1
|
López-Aranda MF, Boxx GM, Phan M, Bach K, Mandanas R, Herrera I, Taloma S, Thadani C, Lu O, Bui R, Liu S, Li N, Zhou Y, Cheng G, Silva AJ. Role of type I interferon signaling and microglia in the abnormal long term potentiation and object place recognition deficits of male mice with a mutation of the Tuberous Sclerosis 2 gene. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022. [PMID: 37519458 PMCID: PMC10382699 DOI: 10.1016/j.bpsgos.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Tuberous sclerosis complex is a genetic disorder associated with high rates of intellectual disability and autism. Mice with a heterozygous null mutation of the Tsc2 gene (Tsc2+/-) show deficits in hippocampal-dependent tasks and abnormal long-term potentiation (LTP) in the hippocampal CA1 region. Although previous studies focused on the role of neuronal deficits in the memory phenotypes of rodent models of tuberous sclerosis complex, the results presented here demonstrate a role for microglia in these deficits. Methods To test the possible role of microglia and type I interferon in abnormal hippocampal-dependent memory and LTP of Tsc2+/- mice, we used field recordings in CA1 and the object place recognition (OPR) task. We used the colony stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia in Tsc2+/- mice and interferon alpha/beta receptor alpha chain null mutation (Ifnar1-/-) to manipulate a signaling pathway known to modulate microglia function. Results Unexpectedly, we demonstrate that male, but not female, Tsc2+/- mice show OPR deficits. These deficits can be rescued by depletion of microglia and by the Ifnar1-/- mutation. In addition to rescuing OPR deficits, depletion of microglia also reversed abnormal LTP of the Tsc2+/- mice. Altogether, our results suggest that altered IFNAR1 signaling in microglia causes the abnormal LTP and OPR deficits of male Tsc2+/- mice. Conclusions Microglia and IFNAR1 signaling have a key role in the hippocampal-dependent memory deficits and abnormal hippocampal LTP of Tsc2+/- male mice.
Collapse
|
2
|
Mapelli L, Soda T, D’Angelo E, Prestori F. The Cerebellar Involvement in Autism Spectrum Disorders: From the Social Brain to Mouse Models. Int J Mol Sci 2022; 23:ijms23073894. [PMID: 35409253 PMCID: PMC8998980 DOI: 10.3390/ijms23073894] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that include a variety of forms and clinical phenotypes. This heterogeneity complicates the clinical and experimental approaches to ASD etiology and pathophysiology. To date, a unifying theory of these diseases is still missing. Nevertheless, the intense work of researchers and clinicians in the last decades has identified some ASD hallmarks and the primary brain areas involved. Not surprisingly, the areas that are part of the so-called “social brain”, and those strictly connected to them, were found to be crucial, such as the prefrontal cortex, amygdala, hippocampus, limbic system, and dopaminergic pathways. With the recent acknowledgment of the cerebellar contribution to cognitive functions and the social brain, its involvement in ASD has become unmistakable, though its extent is still to be elucidated. In most cases, significant advances were made possible by recent technological developments in structural/functional assessment of the human brain and by using mouse models of ASD. Mouse models are an invaluable tool to get insights into the molecular and cellular counterparts of the disease, acting on the specific genetic background generating ASD-like phenotype. Given the multifaceted nature of ASD and related studies, it is often difficult to navigate the literature and limit the huge content to specific questions. This review fulfills the need for an organized, clear, and state-of-the-art perspective on cerebellar involvement in ASD, from its connections to the social brain areas (which are the primary sites of ASD impairments) to the use of monogenic mouse models.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Brain Connectivity Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| |
Collapse
|
3
|
Bush L, Scott MN. Neuropsychological and ASD phenotypes in rare genetic syndromes: A critical review of the literature. Clin Neuropsychol 2021; 36:993-1027. [PMID: 34569897 DOI: 10.1080/13854046.2021.1980111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by core deficits in social communication and restricted and repetitive behaviors and interests. Recent advances in clinical genetics have improved our understanding of genetic syndromes associated with ASD, which has helped clarify distinct etiologies of ASD and document syndrome-specific profiles of neurocognitive strengths and weaknesses. Pediatric neuropsychologists have the potential to be impactful members of the care team for children with genetic syndromes and their families. METHOD We provide a critical review of the current literature related to the neuropsychological profiles of children with four genetic syndromes associated with ASD, including Tuberous Sclerosis Complex (TSC), fragile X syndrome (FXS), 22q11.2 deletion syndrome, and Angelman syndrome. Recommendations for assessment, intervention, and future directions are provided. RESULTS There is vast heterogeneity in terms of the cognitive, language, and developmental abilities of these populations. The within- and across-syndrome variability characteristic of genetic syndromes should be carefully considered during clinical evaluations, including possible measurement limitations, presence of intellectual disability, and important qualitative differences in the ASD-phenotypes across groups. CONCLUSIONS Individuals with genetic disorders pose challenging diagnostic and assessment questions. Pediatric neuropsychologists with expertise in neurodevelopmental processes are well suited to address these questions and identify profiles of neurocognitive strengths and weaknesses, tailor individualized recommendations, and provide diagnostic clarification.
