1
|
Amin HA, Younes HA, Shafie RM, Fathallah MM. Molecular characterization and evolution of the resident population of some alfalfa mosaic virus (AMV) isolates in Egypt. BMC Microbiol 2023; 23:261. [PMID: 37723462 PMCID: PMC10506327 DOI: 10.1186/s12866-023-03003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/04/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Alfalfa mosaic virus (AMV) is an important virus affecting many vegetable crops in Egypt. In this study, virus isolates were collected from naturally infected potato, tomato, alfalfa and clover plants that showed suspected symptoms of AMV in different locations of Beheira and Alexandria governorates during the 2019-2020 growing season. The relative incidence of the virus ranged from 11-25% based on visual observations of symptoms and ELISA testing. A total of 41 samples were tested by ELISA using polyclonal antisera for AMV. Four AMV isolates collected from different host plants, named AM1 from potato, AM2 from tomato, AM3 from alfalfa and AM4 from alfalfa, were maintained on Nicotiana glutinosa plants for further characterization of AMV. RESULTS Electron micrographs of the purified viral preparation showed spheroidal particles with a diameter of 18 nm and three bacilliform particles with lengths of roughly 55, 68, and 110 nm and diameters identical to those of the spheroidal particles. The CP gene sequence comparisons of four AMV isolates (AM1, AM2, AM3 and AM4) showed the highest nucleotide identity of 99.7% with the Gomchi isolate from South Korea infecting Gomchi (Ligularia fischeri) plants. Phylogenetic analysis showed that the present isolates were grouped together into a distinct separate clade (GPI) along with the Gomchi isolate from South Korea. Similarly, the deduced amino acid sequence comparisons of Egyptian AMV isolates revealed that amino acids Q29, S30, T34, V92 and V175 were conserved among the Egyptian isolates in GPI. CONCLUSION The present study found strong evolutionary evidence for the genetic diversity of AMV isolates by the identification of potential recombination events involving parents from GPI and GPII lineages. Additionally, the study found that Egyptian AMV isolates are genetically stable with low nucleotide diversity. Genetic analysis of the AMV population suggested that the AMV populations differ geographically, and AMV CP gene is under mild purifying selection. Furthermore, the study proposed that the Egyptian AMV population had common evolutionary ancestors with the Asian AMV population. Antioxidant enzymes activity was assessed on N. glutinosa plants in response to infection with each AMV isolate studied, and the results revealed that the enzyme activity varied.
Collapse
Affiliation(s)
- Hala A Amin
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), P.O. Box 12619, Giza, Egypt.
| | - H A Younes
- Agricultural Botany Department, Faculty of Agriculture, Alexandria University, Saba Basha, Alexandria, Egypt
| | - Radwa M Shafie
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), P.O. Box 12619, Giza, Egypt
| | - Mervat M Fathallah
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), P.O. Box 12619, Giza, Egypt
| |
Collapse
|
2
|
Abdelkhalek A, Bashir S, El-Gendi H, Elbeaino T, El-Rahim WMA, Moawad H. Protective Activity of Rhizobium leguminosarum bv. viciae Strain 33504-Mat209 against Alfalfa Mosaic Virus Infection in Faba Bean Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2658. [PMID: 37514271 PMCID: PMC10384385 DOI: 10.3390/plants12142658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
The application of Rhizobium spp., nitrogen-fixing plant growth-promoting rhizobacteria, as biocontrol agents to enhance systemic disease resistance against plant viral infections is a promising approach towards achieving sustainable and eco-friendly agriculture. However, their potential as antivirals and biocontrol agents is less studied. Herein, the capability of Rhizobium leguminosarum bv. viciae strain 33504-Mat209 was evaluated to promote plant growth and enhance faba bean systemic resistance against alfalfa mosaic virus (AMV) infection. Under greenhouse conditions, the soil inoculation with 3504-Mat209 resulted in notable improvements in growth and an increase in chlorophyll content. This led to a marked decrease in the disease incidence, severity, and viral accumulation level by 48, 74, and 87%, respectively. The protective effect of 33504-Mat209 was linked to significant decreases in non-enzymatic oxidative stress indicators, specifically H2O2 and MDA. Additionally, there were significant increases in the activity of reactive oxygen species scavenging enzymes, such as peroxidase (POX) and polyphenol oxidase (PPO), compared to the virus treatment. The elevated transcript levels of polyphenolic pathway genes (C4H, HCT, C3H, and CHS) and pathogenesis-related protein-1 were also observed. Out of 18 detected compounds, HPLC analysis revealed that 33504-Mat209-treated plants increased the accumulation of several compounds, such as gallic acid, chlorogenic acid, catechin, pyrocatechol, daidzein, quercetin, and cinnamic acid. Therefore, the ability of 33504-Mat209 to promote plant growth and induce systemic resistance against AMV infection has implications for utilizing 33504-Mat209 as a fertilizer and biocontrol agent. This could potentially introduce a new strategy for safeguarding crops, promoting sustainability, and ensuring environmental safety in the agricultural sector. As far as we know, this is the first study of biological control of AMV mediated by Rhizobium spp. in faba bean plants.
