1
|
Dijkstra JM, Kuehn A, Sugihara E, Kondo Y. Exploring Fish Parvalbumins through Allergen Names and Gene Identities. Genes (Basel) 2024; 15:1337. [PMID: 39457461 PMCID: PMC11507022 DOI: 10.3390/genes15101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Parvalbumins are the main source of food allergies in fish meat, with each fish possessing multiple different parvalbumins. The naming convention of these allergens in terms of allergen codes (numbers) is species-specific. Allergen codes for parvalbumin isoallergens and allergen variants are based on sequence identities relative to the first parvalbumin allergen discovered in that particular species. This means that parvalbumins with similar allergen codes, such as catfish Pan h 1.0201 and redfish Seb m 1.0201, are not necessarily the most similar proteins, or encoded by the same gene. Here, we aim to elucidate the molecular basis of parvalbumins. We explain the complicated genetics of fish parvalbumins in an accessible manner for fish allergen researchers. Teleost or modern bony fish, which include most commercial fish species, have varying numbers of up to 22 parvalbumin genes. All have derived from ten parvalbumin genes in their common ancestor. We have named these ten genes "parvalbumin 1-to-10" (PVALB1-to-PVALB10), building on earlier nomenclature established for zebrafish. For duplicated genes, we use variant names such as, for example, "PVALB2A and PVALB2B". As illustrative examples of our gene identification system, we systematically analyze all parvalbumin genes in two common allergy-inducing species in Japan: red seabream (Pagrus major) and chum salmon (Oncorhynchus keta). We also provide gene identifications for known parvalbumin allergens in various fish species.
Collapse
Affiliation(s)
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg;
| | - Eiji Sugihara
- Laboratory of Genome Sequencing and Analysis, Open Facility Center, Fujita Health University, Toyoake 470-1192, Japan;
| | - Yasuto Kondo
- Department of Pediatrics, Fujita Health University Bantane Hospital, Nagoya 454-8509, Japan
| |
Collapse
|
2
|
Huang Y, Zhu W, Wu Y, Sun L, Li Q, Pramod SN, Wang H, Zhang Z, Lin H, Li Z. Development of an indirect competitive ELISA based on the common epitope of fish parvalbumin for its detection. Food Chem 2024; 455:139882. [PMID: 38824729 DOI: 10.1016/j.foodchem.2024.139882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
A common epitope (AGSFDHKKFFKACGLSGKST) of parvalbumin from 16 fish species was excavated using bioinformatics tools combined with the characterization of fish parvalbumin binding profile of anti-single epitope antibody in this study. A competitive enzyme-linked immunosorbent assay (ELISA) based on the common epitope was established with a limit of detection of 10.15 ng/mL and a limit of quantification of 49.29 ng/mL. The developed ELISA exhibited a narrow range (71% to 107%) of related cross-reactivity of 15 fish parvalbumin. Besides, the recovery, the coefficient of variations for the intra-assay and the inter-assay were 84.3% to 108.2%, 7.4% to 13.9% and 8.5% to 15.6%. Our findings provide a novel idea for the development of a broad detection method for fish allergens and a practical tool for the detection of parvalbumin of economic fish species in food samples.
Collapse
Affiliation(s)
- Yuhao Huang
- College of Food Science and Engineering, Ocean University of China, Sansha Road 1299, Qingdao, 266404, PR China
| | - Wenye Zhu
- College of Food Science and Engineering, Ocean University of China, Sansha Road 1299, Qingdao, 266404, PR China
| | - Yeting Wu
- College of Food Science and Engineering, Ocean University of China, Sansha Road 1299, Qingdao, 266404, PR China
| | - Lirui Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Ning Xia Road 308, Qingdao, 266071, PR China
| | - Qingli Li
- Department of Food and Drug Engineering, Shandong Vocational Animal Science and Veterinary College, Shengli East Street 88, Weifang, 261061, PR China
| | - Siddanakoppalu Narayana Pramod
- Department of Studies and Research in Biochemistry, Davangere University, Shivaganagotri, Davangere, 577007, Karnataka, India
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, Sansha Road 1299, Qingdao, 266404, PR China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, Sansha Road 1299, Qingdao, 266404, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Sansha Road 1299, Qingdao, 266404, PR China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Sansha Road 1299, Qingdao, 266404, PR China.
