1
|
Huang J, Brien D, Coe BC, Longoni G, Mabbott DJ, Munoz DP, Yeh EA. Delayed oculomotor response associates with optic neuritis in youth with demyelinating disorders. Mult Scler Relat Disord 2023; 79:104969. [PMID: 37660456 DOI: 10.1016/j.msard.2023.104969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/20/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION Impairment in visual and cognitive functions occur in youth with demyelinating disorders such as multiple sclerosis, neuromyelitis optica spectrum disorder, and myelin oligodendrocyte glycoprotein antibody-associated disease. Quantitative behavioral assessment using eye-tracking and pupillometry can provide functional metrics for important prognostic and clinically relevant information at the bedside. METHODS Children and adolescents diagnosed with demyelinating disorders and healthy, age-matched controls completed an interleaved pro- and anti-saccade task using video-based eye-tracking and underwent spectral-domain optical coherence tomography examination for evaluation of retinal nerve fiber layer and ganglion cell inner plexiform layer thickness. Low-contrast visual acuity and Symbol Digit Modalities Test were performed for visual and cognitive functional assessments. We assessed saccade and pupil parameters including saccade reaction time, direction error rate, pupil response latency, peak constriction time, and peak constriction and dilation velocities. Generalized Estimating Equations were used to examine the association of eye-tracking parameters with optic neuritis history, structural metrics, and visual and cognitive scores. RESULTS The study included 36 demyelinating disorders patients, aged 8-18 yrs. (75% F; median = 15.22 yrs., SD = 2.8) and 34 age-matched controls (65% F; median = 15.26 yrs., SD = 2.3). Surprisingly, pro- and anti-saccade performance was comparable between patients and controls, whereas pupil control was altered in patients. Oculomotor latency measures were strongly associated with the number of optic neuritis episodes, including saccade reaction time, pupil response latency, and peak constriction time. Peak constriction time was associated with both retinal nerve fiber layer and ganglion cell inner plexiform layer thickness. Pupil response latency and peak constriction time were associated with visual acuity. Pupil velocity for both constriction and dilation was associated with Symbol Digit Modalities Test scores. CONCLUSION The strong associations between oculomotor measures with history of optic neuritis, structural, visual, and cognitive assessments in these cohorts demonstrates that quantitative eye-tracking can be useful for probing demyelinating injury of the brain and optic nerve. Future studies should evaluate their utility in discriminating between demyelinating disorders and tracking disease progression.
Collapse
Affiliation(s)
- Jeff Huang
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Donald Brien
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Brian C Coe
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Giulia Longoni
- Department of Pediatrics (Neurology), The Hospital for Sick Children, Division of Neuroscience and Mental Health, SickKids Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Donald J Mabbott
- Department of Psychology, The Hospital for Sick Children, Division of Neuroscience and Mental Health, SickKids Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - E Ann Yeh
- Department of Pediatrics (Neurology), The Hospital for Sick Children, Division of Neuroscience and Mental Health, SickKids Research Institute, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Calancie OG, Parr AC, Brien DC, Huang J, Pitigoi IC, Coe BC, Booij L, Khalid-Khan S, Munoz DP. Motor synchronization and impulsivity in pediatric borderline personality disorder with and without attention-deficit hyperactivity disorder: an eye-tracking study of saccade, blink and pupil behavior. Front Neurosci 2023; 17:1179765. [PMID: 37425020 PMCID: PMC10323365 DOI: 10.3389/fnins.2023.1179765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Shifting motor actions from reflexively reacting to an environmental stimulus to predicting it allows for smooth synchronization of behavior with the outside world. This shift relies on the identification of patterns within the stimulus - knowing when a stimulus is predictable and when it is not - and launching motor actions accordingly. Failure to identify predictable stimuli results in movement delays whereas failure to recognize unpredictable stimuli results in early movements with incomplete information that can result in errors. Here we used a metronome task, combined with video-based eye-tracking, to quantify temporal predictive learning and performance to regularly paced visual targets at 5 different interstimulus intervals (ISIs). We compared these results to the random task where the timing of the target was randomized at each target step. We completed these tasks in female pediatric psychiatry patients (age range: 11-18 years) with borderline personality disorder (BPD) symptoms, with (n = 22) and without (n = 23) a comorbid attention-deficit hyperactivity disorder (ADHD) diagnosis, against controls (n = 35). Compared to controls, BPD and ADHD/BPD cohorts showed no differences in their predictive saccade performance to metronome targets, however, when targets were random ADHD/BPD participants made significantly more anticipatory saccades (i.e., guesses of target arrival). The ADHD/BPD group also significantly increased their blink rate and pupil size when initiating movements to predictable versus unpredictable targets, likely a reflection of increased neural effort for motor synchronization. BPD and ADHD/BPD groups showed increased sympathetic tone evidenced by larger pupil sizes than controls. Together, these results support normal temporal motor prediction in BPD with and without ADHD, reduced response inhibition in BPD with comorbid ADHD, and increased pupil sizes in BPD patients. Further these results emphasize the importance of controlling for comorbid ADHD when querying BPD pathology.