Collapse
Affiliation(s)
- Lauren Bush
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Megan N Scott
- The Pritzker Department of Psychiatry and Behavioral Health, Ann & Robert H. Lurie Children's Hospital of Chicago, IL, USA
| |
Collapse
|
4
|
López-Aranda MF, Chattopadhyay I, Boxx GM, Fraley ER, Silva TK, Zhou M, Phan M, Herrera I, Taloma S, Mandanas R, Bach K, Gandal M, Geschwind DH, Cheng G, Rzhetsky A, White SA, Silva AJ. Postnatal immune activation causes social deficits in a mouse model of tuberous sclerosis: Role of microglia and clinical implications. SCIENCE ADVANCES 2021; 7:eabf2073. [PMID: 34533985 PMCID: PMC8448451 DOI: 10.1126/sciadv.abf2073] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 07/27/2021] [Indexed: 05/03/2023]
Abstract
There is growing evidence that prenatal immune activation contributes to neuropsychiatric disorders. Here, we show that early postnatal immune activation resulted in profound impairments in social behavior, including in social memory in adult male mice heterozygous for a gene responsible for tuberous sclerosis complex (Tsc2+/−), a genetic disorder with high prevalence of autism. Early postnatal immune activation did not affect either wild-type or female Tsc2+/− mice. We demonstrate that these memory deficits are caused by abnormal mammalian target of rapamycin–dependent interferon signaling and impairments in microglia function. By mining the medical records of more than 3 million children followed from birth, we show that the prevalence of hospitalizations due to infections in males (but not in females) is associated with future development of autism spectrum disorders (ASD). Together, our results suggest the importance of synergistic interactions between strong early postnatal immune activation and mutations associated with ASD.
Collapse
Affiliation(s)
- Manuel F. López-Aranda
- Departments of Neurobiology, Psychology, and Psychiatry, Integrative Center for Learning and Memory, and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ishanu Chattopadhyay
- Department of Medicine and Human Genetics, Section of Computational Biomedicine and Biomedical Data Science, and Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Gayle M. Boxx
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elizabeth R. Fraley
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tawnie K. Silva
- Departments of Neurobiology, Psychology, and Psychiatry, Integrative Center for Learning and Memory, and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miou Zhou
- Departments of Neurobiology, Psychology, and Psychiatry, Integrative Center for Learning and Memory, and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miranda Phan
- Departments of Neurobiology, Psychology, and Psychiatry, Integrative Center for Learning and Memory, and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Isaiah Herrera
- Departments of Neurobiology, Psychology, and Psychiatry, Integrative Center for Learning and Memory, and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sunrae Taloma
- Departments of Neurobiology, Psychology, and Psychiatry, Integrative Center for Learning and Memory, and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rochelle Mandanas
- Departments of Neurobiology, Psychology, and Psychiatry, Integrative Center for Learning and Memory, and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Karen Bach
- Departments of Neurobiology, Psychology, and Psychiatry, Integrative Center for Learning and Memory, and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael Gandal
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel H. Geschwind
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrey Rzhetsky
- Department of Medicine and Human Genetics, Section of Computational Biomedicine and Biomedical Data Science, and Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Stephanie A. White
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alcino J. Silva
- Departments of Neurobiology, Psychology, and Psychiatry, Integrative Center for Learning and Memory, and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Longo F, Klann E. Reciprocal control of translation and transcription in autism spectrum disorder. EMBO Rep 2021; 22:e52110. [PMID: 33977633 DOI: 10.15252/embr.202052110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/20/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and the presence of restricted patterns of interest and repetitive behaviors. ASD is genetically heterogeneous and is believed to be caused by both inheritable and de novo gene variations. Studies have revealed an extremely complex genetic landscape of ASD, favoring the idea that mutations in different clusters of genes interfere with interconnected downstream signaling pathways and circuitry, resulting in aberrant behavior. In this review, we describe a select group of candidate genes that represent both syndromic and non-syndromic forms of ASD and encode proteins that are important in transcriptional and translational regulation. We focus on the interplay between dysregulated translation and transcription in ASD with the hypothesis that dysregulation of each synthetic process triggers a feedback loop to act on the other, which ultimately exacerbates ASD pathophysiology. Finally, we summarize findings from interdisciplinary studies that pave the way for the investigation of the cooperative impact of different genes and pathways underlying the development of ASD.