Collapse
Affiliation(s)
- Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab City 21934, Egypt
| | - Shimaa Bashir
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab City 21934, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El Arab City 21934, Egypt
| | - Toufic Elbeaino
- Istituto Agronomico Mediterraneo di Bari (CIHEAM-IAMB), Via Ceglie 9, Valenzano, 70010 Bari, Italy
| | - Wafaa M Abd El-Rahim
- Agriculture Microbiology Department, National Research Centre, Cairo 12622, Egypt
| | - Hassan Moawad
- Agriculture Microbiology Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
3
|
Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. Recombinase Polymerase Amplification Assay with and without Nuclease-Dependent-Labeled Oligonucleotide Probe. Int J Mol Sci 2021; 22:11885. [PMID: 34769313 PMCID: PMC8584857 DOI: 10.3390/ijms222111885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/18/2023] Open
Abstract
The combination of recombinase polymerase amplification (RPA) and lateral flow test (LFT) is a strong diagnostic tool for rapid pathogen detection in resource-limited conditions. Here, we compared two methods generating labeled RPA amplicons following their detection by LFT: (1) the basic one with primers modified with different tags at the terminals and (2) the nuclease-dependent one with the primers and labeled oligonucleotide probe for nuclease digestion that was recommended for the high specificity of the assay. Using both methods, we developed an RPA-LFT assay for the detection of worldwide distributed phytopathogen-alfalfa mosaic virus (AMV). A forward primer modified with fluorescein and a reverse primer with biotin and fluorescein-labeled oligonucleotide probe were designed and verified by RPA. Both labeling approaches and their related assays were characterized using the in vitro-transcribed mRNA of AMV and reverse transcription reaction. The results demonstrated that the RPA-LFT assay based on primers-labeling detected 103 copies of RNA in reaction during 30 min and had a half-maximal binding concentration 22 times lower than probe-dependent RPA-LFT. The developed RPA-LFT was successfully applied for the detection of AMV-infected plants. The results can be the main reason for choosing simple labeling with primers for RPA-LFT for the detection of other pathogens.
Collapse
Affiliation(s)
| | | | | | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (A.V.I.); (I.V.S.); (A.V.Z.)
| |
Collapse
|
4
|
Li J, Gu H, Liu Y, Wei S, Hu G, Wang X, McNeill MR, Ban L. RNA-seq reveals plant virus composition and diversity in alfalfa, thrips, and aphids in Beijing, China. Arch Virol 2021; 166:1711-1722. [PMID: 33866416 DOI: 10.1007/s00705-021-05067-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/22/2021] [Indexed: 11/27/2022]
Abstract
Viruses are widespread in alfalfa (Medicago sativa L.), representing a key limitation to the production of this important forage plant. Understanding the diversity of plant viruses in alfalfa and their potential vectors will play an important role in management to minimize the emergence, transmission, and impact of viruses. Next-generation sequencing (NGS) targeting the transcriptome was applied to monitor the virus communities in alfalfa and its two main pests, thrips (Odontothrips loti Haliday and Frankliniella intonsa Trybom) and aphids (Acyrthosiphon pisum Mordvilko and Therioaphis trifolii Monell). A comparison of transcriptome datasets with reference databases revealed the presence of eight candidate viruses. Five out of the eight viruses, alfalfa mosaic virus (AMV), Medicago sativa alphapartitivirus 1 (MsAPV1), Medicago sativa deltapartitivirus 1 (MsDPV1), Medicago sativa amalgavirus 1 (MsAV1), and bean yellow mosaic virus (BYMV), were confirmed by RT-PCR. We identified and determined the presence of four RNA viruses from alfalfa samples, two viruses (AMV and MsAPV1) from thrips samples, and one virus (BYMV) from T. trifolii. All sequences isolated from the insect samples were more than 95% identical to the sequences from the alfalfa samples or to sequences from the National Center for Biotechnology Information (NCBI) reference database. The RNA-seq results of this study suggest that AMV and MsAPV1 are the predominant RNA plant viruses infecting alfalfa and that they are carried by the major pests. This lays the foundation for future research on the vectors and transmission of these viruses. In addition, the sequence data have enabled the assembly of the first complete genome sequence of MsDPV1 from alfalfa.