Collapse
Affiliation(s)
- Olivia G. Calancie
- Queen’s Eye Movement Lab, Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Ashley C. Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Don C. Brien
- Queen’s Eye Movement Lab, Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Jeff Huang
- Queen’s Eye Movement Lab, Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Isabell C. Pitigoi
- Queen’s Eye Movement Lab, Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Brian C. Coe
- Queen’s Eye Movement Lab, Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Linda Booij
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Research Centre and Eating Disorders Continuum, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Sarosh Khalid-Khan
- Queen’s Eye Movement Lab, Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Divison of Child and Youth Psychiatry, Department of Psychiatry, School of Medicine, Queen’s University, Kingston, ON, Canada
| | - Douglas P. Munoz
- Queen’s Eye Movement Lab, Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
3
|
Hsu TY, Wang HY, Chen JT, Wang CA. Investigating the role of human frontal eye field in the pupil light reflex modulation by saccade planning and working memory. Front Hum Neurosci 2022; 16:1044893. [DOI: 10.3389/fnhum.2022.1044893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
The pupil constricts in response to an increase in global luminance level, commonly referred to as the pupil light reflex. Recent research has shown that these reflex responses are modulated by high-level cognition. There is larger pupil constriction evoked by a bright stimulus when the stimulus location spatially overlaps with the locus of attention, and these effects have been extended to saccade planning and working memory (here referred to as pupil local-luminance modulation). Although research in monkeys has further elucidated a central role of the frontal eye field (FEF) and superior colliculus in the pupil local-luminance modulation, their roles remain to be established in humans. Through applying continuous theta-burst transcranial magnetic stimulation over the right FEF (and vertex) to inhibit its activity, we investigated the role of the FEF in human pupil local-luminance responses. Pupil light reflex responses were transiently evoked by a bright patch stimulus presented during the delay period in the visual- and memory-delay tasks. In the visual-delay task, larger pupil constriction was observed when the patch location was spatially aligned with the target location in both stimulation conditions. More interestingly, after FEF stimulation, larger pupil constriction was obtained when the patch was presented in the contralateral, compared to the ipsilateral visual field of the stimulation. In contrast, FEF stimulation effects were absence in the memory-delay task. Linear mixed model results further found that stimulation condition, patch location consistency, and visual field significantly modulated observed pupil constriction responses. Together, our results constitute the first evidence of FEF modulation in human pupil local-luminance responses.
Collapse
|
4
|
El Haj M, Lenoble Q, Moustafa AA. The pupil and myself: pupil dilation during retrieval of self-defining memories. Neurol Sci 2022; 43:5259-5265. [DOI: 10.1007/s10072-022-06163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 05/20/2022] [Indexed: 05/31/2023]
|
5
|
Chen JT, Kuo YC, Hsu TY, Wang CA. Fatigue and Arousal Modulations Revealed by Saccade and Pupil Dynamics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159234. [PMID: 35954585 PMCID: PMC9367726 DOI: 10.3390/ijerph19159234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
Saccadic eye movements are directed to the objects of interests and enable high-resolution visual images in the exploration of the visual world. There is a trial-to-trial variation in saccade dynamics even in a simple task, possibly attributed to arousal fluctuations. Previous studies have showed that an increase of fatigue level over time, also known as time-on-task, can be revealed by saccade peak velocity. In addition, pupil size, controlled by the autonomic nervous system, has long been used as an arousal index. However, limited research has been done with regards to the relation between pupil size and saccade behavior in the context of trial-to-trial variation. To investigate fatigue and arousal effects on saccadic and pupillary responses, we used bright and emotional stimuli to evoke pupillary responses in tasks requiring reactive and voluntary saccade generation. Decreased voluntary saccade peak velocities, reduced tonic pupil size and phasic pupillary responses were observed as time-on-task increased. Moreover, tonic pupil size affected saccade latency and dynamics, with steeper saccade main sequence slope as tonic pupil size increased. In summary, saccade dynamics and tonic pupil size were sensitive to fatigue and arousal level, together providing valuable information for the understanding of human behavior.