| |
Collapse
|
3
|
Tai J, Qiao D, Huang X, Hu H, Li W, Liang X, Zhang F, Lu Y, Zhang H. Structural Property, Immunoreactivity and Gastric Digestion Characteristics of Glycated Parvalbumin from Mandarin Fish ( Siniperca chuaisi) during Microwave-Assisted Maillard Reaction. Foods 2022; 12:foods12010052. [PMID: 36613268 PMCID: PMC9818276 DOI: 10.3390/foods12010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
This study was aimed to investigate the structural and immunological properties of parvalbumin from mandarin fish during the Maillard reaction. The microwave-assisted the Maillard reaction was optimized by orthogonal designed experiments. The results showed that the type of sugar and heating time had a significant effect on the Maillard reaction (p < 0.05). The SDS-PAGE analysis displayed that the molecular weight of parvalbumin in mandarin fish changed after being glycated with the Maillard reaction. The glycated parvalbumin was analyzed by Nano-LC-MS/MS and eleven glycation sites as well as five glycation groups were identified. By using the indirect competitive ELISA method, it was found that microwave heating gave a higher desensitization ability of mandarin fish parvalbumin than induction cooker did. In vitro gastric digestion experiments showed that microwave-heated parvalbumin was proved to be digested more easily than that cooked by induction cookers. The microwave-assisted Maillard reaction modified the structure of parvalbumin and reduced the immunoreactivity of parvalbumin of mandarin fish.
Collapse
Affiliation(s)
- Jingjing Tai
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Dan Qiao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xue Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huang Hu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Wanzheng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xinle Liang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Yanbin Lu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Hong Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Correspondence: ; Tel.: +86-138-5800-1588
| |
Collapse
|
4
|
Schrama D, Raposo de Magalhães C, Cerqueira M, Carrilho R, Revets D, Kuehn A, Engrola S, Rodrigues PM. Fish Processing and Digestion Affect Parvalbumins Detectability in Gilthead Seabream and European Seabass. Animals (Basel) 2022; 12:ani12213022. [PMID: 36359146 PMCID: PMC9654892 DOI: 10.3390/ani12213022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Consumption of aquatic food, including fish, accounts for 17% of animal protein intake. However, fish consumption might also result in several side-effects such as sneezing, swelling and anaphylaxis in sensitized consumers. Fish allergy is an immune reaction to allergenic proteins in the fish muscle, for instance parvalbumin (PV), considered the major fish allergen. In this study, we characterize PV in two economically important fish species for southern European aquaculture, namely gilthead seabream and European seabass, to understand its stability during in vitro digestion and fish processing. This information is crucial for future studies on the allergenicity of processed fish products. PVs were extracted from fish muscles, identified by mass spectrometry (MS), and detected by sandwich enzyme-linked immunosorbent assay (ELISA) after simulated digestion and various food processing treatments. Secondary structures were determined by circular dichroism (CD) after purification by anion exchange and gel filtration chromatography. In both species, PVs presented as α-helical and β-sheet structures, at room temperature, were shown to unfold at boiling temperatures. In European seabass, PV detectability decreased during the simulated digestion and after 240 min (intestinal phase) no detection was observed, while steaming showed a decrease (p < 0.05) in PVs detectability in comparison to raw muscle samples, for both species. Additionally, freezing (−20 °C) for up to 12 months continued to reduce the detectability of PV in tested processing techniques. We concluded that PVs from both species are susceptible to digestion and processing techniques such as steaming and freezing. Our study obtained preliminary results for further research on the allergenic potential of PV after digestion and processing.
Collapse
Affiliation(s)
- Denise Schrama
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Departamento de Ciências do Mar, da Terra e do Ambiente, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Cláudia Raposo de Magalhães
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Departamento de Ciências do Mar, da Terra e do Ambiente, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Marco Cerqueira
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Raquel Carrilho
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Departamento de Ciências do Mar, da Terra e do Ambiente, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Dominique Revets
- Department of Infection and Immunity, Luxembourg Institute of Health, 29, Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, 29, Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Sofia Engrola
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Pedro M. Rodrigues
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Correspondence:
| |
Collapse
|
5
|
Bakke M. A Comprehensive Analysis of ATP Tests: Practical Use and Recent Progress in the Total Adenylate Test for the Effective Monitoring of Hygiene. J Food Prot 2022; 85:1079-1095. [PMID: 35503956 DOI: 10.4315/jfp-21-384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/26/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Rapid hygiene monitoring tests based on the presence of ATP have been widely used in the food industry to ensure that adequate cleanliness is maintained. In this study, the practical applications and limitations of these tests and recent technological progress for facilitating more accurate control were evaluated. The presence of ATP on a surface indicates improper cleaning and the presence of contaminants, including organic debris and bacteria. Food residues are indicators of insufficient cleaning and are direct hazards because they may provide safe harbors for bacteria, provide sources of nutrients for bacterial growth, interfere with the antimicrobial activity of disinfectants, and support the formation of biofilms. Residues of allergenic foods on a surface may increase the risk of allergen cross-contact. However, ATP tests cannot detect bacteria or allergenic proteins directly. To ensure efficient use of commercially available ATP tests, in-depth knowledge is needed regarding their practical applications, methods for determining pass-fail limits, and differences in performance. Conventional ATP tests have limitations due to possible hydrolysis of ATP to ADP and AMP, which further hinders the identification of food residues. To overcome this problem, a total adenylate test was developed that could detect ATP+ADP+AMP (A3 test). The A3 test is suitable for the detection of adenylates from food residues and useful for verification of hygiene levels. The A3 test in conjunction with other methods, such as microorganism culture and food allergen tests, may be a useful strategy for identifying contamination sources and facilitating effective hygiene management. HIGHLIGHTS
