1
|
Bodmer BS, Hoenen T, Wendt L. Molecular insights into the Ebola virus life cycle. Nat Microbiol 2024; 9:1417-1426. [PMID: 38783022 DOI: 10.1038/s41564-024-01703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Ebola virus and other orthoebolaviruses cause severe haemorrhagic fevers in humans, with very high case fatality rates. Their non-segmented single-stranded RNA genome encodes only seven structural proteins and a small number of non-structural proteins to facilitate the virus life cycle. The basics of this life cycle are well established, but recent advances have substantially increased our understanding of its molecular details, including the viral and host factors involved. Here we provide a comprehensive overview of our current knowledge of the molecular details of the orthoebolavirus life cycle, with a special focus on proviral host factors. We discuss the multistep entry process, viral RNA synthesis in specialized phase-separated intracellular compartments called inclusion bodies, the expression of viral proteins and ultimately the assembly of new virus particles and their release at the cell surface. In doing so, we integrate recent studies into the increasingly detailed model that has developed for these fundamental aspects of orthoebolavirus biology.
Collapse
Affiliation(s)
- Bianca S Bodmer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Lisa Wendt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
2
|
Bodmer BS, Breithaupt A, Heung M, Brunetti JE, Henkel C, Müller-Guhl J, Rodríguez E, Wendt L, Winter SL, Vallbracht M, Müller A, Römer S, Chlanda P, Muñoz-Fontela C, Hoenen T, Escudero-Pérez B. In vivo characterization of the novel ebolavirus Bombali virus suggests a low pathogenic potential for humans. Emerg Microbes Infect 2023; 12:2164216. [PMID: 36580440 PMCID: PMC9858441 DOI: 10.1080/22221751.2022.2164216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ebolaviruses cause outbreaks of haemorrhagic fever in Central and West Africa. Some members of this genus such as Ebola virus (EBOV) are highly pathogenic, with case fatality rates of up to 90%, whereas others such as Reston virus (RESTV) are apathogenic for humans. Bombali virus (BOMV) is a novel ebolavirus for which complete genome sequences were recently found in free-tailed bats, although no infectious virus could be isolated. Its pathogenic potential for humans is unknown. To address this question, we first determined whether proteins encoded by the available BOMV sequence found in Chaerephon pumilus were functional in in vitro assays. The correction of an apparent sequencing error in the glycoprotein based on these data then allowed us to generate infectious BOMV using reverse genetics and characterize its infection of human cells. Furthermore, we used HLA-A2-transgenic, NOD-scid-IL-2γ receptor-knockout (NSG-A2) mice reconstituted with human haematopoiesis as a model to evaluate the pathogenicity of BOMV in vivo in a human-like immune environment. These data demonstrate that not only does BOMV show a slower growth rate than EBOV in vitro, but it also shows low pathogenicity in humanized mice, comparable to previous studies using RESTV. Taken together, these findings suggest a low pathogenic potential of BOMV for humans.
Collapse
Affiliation(s)
- B. S. Bodmer
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - A. Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - M. Heung
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - J. E. Brunetti
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - C. Henkel
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - J. Müller-Guhl
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany,Leibniz Institute of Virology, Hamburg, Germany
| | - E. Rodríguez
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany,German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, Braunschweig, Germany
| | - L. Wendt
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - S. L. Winter
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - M. Vallbracht
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - A. Müller
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - S. Römer
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - P. Chlanda
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - C. Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany,German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, Braunschweig, Germany
| | - T. Hoenen
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany, T. Hoenen Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald – Insel Riems, 17493Germany
| | - B. Escudero-Pérez
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany,German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, Braunschweig, Germany
| |
Collapse
|
3
|
Peeters M, Champagne M, Ndong Bass I, Goumou S, Ndimbo Kumugo SP, Lacroix A, Esteban A, Meta Djomsi D, Soumah AK, Mbala Kingebeni P, Mba Djonzo FA, Lempu G, Thaurignac G, Mpoudi Ngole E, Kouanfack C, Mukadi Bamuleka D, Likofata J, Muyembe Tamfum JJ, De Nys H, Capelle J, Toure A, Delaporte E, Keita AK, Ahuka Mundeke S, Ayouba A. Extensive Survey and Analysis of Factors Associated with Presence of Antibodies to Orthoebolaviruses in Bats from West and Central Africa. Viruses 2023; 15:1927. [PMID: 37766333 PMCID: PMC10536003 DOI: 10.3390/v15091927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The seroprevalence to orthoebolaviruses was studied in 9594 bats (5972 frugivorous and 3622 insectivorous) from Cameroon, the Democratic Republic of Congo (DRC) and Guinea, with a Luminex-based serological assay including recombinant antigens of four orthoebolavirus species. Seroprevalence is expressed as a range according to different cut-off calculations. Between 6.1% and 18.9% bat samples reacted with at least one orthoebolavirus antigen; the highest reactivity was seen with Glycoprotein (GP) antigens. Seroprevalence varied per species and was higher in frugivorous than insectivorous bats; 9.1-27.5% versus 1.3-4.6%, respectively. Seroprevalence in male (13.5%) and female (14.4%) bats was only slightly different and was higher in adults (14.9%) versus juveniles (9.4%) (p < 0.001). Moreover, seroprevalence was highest in subadults (45.4%) when compared to mature adults (19.2%), (p < 0.001). Our data suggest orthoebolavirus circulation is highest in young bats. More long-term studies are needed to identify birthing pulses for the different bat species in diverse geographic regions and to increase the chances of detecting viral RNA in order to document the genetic diversity of filoviruses in bats and their pathogenic potential for humans. Frugivorous bats seem more likely to be reservoirs of orthoebolaviruses, but the role of insectivorous bats has also to be further examined.