Collapse
Affiliation(s)
- Jui-Tai Chen
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Ying-Chun Kuo
- Institute of Cognitive Neuroscience, College of Health Science and Technology, National Central University, Taoyuan City 320, Taiwan;
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, Taoyuan City 320, Taiwan
| | - Tzu-Yu Hsu
- Graduate Institute of Mind, Brain, and Consciousness (GIMBC), Taipei Medical University, Taipei 110, Taiwan;
- Brain and Consciousness Research Center (BCRC), TMU-Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Chin-An Wang
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Institute of Cognitive Neuroscience, College of Health Science and Technology, National Central University, Taoyuan City 320, Taiwan;
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, Taoyuan City 320, Taiwan
- Graduate Institute of Mind, Brain, and Consciousness (GIMBC), Taipei Medical University, Taipei 110, Taiwan;
- Brain and Consciousness Research Center (BCRC), TMU-Shuang Ho Hospital, New Taipei City 235, Taiwan
- Correspondence:
| |
Collapse
|
6
|
Kay L, Keogh R, Andrillon T, Pearson J. The pupillary light response as a physiological index of aphantasia, sensory and phenomenological imagery strength. eLife 2022; 11:72484. [PMID: 35356890 PMCID: PMC9018072 DOI: 10.7554/elife.72484] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
The pupillary light response is an important automatic physiological response which optimizes light reaching the retina. Recent work has shown that the pupil also adjusts in response to illusory brightness and a range of cognitive functions, however, it remains unclear what exactly drives these endogenous changes. Here, we show that the imagery pupillary light response correlates with objective measures of sensory imagery strength. Further, the trial-by-trial phenomenological vividness of visual imagery is tracked by the imagery pupillary light response. We also demonstrated that a group of individuals without visual imagery (aphantasia) do not show any significant evidence of an imagery pupillary light response, however they do show perceptual pupil light responses and pupil dilation with larger cognitive load. Our results provide evidence that the pupillary light response indexes the sensory strength of visual imagery. This work also provides the first physiological validation of aphantasia.
Collapse
Affiliation(s)
- Lachlan Kay
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Rebecca Keogh
- School of Psychological Sciences, Macquarie University, Sydney, Australia
| | - Thomas Andrillon
- Institut du Cerveau - Paris Brain Institute, Sorbonne Université, Paris, France
| | - Joel Pearson
- School of Psychology, University of New South Wales, Sydney, Australia
| |
Collapse
|
7
|
Pandey P, Ray S. Influence of the Location of a Decision Cue on the Dynamics of Pupillary Light Response. Front Hum Neurosci 2022; 15:755383. [PMID: 35153699 PMCID: PMC8826249 DOI: 10.3389/fnhum.2021.755383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
The pupils of the eyes reflexively constrict in light and dilate in dark to optimize retinal illumination. Non-visual cognitive factors, like attention, arousal, decision-making, etc., also influence pupillary light response (PLR). During passive viewing, the eccentricity of a stimulus modulates the pupillary aperture size driven by spatially weighted corneal flux density (CFD), which is the product of luminance and the area of the stimulus. Whether the scope of attention also influences PLR remains unclear. In this study, we contrasted the pupil dynamics between diffused and focused attentional conditions during decision-making, while the global CFD remained the same in the two conditions. A population of 20 healthy humans participated in a pair of forced choice tasks. They distributed attention to the peripheral decision cue in one task, and concentrated at the center in the other to select the target from four alternatives for gaze orientation. The location of this cue did not influence participants' reaction time (RT). However, the magnitude of constriction was significantly less in the task that warranted attention to be deployed at the center than on the periphery. We observed similar pupil dynamics when participants either elicited or canceled a saccadic eye movement, which ruled out pre-saccadic obligatory attentional orientation contributing to PLR. We further addressed how the location of attentional deployment might have influenced PLR. We simulated a biomechanical model of PLR with visual stimulation of different strengths as inputs corresponding to the two attentional conditions. In this homeomorphic model, the computational characteristic of each element was derived from the physiological and/or mechanical properties of the corresponding biological element. The simulation of this model successfully mimicked the observed data. In contrast to common belief that the global ambient luminosity drives pupillary response, the results of our study suggest that the effective CFD (eCFD) determined via the luminance multiplied by the size of the stimulus at the location of deployed attention in the visual space is critical for the magnitude of pupillary constriction.
