1
|
Zhang Y, Wang Y, Liu R, Fei Z, Fan X, Jiang J, Sun L, Meng X, Liu C. Antibody array-based proteome approach reveals proteins involved in grape seed development. PLANT PHYSIOLOGY 2024; 195:462-478. [PMID: 38395446 PMCID: PMC11060674 DOI: 10.1093/plphys/kiad682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/16/2023] [Indexed: 02/25/2024]
Abstract
Grape (Vitis vinifera) is one of the most widely cultivated fruits globally, primarily used for processing and fresh consumption. Seedless grapes are favored by consumers for their convenience, making the study of seedlessness a subject of great interest to scientists. To identify regulators involved in this process in grape, a monoclonal antibody (mAb)-array-based proteomics approach, which contains 21,120 mAbs, was employed for screening proteins/antigens differentially accumulated in grape during development. Differences in antigen signals were detected between seeded and seedless grapes revealing the differential accumulation of 2,587 proteins. After immunoblotting validation, 71 antigens were further immunoprecipitated and identified by mass spectrometry (MS). An in planta protein-protein interaction (PPI) network of those differentially accumulated proteins was established using mAb antibody by immunoprecipitation (IP)-MS, which reveals the alteration of pathways related to carbon metabolism and glycolysis. To validate our result, a seedless-related protein, DUF642 domain-containing protein (VvDUF642), which is functionally uncharacterized in grapes, was ectopically overexpressed in tomato (Solanum lycopersicum "MicroTom") and led to a reduction in seed production. PPI network indicated that VvDUF642 interacts with pectin acetylesterase (VvPAE) in grapes, which was validated by BiFC and Co-IP. As anticipated, overexpression of VvPAE substantially reduced seed production in tomato. Moreover, S. lycopersicum colourless non-ripening expression was altered in VvDUF642- and VvPAE-overexpressing plants. Taken together, we provided a high-throughput method for the identification of proteins involved in the seed formation process. Among those, VvDUF642 and VvPAE are potential targets for breeding seedless grapes and other important fruits in the future.
Collapse
Affiliation(s)
- Ying Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou 450009, China
- Chuxiong Yunguo Agriculture Technology Research Institute (Yunnan), Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Henan 450008, China
| | - Yiming Wang
- The Key Laboratory of Plant Immunity, Collage of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruitao Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou 450009, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY 14853-1801, USA
| | - Xiucai Fan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou 450009, China
| | - Jianfu Jiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou 450009, China
| | - Lei Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou 450009, China
| | - Xun Meng
- School of Life Science, Northwest University, Xi’an, Shanxi 710069, China
- Abmart, 333 Guiping Road, Shanghai 200033, China
| | - Chonghuai Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou 450009, China
| |
Collapse
|
2
|
Fernandes Santos CA, Rodrigues da Costa S, Silva Boiteux L, Grattapaglia D, Silva-Junior OB. Genetic associations with resistance to Meloidogyne enterolobii in guava (Psidium sp.) using cross-genera SNPs and comparative genomics to Eucalyptus highlight evolutionary conservation across the Myrtaceae. PLoS One 2022; 17:e0273959. [PMID: 36322533 PMCID: PMC9629644 DOI: 10.1371/journal.pone.0273959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Tropical fruit tree species constitute a yet untapped supply of outstanding diversity of taste and nutritional value, barely developed from the genetics standpoint, with scarce or no genomic resources to tackle the challenges arising in modern breeding practice. We generated a de novo genome assembly of the Psidium guajava, the super fruit “apple of the tropics”, and successfully transferred 14,268 SNP probesets from Eucalyptus to Psidium at the nucleotide level, to detect genomic loci linked to resistance to the root knot nematode (RKN) Meloidogyne enterolobii derived from the wild relative P. guineense. Significantly associated loci with resistance across alternative analytical frameworks, were detected at two SNPs on chromosome 3 in a pseudo-assembly of Psidium guajava genome built using a syntenic path approach with the Eucalyptus grandis genome to determine the order and orientation of the contigs. The P. guineense-derived resistance response to RKN and disease onset is conceivably triggered by mineral nutrients and phytohormone homeostasis or signaling with the involvement of the miRNA pathway. Hotspots of mapped resistance quantitative trait loci and functional annotation in the same genomic region of Eucalyptus provide further indirect support to our results, highlighting the evolutionary conservation of genomes across genera of Myrtaceae in the adaptation to pathogens. Marker assisted introgression of the resistance loci mapped should accelerate the development of improved guava cultivars and hybrid rootstocks.