Collapse
Affiliation(s)
- Francesco Longo
- Center for Neural Science, New York University, New York, NY, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
6
|
Kútna V, O'Leary VB, Newman E, Hoschl C, Ovsepian SV. Revisiting Brain Tuberous Sclerosis Complex in Rat and Human: Shared Molecular and Cellular Pathology Leads to Distinct Neurophysiological and Behavioral Phenotypes. Neurotherapeutics 2021; 18:845-858. [PMID: 33398801 PMCID: PMC8423952 DOI: 10.1007/s13311-020-01000-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a dominant autosomal genetic disorder caused by loss-of-function mutations in TSC1 and TSC2, which lead to constitutive activation of the mammalian target of rapamycin C1 (mTORC1) with its decoupling from regulatory inputs. Because mTORC1 integrates an array of molecular signals controlling protein synthesis and energy metabolism, its unrestrained activation inflates cell growth and division, resulting in the development of benign tumors in the brain and other organs. In humans, brain malformations typically manifest through a range of neuropsychiatric symptoms, among which mental retardation, intellectual disabilities with signs of autism, and refractory seizures, which are the most prominent. TSC in the rat brain presents the first-rate approximation of cellular and molecular pathology of the human brain, showing many instructive characteristics. Nevertheless, the developmental profile and distribution of lesions in the rat brain, with neurophysiological and behavioral manifestation, deviate considerably from humans, raising numerous research and translational questions. In this study, we revisit brain TSC in human and Eker rats to relate their histopathological, electrophysiological, and neurobehavioral characteristics. We discuss shared and distinct aspects of the pathology and consider factors contributing to phenotypic discrepancies. Given the shared genetic cause and molecular pathology, phenotypic deviations suggest an incomplete understanding of the disease. Narrowing the knowledge gap in the future should not only improve the characterization of the TSC rat model but also explain considerable variability in the clinical manifestation of the disease in humans.
Collapse
Affiliation(s)
- Viera Kútna
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine of Charles University, Ruská 87, 100 00, Prague, Czech Republic
| | - Ehren Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Cyril Hoschl
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine of Charles University, Ruská 87, 100 00, Prague, Czech Republic
| | - Saak V Ovsepian
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine of Charles University, Ruská 87, 100 00, Prague, Czech Republic.
| |
Collapse
|
7
|
Ravi K, Paidas MJ, Saad A, Jayakumar AR. Astrocytes in rare neurological conditions: Morphological and functional considerations. J Comp Neurol 2021; 529:2676-2705. [PMID: 33496339 DOI: 10.1002/cne.25118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 01/06/2023]
Abstract
Astrocytes are a population of central nervous system (CNS) cells with distinctive morphological and functional characteristics that differ within specific areas of the brain and are widely distributed throughout the CNS. There are mainly two types of astrocytes, protoplasmic and fibrous, which differ in morphologic appearance and location. Astrocytes are important cells of the CNS that not only provide structural support, but also modulate synaptic activity, regulate neuroinflammatory responses, maintain the blood-brain barrier, and supply energy to neurons. As a result, astrocytic disruption can lead to widespread detrimental effects and can contribute to the pathophysiology of several neurological conditions. The characteristics of astrocytes in more common neuropathologies such as Alzheimer's and Parkinson's disease have significantly been described and continue to be widely studied. However, there still exist numerous rare neurological conditions in which astrocytic involvement is unknown and needs to be explored. Accordingly, this review will summarize functional and morphological changes of astrocytes in various rare neurological conditions based on current knowledge thus far and highlight remaining neuropathologies where astrocytic involvement has yet to be investigated.