Collapse
Affiliation(s)
| | - Supriya Ray
- Centre of Behavioural and Cognitive Sciences, University of Allahabad, Prayagraj, India
| |
Collapse
|
8
|
Wen M, Dong Z, Zhang L, Li B, Zhang Y, Li K. Depression and Cognitive Impairment: Current Understanding of Its Neurobiology and Diagnosis. Neuropsychiatr Dis Treat 2022; 18:2783-2794. [PMID: 36471744 PMCID: PMC9719265 DOI: 10.2147/ndt.s383093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Eye movement is critical for obtaining precise visual information and providing sensorimotor processes and advanced cognitive functions to the brain behavioral indicator. METHODS In this article, we present a narrative review of the eye-movement paradigms (such as fixation, smooth pursuit eye movements, and memory-guided saccade tasks) in major depression. RESULTS Characteristics of eye movement are considered to reflect several aspects of cognitive deficits regarded as an aid to diagnosis. Findings regarding depressive disorders showed differences from the healthy population in paradigms, the characteristics of eye movement may reflect cognitive deficits in depression. Neuroimaging studies have demonstrated the effectiveness of different eye movement paradigms for MDD screening. CONCLUSION Depression can be distinguished from other mental illnesses based on eye movements. Eye movement reflects cognitive deficits that can help diagnose depression, and it can make the entire diagnostic process more accurate.
Collapse
Affiliation(s)
- Min Wen
- School of Psychology and Mental Health, North China University of Science and Technology, Tangshan, People's Republic of China.,Hebei Provincial Mental Health Center, Baoding, People's Republic of China.,Hebei Provincial Key Laboratory of Major Mental and Behavioral Disorders, Baoding, People's Republic of China
| | - Zhen Dong
- Hebei Provincial Mental Health Center, Baoding, People's Republic of China
| | - Lili Zhang
- Hebei Provincial Mental Health Center, Baoding, People's Republic of China
| | - Bing Li
- Hebei Provincial Mental Health Center, Baoding, People's Republic of China.,Hebei Provincial Key Laboratory of Major Mental and Behavioral Disorders, Baoding, People's Republic of China
| | - Yunshu Zhang
- Hebei Provincial Mental Health Center, Baoding, People's Republic of China.,Hebei Provincial Key Laboratory of Major Mental and Behavioral Disorders, Baoding, People's Republic of China
| | - Keqing Li
- Hebei Provincial Mental Health Center, Baoding, People's Republic of China.,Hebei Provincial Key Laboratory of Major Mental and Behavioral Disorders, Baoding, People's Republic of China
| |
Collapse
|
9
|
Pandey P, Ray S. Pupil dynamics: A potential proxy of neural preparation for goal-directed eye movement. Eur J Neurosci 2021; 54:6587-6607. [PMID: 34510602 DOI: 10.1111/ejn.15453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 01/10/2023]
Abstract
The pupils reflexively constrict or dilate to regulate the influx of light on the retinae. Pupillary light reflex (PLR) is susceptible to many non-visual cognitive processes including covert orientation of attention and planning rapid saccadic eye movement. The frontal eye field (FEF) and superior colliculus (SC), which also send projections to the PLR pathway, are two important areas in primate's brain for planning saccade and orientation of attention. The saccadic reaction time (SRT) and the rate of increase in activity of movement neurons in these areas are inversely correlated. This study addressed how pupil dynamics, activity in the FEF and SC and SRT are related in a saccadic decision-making task. The rate of visually evoked pupil constriction was found inversely related to SRT. This was further verified by simulating a homeomorphic biomechanical model of pupillary muscle plants, wherein we projected signals similar to build-up activity in the FEF and SC to the parasympathetic (constriction) and sympathetic (dilation) division of the PLR pathway, respectively. A striking similarity between simulated and observed dynamics of pupil constriction suggests that PLR is a potential proxy of saccade planning by movement neurons in the FEF and SC. Indistinguishable pupil dynamics when planned saccades were elicited versus when they were cancelled eliminated the possibility that the obligatory pre-saccadic shift of attention alone influenced the rate of pupil constriction. Our study envisages a mechanism of how the oculomotor system influences the autonomic activity in an attempt to timely minimize saccadic visual transients by regulating the influx of light.