Collapse
Affiliation(s)
- Mikio Bakke
- Kikkoman Biochemifa Company, Marketing & Planning Division, 2-1-1 Nishi-shinbashi, Minato-ku, Tokyo 105-0003, Japan
| |
Collapse
|
6
|
Dong X, Raghavan V. A comprehensive overview of emerging processing techniques and detection methods for seafood allergens. Compr Rev Food Sci Food Saf 2022; 21:3540-3557. [PMID: 35676763 DOI: 10.1111/1541-4337.12987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022]
Abstract
Seafood is rich in nutrients and plays a significant role in human health. However, seafood allergy is a worldwide health issue by inducing adverse reactions ranging from mild to life-threatening in seafood-allergic individuals. Seafood consists of fish and shellfish, with the major allergens such as parvalbumin and tropomyosin, respectively. In the food industry, effective processing techniques are applied to seafood allergens to lower the allergenicity of seafood products. Also, sensitive and rapid allergen-detection methods are developed to identify and assess allergenic ingredients at varying times. This review paper provides an overview of recent advances in processing techniques (thermal, nonthermal, combined [hybrid] treatments) and main allergen-detection methods for seafood products. The article starts with the seafood consumption and classification, proceeding with the prevalence and symptoms of seafood allergy, followed by a description of biochemical characteristics of the major seafood allergens. As the topic is multidisciplinary in scope, it is intended to provide information for further research essential for food security and safety.
Collapse
Affiliation(s)
- Xin Dong
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
7
|
Jiang X, Zhao Y, Tang C, Appelbaum M, Rao Q. Aquatic food animals in the United States: Status quo and challenges. Compr Rev Food Sci Food Saf 2022; 21:1336-1382. [PMID: 35150203 DOI: 10.1111/1541-4337.12923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/29/2022]
Abstract
This review summarizes (1) the U.S. status quo for aquatic food animal production and marketing; (2) major food safety and quality issues/concerns for aquatic food animals in the United States, including fish misbranding, finfish/shellfish allergies, pathogens, toxins and harmful residues, microplastics, and genetically engineered salmon; and (3) various U.S. regulations, guidances, and detection methods for the surveillance of fishery products. Overall, fish misbranding is the biggest challenge in the United States due to the relatively low inspection rate. In addition, due to the regulatory differences among countries, illegal animal drugs and/or pesticide residues might also be identified in imported aquatic food animals. Future regulatory and research directions could focus on further strengthening international cooperation, enhancing aquatic food animal inspection, and developing reliable, sensitive, and highly efficient detection methods.
Collapse
Affiliation(s)
- Xingyi Jiang
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Yaqi Zhao
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Chunya Tang
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Megan Appelbaum
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Qinchun Rao
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
8
|
Jiang S, Ma X, Li T, Zhu C, You X. Developing Single Nucleotide Polymorphisms for Identification of Cod Products by RAD-Seq. Animals (Basel) 2020; 10:E423. [PMID: 32138187 PMCID: PMC7142540 DOI: 10.3390/ani10030423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 11/30/2022] Open
Abstract
The increase in the rate of seafood fraud, particularly in the expensive fishes, forces us to verify the identity of marine products. Meanwhile, the definition of cod lacks consistency at the international level, as few standards and effective application methods are capable of accurately detecting cod species. Genetic fingerprinting is important for both certifying authenticity and traceability of fish species. In this study, we developed a method that combines DNA barcoding and the restriction-site associated DNA sequencing (RAD-Seq) approach for the identification of cod products. We first obtained 6941 high-quality single nucleotide polymorphism (SNP)s from 65.6 gigabases (Gb) of RAD-Seq raw data, and two sequences that contain SNPs were finally used to successfully identify three different cod product species, which are Atlantic cod (Gadus morhua), Greenland turbot (Reinhardtius hippoglossoides), and Patagonian toothfish (Dissostichus eleginoides). This SNP-based method will help us to identify the products, which are sold under the name of "Xue Yu" (Cod) in China, and works in parallel with existing fish identification techniques to establish an efficient framework to detect and prevent fraud at all points of the seafood supply chain.
Collapse
Affiliation(s)
- Shoujia Jiang
- BGI Zhenjiang Detection Co., LTD, Zhenjiang 212132, China; (S.J.); (X.M.); (T.L.)
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Xingyu Ma
- BGI Zhenjiang Detection Co., LTD, Zhenjiang 212132, China; (S.J.); (X.M.); (T.L.)
| | - Tao Li
- BGI Zhenjiang Detection Co., LTD, Zhenjiang 212132, China; (S.J.); (X.M.); (T.L.)
| | - Changqing Zhu
- Childhood Food Institute, School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Xinxin You
- BGI Zhenjiang Detection Co., LTD, Zhenjiang 212132, China; (S.J.); (X.M.); (T.L.)
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| |
Collapse
|