Collapse
Affiliation(s)
- Karthik Ravi
- University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, Florida, USA
| | - Ali Saad
- Pathology and Laboratory Medicine, University of Miami School of Medicine, Miami, Florida, USA
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, Florida, USA.,South Florida VA Foundation for Research and Education Inc, Miami, Florida, USA.,General Medical Research Neuropathology Section, R&D Service, Veterans Affairs Medical Centre, Miami, Florida, USA
| |
Collapse
|
8
|
Improvement in Impaired Social Cognition but Not Seizures by Everolimus in a Child with Tuberous Sclerosis-Associated Autism through Increased Serum Antioxidant Proteins and Oxidant/Antioxidant Status. Case Rep Pediatr 2019; 2019:2070619. [PMID: 31871809 PMCID: PMC6907049 DOI: 10.1155/2019/2070619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/11/2019] [Accepted: 08/01/2019] [Indexed: 12/23/2022] Open
Abstract
We investigated the effect of the mammalian target of rapamycin (mTOR) inhibitor everolimus on tuberous sclerosis complex- (TSC-) associated autistic symptoms and focal seizures with impaired awareness in a female child with TSC. We further evaluated the relationship between improved autistic symptoms and seizures and increased the serum levels of the antioxidant proteins, ceruloplasmin (Cp) and transferrin (Tf), and oxidant-antioxidant status indicated by the oxidant marker oxidized low-density lipoprotein (ox-LDL) and the antioxidant marker total antioxidant power (TAP). Everolimus treatment improved impaired social cognition and autistic behaviors; however, seizure and epileptic activity persisted. Serum Cp and Tf levels gradually increased in response to improved autistic symptoms. Serum TAP levels gradually decreased from baseline to the lowest value at 16 weeks and then increased at 24 weeks, showing a trend toward decreased total score of the Aberrant Behavior Checklist. This study revealed that everolimus treatment improved impaired social cognition with increased serum levels of the copper mediator (Cp) and iron mediator (Tf) via homeostatic control of mTOR activity accompanied by overlap of the oxidant-antioxidant system. Everolimus had no effect on TSC-related epileptiform discharges, and thus, the autistic symptoms and epileptic activity may be two independent end results of a common central nervous system disorder including mTOR hyperactivity. This trial is registered with JMAS-IIA00258.
Collapse
|
9
|
Russo FB, Brito A, de Freitas AM, Castanha A, de Freitas BC, Beltrão-Braga PCB. The use of iPSC technology for modeling Autism Spectrum Disorders. Neurobiol Dis 2019; 130:104483. [PMID: 31129084 DOI: 10.1016/j.nbd.2019.104483] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/31/2019] [Accepted: 05/22/2019] [Indexed: 12/28/2022] Open
Abstract
Autism Spectrum Disorders (ASDs) are a group of neurodevelopmental disorders that influence social skills, involving communication, interaction, and behavior, usually with repetitive and restrictive manners. Due to the variety of genes involved in ASDs and several possible environmental factors influence, there is still no answer to what really causes syndromic and non-syndromic types of ASDs, usually affecting each individual in a unique way. However, we know that the mechanism underlying ASDs involves brain functioning. The human brain is a complex structure composed of close to 100 billion cells, which is a big challenge to study counting just with post mortem tissue investigation or genetic approaches. Therefore, human induced pluripotent stem cells (iPSC) technology has been used as a tool to produce viable cells for understanding a working brain. Taking advantage of patient-derived stem cells, researchers are now able to generate neurons, glial cells and brain organoids in vitro to model ASDs. In this review we report data from different studies showing how iPSCs have been a critical tool to study the different phenotypes of ASDs.
Collapse
Affiliation(s)
- Fabiele Baldino Russo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Anita Brito
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | | | - Andrelissa Castanha
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Beatriz C de Freitas
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Patricia Cristina Baleeiro Beltrão-Braga
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil; Department of Obstetrics, School of Arts Sciences and Humanities, São Paulo, SP 03828-000, Brazil.