Collapse
Affiliation(s)
- Pragya Pandey
- Centre of Behavioural and Cognitive Sciences, University of Allahabad, Prayagraj, India
| | - Supriya Ray
- Centre of Behavioural and Cognitive Sciences, University of Allahabad, Prayagraj, India
| |
Collapse
|
10
|
Chen JT, Yep R, Hsu YF, Cherng YG, Wang CA. Investigating Arousal, Saccade Preparation, and Global Luminance Effects on Microsaccade Behavior. Front Hum Neurosci 2021; 15:602835. [PMID: 33746722 PMCID: PMC7973374 DOI: 10.3389/fnhum.2021.602835] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/09/2021] [Indexed: 11/28/2022] Open
Abstract
Microsaccades, small saccadic eye movements occurring during fixation, have been suggested to be modulated by various sensory, cognitive, and affective processes relating to arousal. Although the modulation of fatigue-related arousal on microsaccade behavior has previously been characterized, the influence of other aspects of arousal, such as emotional arousal, is less understood. Moreover, microsaccades are modulated by cognitive processes (e.g., voluntary saccade preparation) that could also be linked to arousal. To investigate the influence of emotional arousal, saccade preparation, and global luminance levels on microsaccade behavior, emotional auditory stimuli were presented prior to the onset of a fixation cue whose color indicated to look either at the peripheral stimulus (pro-saccade) or in the opposite direction of the stimulus (anti-saccade). Microsaccade behavior was found to be significantly modulated by saccade preparation and global luminance level, but not emotional arousal. In the pro- and anti-saccade task, microsaccade rate was lower during anti-saccade preparation as compared to pro-saccade preparation, though microsaccade dynamics were comparable during both trial types. Our results reveal a differential role of arousal linked to emotion, fatigue, saccade preparation, and global luminance level on microsaccade behavior.
Collapse
Affiliation(s)
- Jui-Tai Chen
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, Taipei City, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Rachel Yep
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Yu-Fan Hsu
- Research Center of Brain and Consciousness, Shuang Ho Hospital, Taipei Medical University, Taipei City, Taiwan
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei City, Taiwan
| | - Yih-Giun Cherng
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, Taipei City, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Chin-An Wang
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, Taipei City, Taiwan
- Research Center of Brain and Consciousness, Shuang Ho Hospital, Taipei Medical University, Taipei City, Taiwan
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei City, Taiwan
- Institute of Cognitive Neuroscience, College of Health Science and Technology, National Central University, Taoyuan City, Taiwan
| |
Collapse
|
11
|
Cherng YG, Crevecoeur F, Wang CA. Effects of pupillary light and darkness reflex on the generation of pro- And anti-saccades. Eur J Neurosci 2020; 53:1769-1782. [PMID: 33314426 DOI: 10.1111/ejn.15083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
Saccades are often directed toward a stimulus that provides useful information for observers to navigate the visual world. The quality of visual signals of a stimulus is influenced by global luminance, and the pupil constricts or dilates after a luminance increase or decrease, respectively, to optimize visual signals for further information processing. Although luminance level changes regularly in the real environment, saccades are mostly studied in the luminance-unchanged setup. Whether pupillary responses triggered by global luminance changes modulate saccadic behavior are yet to be explored. Through varying background luminance level in an interleaved pro- and anti-saccade paradigm, we investigated the modulation of pupillary luminance responses on the generation of reflexive and voluntary saccades. Subjects were instructed to either automatically look at the peripheral stimulus (pro-saccade) or to suppress the automatic response and voluntarily look in the opposite direction from the stimulus (anti-saccade). Level of background luminance was increased (light), decreased (dark), or unchanged (control) during the instructed fixation period. Saccade reaction time distributions of correct pro- and anti-saccades in the light and dark conditions were differed significantly from those in the control condition. Moreover, the luminance condition modulated saccade kinematics, showing reduced performances in the light condition than in the control condition, particularly in pro-saccades. Modeling results further suggested that both pupil diameter and pupil size derivative significantly modulated saccade behavior, though effect sizes were small and mainly mediated by intersubject differences. Together, our results demonstrated the influence of pupillary luminance responses on the generation of pro- and anti-saccades.