Collapse
Affiliation(s)
- Martine Peeters
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Maëliss Champagne
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Innocent Ndong Bass
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon; (I.N.B.); (D.M.D.); (F.A.M.D.); (C.K.)
| | - Souana Goumou
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abdel Nasser de Conakry, Conakry BP6629, Guinea; (S.G.); (A.K.S.); (A.T.); (A.K.K.)
| | - Simon-Pierre Ndimbo Kumugo
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
| | - Audrey Lacroix
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Amandine Esteban
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Dowbiss Meta Djomsi
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon; (I.N.B.); (D.M.D.); (F.A.M.D.); (C.K.)
| | - Abdoul Karim Soumah
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abdel Nasser de Conakry, Conakry BP6629, Guinea; (S.G.); (A.K.S.); (A.T.); (A.K.K.)
| | - Placide Mbala Kingebeni
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
| | - Flaubert Auguste Mba Djonzo
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon; (I.N.B.); (D.M.D.); (F.A.M.D.); (C.K.)
| | - Guy Lempu
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
| | - Guillaume Thaurignac
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Eitel Mpoudi Ngole
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon; (I.N.B.); (D.M.D.); (F.A.M.D.); (C.K.)
| | - Charles Kouanfack
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon; (I.N.B.); (D.M.D.); (F.A.M.D.); (C.K.)
| | - Daniel Mukadi Bamuleka
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
| | - Jacques Likofata
- Laboratoire Provincial de Mbandaka, Equateur, Democratic Republic of the Congo;
| | - Jean-Jacques Muyembe Tamfum
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
| | - Helene De Nys
- Astre, CIRAD, INRAE, University of Montpellier, 34398 Montpellier, France; (H.D.N.); (J.C.)
- Astre, CIRAD, 6 Lanark Road, Harare, Zimbabwe
| | - Julien Capelle
- Astre, CIRAD, INRAE, University of Montpellier, 34398 Montpellier, France; (H.D.N.); (J.C.)
| | - Abdoulaye Toure
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abdel Nasser de Conakry, Conakry BP6629, Guinea; (S.G.); (A.K.S.); (A.T.); (A.K.K.)
| | - Eric Delaporte
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Alpha Kabinet Keita
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abdel Nasser de Conakry, Conakry BP6629, Guinea; (S.G.); (A.K.S.); (A.T.); (A.K.K.)
| | - Steve Ahuka Mundeke
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
| | - Ahidjo Ayouba
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| |
Collapse
|
4
|
Klim H, William T, Chua TH, Rajahram GS, Drakeley CJ, Carroll MW, Fornace KM. Quantifying human-animal contact rates in Malaysian Borneo: Influence of agricultural landscapes on contact with potential zoonotic disease reservoirs. FRONTIERS IN EPIDEMIOLOGY 2023; 2:1057047. [PMID: 38455308 PMCID: PMC10910987 DOI: 10.3389/fepid.2022.1057047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/28/2022] [Indexed: 03/09/2024]
Abstract
Changing landscapes across the globe, but particularly in Southeast Asia, are pushing humans and animals closer together and may increase the likelihood of zoonotic spillover events. Malaysian Borneo is hypothesized to be at high risk of spillover events due to proximity between reservoir species and humans caused by recent deforestation in the region. However, the relationship between landscape and human-animal contact rates has yet to be quantified. An environmentally stratified cross-sectional survey was conducted in Sabah, Malaysia in 2015, collecting geolocated questionnaire data on potential risk factors for contact with animals for 10,100 individuals. 51% of individuals reported contact with poultry, 46% with NHPs, 30% with bats, and 2% with swine. Generalised linear mixed models identified occupational and demographic factors associated with increased contact with these species, which varied when comparing wildlife to domesticated animals. Reported contact rates with each animal group were integrated with remote sensing-derived environmental data within a Bayesian framework to identify regions with high probabilities of contact with animal reservoirs. We have identified high spatial heterogeneity of contact with animals and clear associations between agricultural practices and high animal rates. This approach will help inform public health campaigns in at-risk populations and can improve pathogen surveillance efforts on Malaysian Borneo. This method can additionally serve as a framework for researchers looking to identify targets for future pathogen detection in a chosen region of study.