| |
Collapse
|
10
|
Gipson TT, Poretti A, Kelley SA, Carson KA, Johnston MV, Huisman TAGM. Characterization of the Basal Ganglia Using Diffusion Tensor Imaging in Children with Self-Injurious Behavior and Tuberous Sclerosis Complex. J Neuroimaging 2019; 29:506-511. [PMID: 31056796 PMCID: PMC6618151 DOI: 10.1111/jon.12628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Tuberous sclerosis complex (TSC) is a rare, genetic disease that is associated with multiple manifestations including epilepsy and autism. Self‐injurious behaviors (SIBs) also occur in a subset of patients. This study used diffusion tensor imaging (DTI) in children with TSC for quantitative and volumetric analysis of brain regions that have been associated with SIB in other genetic conditions. METHODS We used DTI to compare 6 children with TSC‐associated SIB and 10 children with TSC without SIB. Atlas‐based analysis of DTI data and calculation of number of voxels; fractional anisotropy (FA); and mean, axial, and radial diffusivity were performed for multiple regions; DTI measures were summarized using medians and interquartile ranges and were compared using Wilcoxon rank sum tests and false discovery rates (FDRs). RESULTS Analysis showed that children with TSC and SIB had reduced numbers of voxels (median) in the bilateral globus pallidus (right: 218 vs. 260, P = .008, FDR = .18; left: 222 vs. 274, P = .002, FDR = .12) and caudate nucleus (right: 712 vs. 896, P = .01, FDR = .26; left: 702 vs. 921, P = .03, FDR = .44) and reduced FA in the bilateral globus pallidus (right: .233 vs. .272, P = .003, FDR = .12; left: .223 vs. .247, P = .004, FDR = .12) and left caudate nucleus (.162 vs. .186, P = .03, FDR = .39) versus children without SIB. No other statistically significant differences were found. CONCLUSIONS These data support a correlation between lower volumes of the globus pallidus and caudate with SIB in children with TSC.
Collapse
Affiliation(s)
- Tanjala T Gipson
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN.,Le Bonheur Children's Hospital and Boling Center for Developmental Disabilities, Memphis, TN
| | - Andrea Poretti
- Division of Pediatric Radiology and Pediatric Neuroradiology, Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sarah A Kelley
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kathryn A Carson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.,Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael V Johnston
- Departments of Pediatrics, Neurology, Physical Medicine, and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Thierry A G M Huisman
- Le Bonheur Children's Hospital and Boling Center for Developmental Disabilities, Memphis, TN
| |
Collapse
|
11
|
Early onset epileptic encephalopathy or genetically determined encephalopathy with early onset epilepsy? Lessons learned from TSC. Eur J Paediatr Neurol 2016; 20:203-211. [PMID: 26758984 DOI: 10.1016/j.ejpn.2015.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 12/01/2015] [Accepted: 12/13/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND In tuberous sclerosis complex (TSC) a relationship has been shown between early and refractory seizures and intellectual disability. However, it is uncertain whether epilepsy in TSC is simply a marker in infants who are destined to develop an encephalopathic process or if seizures play a causal role in developing an encephalopathy. METHODS This paper summarizes the key points discussed during a European TSC workshop held in Rome, and reviews the experimental and clinical evidence in support of the two theories. RESULTS/CONCLUSION There are many factors that influence the appearance of both early seizure onset and the encephalopathy resulting in neurodevelopmental deficits. Experimental studies show that as a consequence of the TSC genes mutation, mammalian target of Rapamycin (mTOR) overactivation determines an alteration in cellular morphology with cytomegalic neurons, altered synaptogenesis and an imbalance between excitation/inhibition, thus providing a likely neuroanatomical substrate for the early appearance of refractory seizures and for the encephalopathic process. At the clinical level, early signs of altered developmental trajectories are often unrecognized before 12 months of age. Evidence from experimental research shows that encephalopathy in TSC might have a genetic cause, and mTOR activation caused by TSC gene mutation can be directly responsible for the early appearance of seizures and encephalopathy.
Collapse
|
12
|
Peñagarikano O. New Therapeutic Options for Autism Spectrum Disorder: Experimental Evidences. Exp Neurobiol 2015; 24:301-11. [PMID: 26713078 PMCID: PMC4688330 DOI: 10.5607/en.2015.24.4.301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impairment in two behavioral domains: social interaction/communication together with the presence of stereotyped behaviors and restricted interests. The heterogeneity in the phenotype among patients and the complex etiology of the disorder have long impeded the advancement of the development of successful pharmacotherapies. However, in the recent years, the integration of findings of multiple levels of research, from human genetics to mouse models, have made considerable progress towards the understanding of ASD pathophysiology, allowing the development of more effective targeted drug therapies. The present review discusses the current state of pharmacological research in ASD based on the emerging common pathophysiology signature.