Collapse
Affiliation(s)
- Yih-Giun Cherng
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Anesthesiology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Frédéric Crevecoeur
- Institute of information Technologies, Electronics and Applied Mathematics (ICTEAM), Institute of Neuroscience, UCLouvain, Belgium.,Institute of Neuroscience, UCLouvain, Belgium
| | - Chin-An Wang
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Research Center of Brain and Consciousness, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
12
|
Background luminance effects on pupil size associated with emotion and saccade preparation. Sci Rep 2020; 10:15718. [PMID: 32973283 PMCID: PMC7515892 DOI: 10.1038/s41598-020-72954-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022] Open
Abstract
Pupil dilation is consistently evoked by affective and cognitive processing, and this dilation can result from sympathetic activation or parasympathetic inhibition. The relative contributions of the sympathetic and parasympathetic systems on the pupillary response induced by emotion and cognition may be different. Sympathetic and parasympathetic activity is regulated by global luminance level. Higher luminance levels lead to greater activation of the parasympathetic system while lower luminance levels lead to greater activation of the sympathetic system. To understand the contributions of the sympathetic and parasympathetic nervous systems to pupillary responses associated with emotion and saccade preparation, emotional auditory stimuli were presented following the fixation cue whose color indicated instruction to perform a pro- or anti-saccade while varying the background luminance level. Pupil dilation was evoked by emotional auditory stimuli and modulated by arousal level. More importantly, greater pupil dilation was observed with a dark background, compared to a bright background. In contrast, pupil dilation responses associated with saccade preparation were larger with the bright background than the dark background. Together, these results suggest that arousal-induced pupil dilation was mainly mediated by sympathetic activation, but pupil dilation related to saccade preparation was primarily mediated by parasympathetic inhibition.
Collapse
|
13
|
Wang CA, Baird T, Huang J, Coutinho JD, Brien DC, Munoz DP. Arousal Effects on Pupil Size, Heart Rate, and Skin Conductance in an Emotional Face Task. Front Neurol 2018; 9:1029. [PMID: 30559707 PMCID: PMC6287044 DOI: 10.3389/fneur.2018.01029] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/14/2018] [Indexed: 11/18/2022] Open
Abstract
Arousal level changes constantly and it has a profound influence on performance during everyday activities. Fluctuations in arousal are regulated by the autonomic nervous system, which is mainly controlled by the balanced activity of the parasympathetic and sympathetic systems, commonly indexed by heart rate (HR) and galvanic skin response (GSR), respectively. Although a growing number of studies have used pupil size to indicate the level of arousal, research that directly examines the relationship between pupil size and HR or GSR is limited. The goal of this study was to understand how pupil size is modulated by autonomic arousal. Human participants fixated various emotional face stimuli, of which low-level visual properties were carefully controlled, while their pupil size, HR, GSR, and eye position were recorded simultaneously. We hypothesized that a positive correlation between pupil size and HR or GSR would be observed both before and after face presentation. Trial-by-trial positive correlations between pupil diameter and HR and GSR were found before face presentation, with larger pupil diameter observed on trials with higher HR or GSR. However, task-evoked pupil responses after face presentation only correlated with HR. Overall, these results demonstrated a trial-by-trial relationship between pupil size and HR or GSR, suggesting that pupil size can be used as an index for arousal level involuntarily regulated by the autonomic nervous system.
Collapse
Affiliation(s)
- Chin-An Wang
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan
- Research Center of Brain and Consciousness, Taipei Medical University, Shuang Ho Hospital, New Taipei City, Taiwan
| | - Talia Baird
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Jeff Huang
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | | | - Donald C. Brien
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Douglas P. Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|