Collapse
Affiliation(s)
- Hannah Klim
- Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Future of Humanity Institute, Faculty of Philosophy, University of Oxford, Oxford, United Kingdom
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
- Gleneagles Hospital, Kota Kinabalu, Malaysia
- Clinical Research Centre, Queen Elizabeth II Hospital, Kota Kinabalu, Malaysia
| | - Tock H. Chua
- Faculty of Medicine and Health Sciences, University of Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Giri S. Rajahram
- Clinical Research Centre, Queen Elizabeth II Hospital, Kota Kinabalu, Malaysia
| | - Chris J. Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Miles W. Carroll
- Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Kimberly M. Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Sherwood LJ, Hayhurst A. Generating Uniformly Cross-Reactive Ebolavirus spp. Anti-nucleoprotein Nanobodies to Facilitate Forward Capable Detection Strategies. ACS Infect Dis 2022; 8:343-359. [PMID: 34994194 DOI: 10.1021/acsinfecdis.1c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is often challenging for a single monoclonal antibody to cross-react equally with all species of a particular viral genus that are separated by time and geographies to ensure broad long-term global immunodiagnostic use. Here, we set out to isolate nanobodies or single-domain antibodies (sdAbs) with uniform cross-reactivity to the genus Ebolavirus by immunizing a llama with recombinant nucleoprotein (NP) representing the 5 cultivated species to assemble a phage display repertoire for mining. Screening sdAbs for reactivity against the C-terminal domain of NP guided the isolation of clones that could perform as both captor and tracer for polyvalent antigen in sandwich assays. Two promising sdAbs had equivalent reactivities across all 5 species and greatly enhanced the equilibrium concentration at 50% (EC50) for recombinant NP when compared with a differentially cross-reactive nonimmune sdAb isolated previously. Uniform reactivity and enhanced sensitivity were relayed to live virus titrations, resulting in lower limits of detection of 2-5 pfu for the best sdAbs, representing 10-, 20-, and 100-fold improvements for Zaire, Sudan/Reston, and Taï Forest viruses, respectively. Fusions of the sdAbs with ascorbate peroxidase (APEX2) and mNeonGreen generated one-step immunoreagents useful for colorimetric and fluorescent visualization of cellular NP. Both sdAbs were also able to recognize recombinant NPs from the recently discovered Bombali virus, a putative sixth Ebolavirus species unknown at the start of these experiments, validating the forward capabilities of the sdAbs. The simplicity and modularity of these sdAbs should enable advances in antigen-based diagnostic technologies to be retuned toward filoviral detection relatively easily, thereby proactively safeguarding human health.
Collapse
Affiliation(s)
- Laura Jo Sherwood
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
| | - Andrew Hayhurst
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
| |
Collapse
|
6
|
Vasudevan K, Thirumal Kumar D, Udhaya Kumar S, Saleem A, Nagasundaram N, Siva R, Tayubi IA, George Priya Doss C, Zayed H. A computational overview on phylogenetic characterization, pathogenic mutations, and drug targets for Ebola virus disease. Curr Opin Pharmacol 2021; 61:28-35. [PMID: 34563987 DOI: 10.1016/j.coph.2021.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022]
Abstract
The World Health Organization declared Ebola virus disease (EVD) as the major outbreak in the 20th century. EVD was first identified in 1976 in South Sudan and the Democratic Republic of the Congo. EVD was transmitted from infected fruit bats to humans via contact with infected animal body fluids. The Ebola virus (EBOV) has a genome size of ∼18,959 bp. It encodes seven distinct proteins: nucleoprotein (NP), glycoprotein (GP), viral proteins VP24, VP30, VP35, matrix protein VP40, and polymerase L is considered a prime target for potential antiviral strategies. The current US FDA-approved anti-EVD vaccine, ERVERBO, and the other equally effective anti-EBOV combinations of three fully human monoclonal antibodies such as REGN-EB3, primarily target the envelope glycoprotein. This work elaborates on the EBOV's phylogenetic structure and the crucial mutations associated with viral pathogenicity.