Collapse
Affiliation(s)
- Jin Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Hongchang Gu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanqi Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Shuhua Wei
- Ningxia Academy of Agriculture and Forestry Sciences, Institute of Plant Protection, Yinchuan, Ningxia, China
| | - Guixin Hu
- Pratacultural College, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xuemin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mark Richard McNeill
- AgResearch, Resilient Agriculture Innovative Centre of Excellence, Lincoln, New Zealand
| | - Liping Ban
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
5
|
Sofy AR, Sofy MR, Hmed AA, Dawoud RA, Refaey EE, Mohamed HI, El-Dougdoug NK. Molecular Characterization of the Alfalfa mosaic virus Infecting Solanum melongena in Egypt and the Control of Its Deleterious Effects with Melatonin and Salicylic Acid. PLANTS 2021; 10:plants10030459. [PMID: 33670990 PMCID: PMC7997183 DOI: 10.3390/plants10030459] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022]
Abstract
During the spring of 2019, distinct virus-like symptoms were observed in the Kafr El-Sheikh Governorate in Egypt in naturally infected eggplants. Leaves of affected plants showed interveinal leaf chlorosis, net yellow, chlorotic sectors, mottling, blisters, vein enation, necrotic intervention, and narrowing symptoms. The Alfalfa mosaic virus (AMV) was suspected of to be involved in this disease. Forty plant samples from symptomatic eggplants and 10 leaf samples with no symptoms were collected. The samples were tested by double antibody sandwich ELISA (DAS-ELISA) using AMV-IgG. Six of the 40 symptomatic leaf samples tested positive for AMV, while, DAS-ELISA found no AMV in the 10 leaf samples without symptoms. The AMV Egyptian isolate (AMV-Eggplant-EG) was biologically isolated from the six positive samples tested by DAS-ELISA and from the similar local lesions induced on Chenopodium amaranticolor and then re-inoculated in healthy Solanum melongena as a source of AMV-Eggplant-EG and confirmed by DAS-ELISA. Reverse transcription polymerase chain reaction (RT-PCR) assay with a pair of primers specific for coat protein (CP) encoding RNA 3 of AMV yielded an amplicon of 666 bp from infected plants of Solanum melongena with AMV-Eggplant-EG. The amplified PCR product was cloned and sequenced. Analysis of the AMV-Eggplant-EG sequence revealed 666 nucleotides (nt) of the complete CP gene (translating 221 amino acid (aa) residues). Analysis of phylogeny for nt and deduced aa sequences of the CP gene using the maximum parsimony method clustered AMV-Eggplant-EG in the lineage of Egyptian isolates (shark-EG, mans-EG, CP2-EG, and FRE-EG) with a high bootstrap value of 88% and 92%, respectively. In addition to molecular studies, melatonin (MTL) and salicylic acid (SA) (100 μM) were used to increase the resistance of eggplant to AMV- infection. Foliar spray with MLT and SA caused a significant increase in the morphological criteria (shoot, root length, number of leaves, leaf area, and leaf biomass), chlorophyll and carotenoid content, antioxidant enzymes, and gene expression of some enzymes compared to the infected plants. On the other hand, treatment with MLT and SA reduced the oxidative damage caused by AMV through the reduction of hydrogen peroxide, superoxide anions, hydroxyl radicals, and malondialdehyde. In conclusion, MLT and SA are eco-friendly compounds and can be used as antiviral compounds.
Collapse
Affiliation(s)
- Ahmed R. Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (A.A.H.); (E.E.R.)
- Correspondence: (A.R.S.); (M.R.S.)
| | - Mahmoud R. Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (A.A.H.); (E.E.R.)
