad band noise (5–20 kHz) for 30 minutes at 115 dB SPL. Frequency specific ABR-recordings to determine auditory threshold shift were carried out before the pre-treatment and two weeks after the noise exposure. The amplitude increase for wave IV and cochlear hair cell loss were determined. A further group of similar mice was noise exposed only and served as a control for the NIR pre-exposed groups. Two weeks after noise exposure, the ABR threshold shifts of NIR-treated animals were significantly lower (p < 0.05) than those of the control animals. The significance was at three frequencies for the 5-minute pre-treatment group and across the entire frequency range for all other treatment groups. Due to NIR light, the amplitude of wave four deteriorates significantly less after noise exposure than in controls. The NIR pre-treatment had no effect on the loss of outer hair cells, which was just as high with or without NIR-light pre-exposure. Relative to the entire number of outer hair cells across the whole cochlea, outer hair cell loss was rather negligible. No inner hair cell loss whatever was detected. Our results suggest that a single NIR pre-treatment induces a very effective protection of cochlear structures from noise exposure. Pre-exposure of 10 min seems to emerge as the optimal dosage for our experimental setup. A saturated effect occurred with higher dosage-treatments. These results are relevant for protection of residual hearing in otoneurosurgery such as cochlear implantation.
Collapse
Affiliation(s)
- Dietmar Basta
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | - Moritz Gröschel
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | - Ira Strübing
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | | | - Felix Fröhlich
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | - Arne Ernst
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | - Rainer Seidl
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| |
Collapse
|
10
|
Microvascular networks in the area of the auditory peripheral nervous system. Hear Res 2019; 371:105-116. [DOI: 10.1016/j.heares.2018.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/14/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
|
11
|
Ogawa H, Okada M, Shudou M, Gyo K, Hato N. Prevention of ischemia-induced hearing loss by intravenous administration of hydrogen-rich saline in gerbil. Neurosci Lett 2017; 665:195-199. [PMID: 29223865 DOI: 10.1016/j.neulet.2017.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Hydrogen-rich water, which is a potent antioxidant agent, was investigated for its protective effects against ischemic damage of the cochlea in gerbils. METHODS The animals were subjected to transient cochlear ischemia by occluding the bilateral vertebral arteries for l5min. Five milliliters of hydrogen-rich saline was then intravenously administered immediately after the insult. Saline without hydrogen was used as a control. Effects of hydrogen were evaluated using the auditory brainstem response (ABR) and histological studies of the inner ear. RESULTS In non-ischemia animals, ABR thresholds and histological findings of the cochlea did not change by administration of saline or hydrogen-rich saline. In contrast, transient cochlear ischemia caused a 24.2±3.8dB increase in the ABR threshold at 8kHz, and a decrease of 14.1%±1.8% in the number of inner hair cells (IHCs) at the basal turn on day 7. Ischemic damage was more severe at 16 and 32kHz. When the animals were treated with hydrogen-rich saline, cochlear damage was significantly reduced: the increase in ABR threshold was 11.7±2.6dB at 8kHz and the IHC loss was 7.5%±2.1% at the basal turn on day 7. The effects of hydrogen-rich saline were more prominent at higher frequencies. CONCLUSIONS Intravenous administration of hydrogen-rich saline was effective in preventing acute hearing loss due to transient cochlear ischemia.
Collapse
Affiliation(s)
- Hideo Ogawa
- Ehime University Graduate School of Medicine, Otolaryngology Head and Neck Surgery, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Masahiro Okada
- Ehime University Graduate School of Medicine, Otolaryngology Head and Neck Surgery, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Masachika Shudou
- Ehime University Graduate School of Medicine, Division of Analytical Bio-Medicine, Advanced Research Support Center (ADRES), Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Kiyofumi Gyo
- Takanoko Hospital, Otolaryngology, Takanoko 525-1, Matsuyama, Ehime, 790-0925, Japan.