Collapse
Affiliation(s)
- Karthick Vasudevan
- School of Applied Sciences, Reva University, Bengaluru, Karnataka, India.
| | - D Thirumal Kumar
- Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India.
| | - S Udhaya Kumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Aisha Saleem
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - N Nagasundaram
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - R Siva
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Iftikhar Aslam Tayubi
- Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| | - C George Priya Doss
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
7
|
Gupta P, Singh MP, Goyal K, Tripti P, Ansari MI, Obli Rajendran V, Dhama K, Malik YS. Bats and viruses: a death-defying friendship. Virusdisease 2021; 32:467-479. [PMID: 34518804 PMCID: PMC8426161 DOI: 10.1007/s13337-021-00716-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/19/2021] [Indexed: 01/10/2023] Open
Abstract
Bats have a primeval evolutionary origin and have adopted various survival methods. They have played a central role in the emergence of various viral diseases. The sustenance of a plethora of virus species inside them has been an earnest area of study. This review explains how the evolution of viruses in bats has been linked to their metabolic pathways, flight abilities, reproductive abilities and colonization behaviors. The utilization of host immune response by DNA and RNA viruses is a commencement of the understanding of differences in the impact of viral infection in bats from other mammals. Rabies virus and other lyssa viruses have had long documented history as bat viruses. While many others like Ebola virus, Nipah virus, Hantavirus, SARS-CoV, MERS-CoV and other new emerging viruses like Sosuga virus, Menangle and Tioman virus are now being studied extensively for their transmission in new hosts. The ongoing pandemic SARS-CoV-2 virus has also been implicated to be originated from bats. Certain factors have been linked to spillover events while the scope of entitlement of other conditions in the spread of diseases from bats still exists. However, certain physiological and ecological parameters have been linked to specific transmission patterns, and more definite proofs are awaited for establishing these connections.
Collapse
Affiliation(s)
- Parakriti Gupta
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mini P. Singh
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kapil Goyal
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pande Tripti
- Biological Standardization Division, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243 122 India
| | - Mohd Ikram Ansari
- Department of Biosciences, Integral University, Dasauli, Kursi Road, Lucknow, Uttar Pradesh 226026 India
| | - Vinodhkumar Obli Rajendran
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243 122 India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243 122 India
| | - Yashpal Singh Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab 141 004 India
| |
Collapse
|
8
|
Bodmer BS, Greßler J, Schmidt ML, Holzerland J, Brandt J, Braun S, Groseth A, Hoenen T. Differences in Viral RNA Synthesis but Not Budding or Entry Contribute to the In Vitro Attenuation of Reston Virus Compared to Ebola Virus. Microorganisms 2020; 8:E1215. [PMID: 32796523 PMCID: PMC7463789 DOI: 10.3390/microorganisms8081215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 01/29/2023] Open
Abstract
Most filoviruses cause severe disease in humans. For example, Ebola virus (EBOV) is responsible for the two most extensive outbreaks of filovirus disease to date, with case fatality rates of 66% and 40%, respectively. In contrast, Reston virus (RESTV) is apparently apathogenic in humans, and while transmission of RESTV from domestic pigs to people results in seroconversion, no signs of disease have been reported in such cases. The determinants leading to these differences in pathogenicity are not well understood, but such information is needed in order to better evaluate the risks posed by the repeated spillover of RESTV into the human population and to perform risk assessments for newly emerging filoviruses with unknown pathogenic potential. Interestingly, RESTV and EBOV already show marked differences in their growth in vitro, with RESTV growing slower and reaching lower end titers. In order to understand the basis for this in vitro attenuation of RESTV, we used various life cycle modeling systems mimicking different aspects of the virus life cycle. Our results showed that viral RNA synthesis was markedly slower when using the ribonucleoprotein (RNP) components from RESTV, rather than those for EBOV. In contrast, the kinetics of budding and entry were indistinguishable between these two viruses. These data contribute to our understanding of the molecular basis for filovirus pathogenicity by showing that it is primarily differences in the robustness of RNA synthesis by the viral RNP complex that are responsible for the impaired growth of RESTV in tissue culture.
Collapse
Affiliation(s)
- Bianca S. Bodmer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (B.S.B.); (J.G.); (M.L.S.); (J.B.); (S.B.)
| | - Josephin Greßler
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (B.S.B.); (J.G.); (M.L.S.); (J.B.); (S.B.)
| | - Marie L. Schmidt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (B.S.B.); (J.G.); (M.L.S.); (J.B.); (S.B.)
| | - Julia Holzerland
- Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (J.H.); (A.G.)
| | - Janine Brandt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (B.S.B.); (J.G.); (M.L.S.); (J.B.); (S.B.)
| | - Stefanie Braun
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (B.S.B.); (J.G.); (M.L.S.); (J.B.); (S.B.)
| | - Allison Groseth
- Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (J.H.); (A.G.)
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (B.S.B.); (J.G.); (M.L.S.); (J.B.); (S.B.)
| |
Collapse
|