Collapse
Affiliation(s)
| | - Soniane Rodrigues da Costa
- Graduate program in Genetic Resources, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | | | - Dario Grattapaglia
- Embrapa Genetic Resources and Biotechnology (CENARGEN), Brasília, Distrito Federal, Brazil
- * E-mail:
| | | |
Collapse
|
3
|
Cruz-Valderrama JE, Gómez-Maqueo X, Salazar-Iribe A, Zúñiga-Sánchez E, Hernández-Barrera A, Quezada-Rodríguez E, Gamboa-deBuen A. Overview of the Role of Cell Wall DUF642 Proteins in Plant Development. Int J Mol Sci 2019; 20:E3333. [PMID: 31284602 PMCID: PMC6651502 DOI: 10.3390/ijms20133333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023] Open
Abstract
The DUF642 protein family is found exclusively in spermatophytes and is represented by 10 genes in Arabidopsis and in most of the 24 plant species analyzed to date. Even though the primary structure of DUF642 proteins is highly conserved in different spermatophyte species, studies of their expression patterns in Arabidopsis have shown that the spatial-temporal expression pattern for each gene is specific and consistent with the phenotypes of the mutant plants studied so far. Additionally, the regulation of DUF642 gene expression by hormones and environmental stimuli was specific for each gene, showing both up- and down-regulation depending of the analyzed tissue and the intensity or duration of the stimuli. These expression patterns suggest that the DUF642 genes are involved throughout the development and growth of plants. In general, changes in the expression patterns of DUF642 genes can be related to changes in pectin methyl esterase activity and/or to changes in the degree of methyl-esterified homogalacturonans during plant development in different cell types. Thus, the regulation of pectin methyl esterases mediated by DUF642 genes could contribute to the regulation of the cell wall properties during plant growth.
Collapse
Affiliation(s)
| | - Ximena Gómez-Maqueo
- Instituto de Ecología, Universidad Nacional Autónoma de México. Mexico City 04510, Mexico
| | - Alexis Salazar-Iribe
- Instituto de Ecología, Universidad Nacional Autónoma de México. Mexico City 04510, Mexico
| | - Esther Zúñiga-Sánchez
- Instituto de Ecología, Universidad Nacional Autónoma de México. Mexico City 04510, Mexico
| | | | - Elsa Quezada-Rodríguez
- Instituto de Ecología, Universidad Nacional Autónoma de México. Mexico City 04510, Mexico
| | | |
Collapse
|
4
|
Salazar-Iribe A, Cruz-Valderrama JE, Jímenez-Durán K, Gómez-Maqueo X, Gamboa-deBuen A. BIIDXI, a DUF642 cell wall protein, is involved in hypocotyl growth via auxin efflux. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:105-109. [PMID: 30253266 DOI: 10.1016/j.jplph.2018.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Auxin is involved in hypocotyl elongation in response to different environmental factors. BIIDXI is a cell wall DUF642 protein that participates in the regulation of the degree of pectin-methylesterification of the cell wall in different tissues, including hypocotyls. Under continuous light, bdx-1 seedlings presented longer hypocotyls than those of WT, while BIIDXI-overexpressed hypocotyls were auxin resistant. Auxin accumulation was observed in epidermal cells from bdx-1 hypocotyls, and the distribution pattern of PIN1 proteins differed. Moreover, the gravitropic response of bdx-1, a process that is highly dependent on auxin flux, was increased. In this study, we determined that BIIDXI is involved in hypocotyl elongation through the regulation of auxin flux.
Collapse
Affiliation(s)
- Alexis Salazar-Iribe
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria CP. 04510, Ciudad de México, México
| | - José Erik Cruz-Valderrama
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria CP. 04510, Ciudad de México, México
| | - Karina Jímenez-Durán
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria CP. 04510, Ciudad de México, México
| | - Ximena Gómez-Maqueo
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria CP. 04510, Ciudad de México, México
| | - Alicia Gamboa-deBuen
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria CP. 04510, Ciudad de México, México.
| |
Collapse
|
5
|
Cruz-Valderrama JE, Jiménez-Durán K, Zúñiga-Sánchez E, Salazar-Iribe A, Márquez-Guzmán J, Gamboa-deBuen A. Degree of pectin methyl esterification in endosperm cell walls is involved in embryo bending in Arabidopsis thaliana. Biochem Biophys Res Commun 2017; 495:639-645. [PMID: 29137987 DOI: 10.1016/j.bbrc.2017.11.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 01/24/2023]
Abstract
The endosperm is a transitory structure involved in proper embryo elongation. The cell walls of mature seed endosperm are generally composed of a uniform distribution of cellulose, unesterified homogalacturonans, and arabinans. Recent studies suggest that changes in cell wall properties during endosperm development could be related to embryo growth. The degree of methyl esterification of homogalacturonans may be involved in this endosperm tissue remodelling. The relevance of the degree of homogalacturonan methyl esterification during seed development was determined by immunohistochemical analyses using a panel of probes with specificity for homogalaturonans with different degrees of methyl esterification. Low-esterified and un-esterified homogalacturonans were abundant in endosperm cells during embryo bending and were also detected in mature embryos. BIDXII (BDX) could be involved in seed development, because bdx-1 mutants had misshapen embryos. The methyl esterification pattern described for WT seeds was different during bdx-1 seed development; un-esterified homogalacturonans were scarcely present in the cell walls of endosperm in bending embryos and mature seeds. Our results suggested that the degree of methyl esterification of homogalacturonans in the endosperm cell wall may be involved in proper embryo development.
Collapse
Affiliation(s)
- José E Cruz-Valderrama
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP.04510, CDMX, Mexico
| | - Karina Jiménez-Durán
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP.04510, CDMX, Mexico
| | - Esther Zúñiga-Sánchez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP.04510, CDMX, Mexico
| | - Alexis Salazar-Iribe
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP.04510, CDMX, Mexico
| | - Judith Márquez-Guzmán
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP.04510, CDMX, Mexico
| | - Alicia Gamboa-deBuen
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP.04510, CDMX, Mexico.
| |
Collapse
|