Collapse
Affiliation(s)
- Olga Peñagarikano
- Department of Pharmacology, School of Medicine, University of the Basque Country, Sarriena s/n, Leioa 48940, Spain
| |
Collapse
|
13
|
Vignoli A, La Briola F, Peron A, Turner K, Vannicola C, Saccani M, Magnaghi E, Scornavacca GF, Canevini MP. Autism spectrum disorder in tuberous sclerosis complex: searching for risk markers. Orphanet J Rare Dis 2015; 10:154. [PMID: 26631248 PMCID: PMC4668631 DOI: 10.1186/s13023-015-0371-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/24/2015] [Indexed: 12/04/2022] Open
Abstract
Background Neuropsychiatric disorders are present in up to 90 % of patients with Tuberous Sclerosis Complex (TSC), and represent an important issue for families. Autism Spectrum Disorder (ASD) is the most common neurobehavioral disease, affecting up to 61 % of patients. The aims of this study were: 1) to assess the prevalence of ASD in a TSC population; 2) to describe the severity of ASD; 3) to identify potential risk factors associated with the development of ASD in TSC patients. Methods We selected 42 individuals over age 4 years with a definite diagnosis of TSC and followed at a TSC clinic in Northern Italy. We collected and reported clinical and genetic data, as well as cognitive level, for each of them. We administered the Social Communication Questionnaire (SCQ) as a reliable screening tool for ASD, and performed comparisons between the average scores and each clinical and genetic feature. Results Seventeen out of 42 patients (40.5 %) had a score at the SCQ suggestive of ASD (≥15 points). When calculated for each cognitive level category, the average SCQ score tended to be progressively higher in patients with a worse cognitive level, and the number of pathological SCQ scores increased with worsening of intellectual disability. With respect to ASD severity, the scores were equally distributed, indicating that the degree of ASD in TSC patients may have a large variability. By comparing the average SCQ scores with the clinical features, we found statistically significant correlations with epilepsy, seizure onset before age one year, spasms, mutations in TSC2, cognitive level, sleep disorders, and other psychiatric problems, but not with seizure frequency, tubers localization and gender. Conclusions Our study showed a prevalence of ASD of 40.5 %, confirming the higher risk for this disorder in patients with TSC. However, the severity seems to have a notable variability in TSC patients. Risk factors for ASD are epilepsy, infantile spams, and mutations in TSC2.
Collapse
Affiliation(s)
- Aglaia Vignoli
- Child Neuropsychiatry Unit - Epilepsy Center, AO San Paolo, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Francesca La Briola
- Child Neuropsychiatry Unit - Epilepsy Center, AO San Paolo, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Angela Peron
- Child Neuropsychiatry Unit - Epilepsy Center, AO San Paolo, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Katherine Turner
- Child Neuropsychiatry Unit - Epilepsy Center, AO San Paolo, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Chiara Vannicola
- Child Neuropsychiatry Unit - Epilepsy Center, AO San Paolo, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.
| | | | | | - Giulia Federica Scornavacca
- Child Neuropsychiatry Unit - Epilepsy Center, AO San Paolo, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Maria Paola Canevini
- Child Neuropsychiatry Unit - Epilepsy Center, AO San Paolo, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
14
|
Gipson TT, Poretti A, Thomas EA, Jenkins KT, Desai S, Johnston MV. Autism Phenotypes in Tuberous Sclerosis Complex: Diagnostic and Treatment Considerations. J Child Neurol 2015; 30:1871-6. [PMID: 26303410 DOI: 10.1177/0883073815600871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 07/15/2015] [Indexed: 12/19/2022]
Abstract
Tuberous sclerosis complex is a multisystem, chronic genetic condition characterized by systemic growth of benign tumors and often accompanied by epilepsy, autism spectrum disorders, and intellectual disability. Nonetheless, the neurodevelopmental phenotype of these patients is not often detailed. The authors describe 3 individuals with tuberous sclerosis complex who share common characteristics that can help to identify a distinct profile of autism spectrum disorder. These findings include typical cognitive development, expressive and pragmatic language deficits, and anxiety. The authors also describe features specific to tuberous sclerosis complex that require consideration before diagnosing an autism spectrum disorder. Identifying distinct profiles of autism spectrum disorder in tuberous sclerosis complex can help optimize treatment across the life span.
Collapse
Affiliation(s)
- Tanjala T Gipson
- Tuberous Sclerosis Center of Excellence, Kennedy Krieger Institute, Baltimore, MD, USA Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA The Clinical Trials Unit, Hugo Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrea Poretti
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily A Thomas
- Tuberous Sclerosis Center of Excellence, Kennedy Krieger Institute, Baltimore, MD, USA Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kosunique T Jenkins
- Tuberous Sclerosis Center of Excellence, Kennedy Krieger Institute, Baltimore, MD, USA Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Sonal Desai
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Michael V Johnston
- Tuberous Sclerosis Center of Excellence, Kennedy Krieger Institute, Baltimore, MD, USA Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA The Clinical Trials Unit, Hugo Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|