- Correspondence: (A.R.S.); (M.R.S.)
| | - Ahmed A. Hmed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (A.A.H.); (E.E.R.)
| | - Rehab A. Dawoud
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
- Department of Biology, Faculty of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Ehab E. Refaey
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (A.A.H.); (E.E.R.)
| | - Heba I. Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo 11566, Egypt;
| | - Noha K. El-Dougdoug
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt;
| |
Collapse
|
6
|
Shahgolzari M, Pazhouhandeh M, Milani M, Fiering S, Khosroushahi AY. Alfalfa mosaic virus nanoparticles-based in situ vaccination induces antitumor immune responses in breast cancer model. Nanomedicine (Lond) 2021; 16:97-107. [PMID: 33442986 DOI: 10.2217/nnm-2020-0311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Preclinical and clinical studies show that local and systemic antitumor efficacy is achievable by in situ vaccination (ISV) using plant virus nanoparticles in which immunostimulatory reagents are directly administered into the tumor rather than systemically. Aim: To investigate a minimally studied plant virus nanoparticle, alfalfa mosaic virus (AMV), for ISV treatment of 4T1, the very aggressive and metastatic murine triple-negative breast cancer model. Materials & methods: AMV nanoparticles were propagated and characterized. Their treatment impact on in vivo tumors were analyzed using determination of inherent immunogenicity, cytokine analysis, western blotting analysis and immunohistochemistry methodologies. Results: AMV used as an ISV significantly slowed down tumor progression and prolonged survival through immune mechanisms (p < 0.001). Conclusion: Mechanistic studies show that ISV with AMV increases costimulatory molecules, inflammatory cytokines and immune effector cell infiltration and downregulates immune-suppressive molecules.
Collapse
Affiliation(s)
- Mehdi Shahgolzari
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maghsoud Pazhouhandeh
- Biotechnology Dept. Agriculture Fac. Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Morteza Milani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Steven Fiering
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03756, USA.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth & Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Bacillus licheniformis strain POT1 mediated polyphenol biosynthetic pathways genes activation and systemic resistance in potato plants against Alfalfa mosaic virus. Sci Rep 2020; 10:16120. [PMID: 32999301 PMCID: PMC7527447 DOI: 10.1038/s41598-020-72676-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/31/2020] [Indexed: 01/31/2023] Open
Abstract
Alfalfa mosaic virus (AMV) is a worldwide distributed virus that has a very wide host range and causes significant crop losses of many economically important crops, including potato (Solanum tuberosum L.). In this study, the antiviral activity of Bacillus licheniformis strain POT1 against AMV on potato plants was evaluated. The dual foliar application of culture filtrate (CF), 24 h before and after AMV-inoculation, was the most effective treatment that showed 86.79% reduction of the viral accumulation level and improvement of different growth parameters. Moreover, HPLC analysis showed that a 20 polyphenolic compound was accumulated with a total amount of 7,218.86 and 1606.49 mg/kg in POT1-treated and non-treated plants, respectively. Additionally, the transcriptional analysis of thirteen genes controlling the phenylpropanoid, chlorogenic acid and flavonoid biosynthetic pathways revealed that most of the studied genes were induced after POT1 treatments. The stronger expression level of F3H, the key enzyme in flavonoid biosynthesis in plants, (588.133-fold) and AN2, anthocyanin 2 transcription factor, (97.005-fold) suggested that the accumulation flavonoid, especially anthocyanin, might play significant roles in plant defense against viral infection. Gas chromatography-mass spectrometry (GC-MS) analysis showed that pyrrolo[1,2-a]pyrazine-1,4-dione is the major compound in CF ethyl acetate extract, that is suggesting it acts as elicitor molecules for induction of systemic acquired resistance in potato plants. To our knowledge, this is the first study of biological control of AMV mediated by PGPR in potato plants.