| | - Naohito Hato
- Ehime University Graduate School of Medicine, Otolaryngology Head and Neck Surgery, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| |
Collapse
|
12
|
Ciorba A, Corazzi V, Bianchini C, Aimoni C, Skarzynski H, Skarzynski PH, Hatzopoulos S. Sudden sensorineural hearing loss: Is there a connection with inner ear electrolytic disorders? A literature review. Int J Immunopathol Pharmacol 2016; 29:595-602. [PMID: 27895287 DOI: 10.1177/0394632016673845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/19/2016] [Indexed: 12/20/2022] Open
Abstract
Electrolytic disorders of the inner ear represent a model that could be implicated in partially explaining the pathogenesis of sudden sensorineural hearing loss (SSNHL). Different types of electrolytes and different inner-ear loci are involved in cochlear homeostasis physiologically, to ensure the maintenance of an ion-balanced cochlear environment allowing a normal hair cell function. It has been hypothesized that a sudden loss of endocochlear potential, due to a rapid disruption of the inner ear fluid osmolality, could be responsible for a deterioration of the hearing function caused by damaged hair cells. The aim of this paper was to review the current literature and identify sources which might validate/fortify the hypothesis that inner ear electrolytic disorders have a role in the etiopathogenesis of SSNHL. The data in the literature underline the importance of ionic homeostasis in the inner ear, but they do not support a direct link between SSNHL and electrolyte disorders/imbalances. There is marginal evidence from otoacoustic emissions research that an indirect link might be present.
Collapse
Affiliation(s)
- Andrea Ciorba
- ENT & Audiology Department University Hospital of Ferrara, Italy
| | - Virginia Corazzi
- ENT & Audiology Department University Hospital of Ferrara, Italy
| | - Chiara Bianchini
- ENT & Audiology Department University Hospital of Ferrara, Italy
| | - Claudia Aimoni
- ENT & Audiology Department University Hospital of Ferrara, Italy
| | - Henryk Skarzynski
- World Hearing Center, Warsaw, Poland.,Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Piotr Henryk Skarzynski
- World Hearing Center, Warsaw, Poland.,Department of Heart Failure and Cardiac Rehabilitation, Medical University of Warsaw, Warsaw, Poland.,Institute of Sensory Organs, Kajetany, Poland
| | | |
Collapse
|
13
|
Ciuman RR. Inner ear symptoms and disease: pathophysiological understanding and therapeutic options. Med Sci Monit 2013; 19:1195-210. [PMID: 24362017 PMCID: PMC3872449 DOI: 10.12659/msm.889815] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/11/2013] [Indexed: 12/13/2022] Open
Abstract
In recent years, huge advances have taken place in understanding of inner ear pathophysiology causing sensorineural hearing loss, tinnitus, and vertigo. Advances in understanding comprise biochemical and physiological research of stimulus perception and conduction, inner ear homeostasis, and hereditary diseases with underlying genetics. This review describes and tabulates the various causes of inner ear disease and defines inner ear and non-inner ear causes of hearing loss, tinnitus, and vertigo. The aim of this review was to comprehensively breakdown this field of otorhinolaryngology for specialists and non-specialists and to discuss current therapeutic options in distinct diseases and promising research for future therapies, especially pharmaceutic, genetic, or stem cell therapy.
Collapse
|
14
|
Masuda M, Kanzaki J. Cause of idiopathic sudden sensorineural hearing loss: The stress response theory. World J Otorhinolaryngol 2013; 3:42-57. [DOI: 10.5319/wjo.v3.i3.42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 06/14/2013] [Accepted: 07/25/2013] [Indexed: 02/06/2023] Open
Abstract
The stress response theory is a relatively new concept about the cause of idiopathic sudden sensorineural hearing loss (ISHL). A number of possible etiologies have been proposed in the literature, as discussed in this paper, but each proposed etiology has been both supported and refuted in the literature. However, the stress response theory can integrate hypotheses that have been advocated so far. The word “stress” refers to a constellation of physical and psychological stimuli including systemic viral and bacterial illness, systemic inflammatory disorders, and physical, mental or metabolic stress. Numerous studies have demonstrated adverse effects of systemic stress on health. Stress causes changes in the immune system and cytokine network through activation of the hypothalamus-pituitary-adrenal axis and the sympathetic nervous system. Several types of catecholamine and cytokine receptors are in the cochlea cells other than capillary cells, and then they can respond to systemic stressors. However, there are few studies examining how systemic stress is associated with cochlear dysfunction. The stress response theory addresses this question. In the theory, a variety of stressors and risk factors contribute to the onset of ISHL in varying degrees. The lateral wall of the cochlea has very unique responses to systemic stressors. It plays a critical role in causing ISHL. Systemic stressors converge at the lateral wall and trigger pathological activation of nuclear factor κ-light-chain-enhancer of activated B cells, a transcriptional factor known as a stress sensor. This activation enhances local expression of genes associated with immune and inflammatory system, resulting in cochlear dysfunction. We review the original stress response theory advocated by Adams et al and the integrative stress response theory that integrates our knowledge about the etiologies of ISHL so far.
Collapse
|