Collapse
|
8
|
Abdel Aleem EE, Taha RM, Fattouh FA. Biodiversity and full genome sequence of potato viruses Alfalfa mosaic virus and potato leaf roll virus in Egypt. Z NATURFORSCH C 2018; 73:423-438. [PMID: 30067514 DOI: 10.1515/znc-2018-0033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/12/2018] [Indexed: 11/15/2022]
Abstract
Solanum tuberosum (potato) is the second most important vegetable crop in Egypt. It is locally consumed, manufactured or supplied for export to Europe and other Arab countries. Potato is subject to infection by a number of plant viruses, which affect its yield and quality. Potato virus Y (PVY), potato leaf roll virus (PLRV), and Alfalfa mosaic virus (AMV) were detected in major potato-growing areas surveyed. Multiplex-RT-PCR assay was used for the detection of these three viruses in one reaction using three specific primer pairs designed to amplify genomic parts of each virus (1594 bp for PLRV, 795 bp for AMV, 801 bp for PVY). All three viruses were detected in a single reaction mixture in naturally infected field-grown potatoes. Multiplex RT-PCR improved sensitivity necessary for the early detection of infection. Incidence of single, double, or triple infection has been recorded in some locations. Full-length sequencing has been performed for an Egyptian FER isolate of PLRV. Through phylogenetic analysis, it was shown to occupy the same clade with isolate JokerMV10 from Germany. Complete nucleotide sequence of an Egyptian FER isolate of AMV and phylogenetic analysis was also performed; we propose that it is a new distinct strain of AMV belonging to a new subgroup IIC. This is the first complete nucleotide sequence of an Egyptian isolate of AMV. Genetic biodiversity of devastating potato viruses necessitates continuous monitoring of new genetic variants of such viruses.
Collapse
Affiliation(s)
- Engy E Abdel Aleem
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt, Phone: (+203) 3922918 - Ext.: 1098, Mobile: (+2) 01002804461
| | - Radwa M Taha
- Botany Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Faiza A Fattouh
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Al-Shahwan I, Abdalla O, Al-Saleh M, Amer M. Detection of new viruses in alfalfa, weeds and cultivated plants growing adjacent to alfalfa fields in Saudi Arabia. Saudi J Biol Sci 2017; 24:1336-1343. [PMID: 28855829 PMCID: PMC5562474 DOI: 10.1016/j.sjbs.2016.02.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/16/2016] [Accepted: 02/21/2016] [Indexed: 11/27/2022] Open
Abstract
A total of 1368 symptomatic plant samples showing different virus-like symptoms such as mottling, chlorosis, mosaic, yellow mosaic, vein clearing and stunting were collected from alfalfa, weed and cultivated plant species growing in vicinity of alfalfa fields in five principal regions of alfalfa production in Saudi Arabia. DAS-ELISA test indicated occurrence of 11 different viruses in these samples, 10 of which were detected for the first time in Saudi Arabia. Eighty percent of the alfalfa samples and 97.5% of the weed and cultivated plants samples were found to be infected with one or more of these viruses. Nine weed plant species were found to harbor these viruses namely, Sonchus oleraceus, Chenopodium spp., Hibiscus spp., Cichorium intybus, Convolvulus arvensis, Malva parviflora, Rubus fruticosus, Hippuris vulgaris, and Flaveria trinervia. These viruses were also detected in seven cultivated crop plants growing adjacent to the alfalfa fields including Vigna unguiculata, Solanum tuberosum, Solanum melongena, Phaseolus vulgaris, Cucurbita maxima, Capsicum annuum, and Vicia faba. The newly reported viruses together with their respective percent of detection in alfalfa, and in both weeds and cultivated crop plant species together were as follows: Bean leaf roll virus (BLRV) {12.5 and 4.5%}, Lucerne transient streak virus (LTSV) {2.9 and 3.5%}, Bean yellow mosaic virus (BYMV) {1.4 and 4.5%}, Bean common mosaic virus (BCMV) {1.2 and 4.5%}, Red clover vein mosaic virus (RCVMV) {1.2 and 4%}, White clover mosaic virus (WCIMV) {1.0 and 5%}, Cucumber mosaic virus (CMV) {0.8 and 3%}, Pea streak virus (PeSV) {0.4 and 4.5%} and Tobacco streak virus (TSV) {0.3 and 2.5%}. Alfalfa mosaic virus (AMV), the previously reported virus in alfalfa, had the highest percentage of detection in alfalfa accounting for 58.4% and 62.8% in the weeds and cultivated plants. Peanut stunt virus (PSV) was also detected for the first time in Saudi Arabia with a 66.7% of infection in 90 alfalfa samples collected from the surveyed regions during the last visit that tested negative to all the previously detected viruses.
Collapse
Affiliation(s)
- I.M. Al-Shahwan
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|