1
|
Recio M, de la Torre J, Daddaoua A, Udaondo Z, Duque E, Gavira JA, López‐Sánchez C, Ramos JL. Characterization of an extremophile bacterial acid phosphatase derived from metagenomics analysis. Microb Biotechnol 2024; 17:e14404. [PMID: 38588312 PMCID: PMC11001196 DOI: 10.1111/1751-7915.14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 04/10/2024] Open
Abstract
Acid phosphatases are enzymes that play a crucial role in the hydrolysis of various organophosphorous molecules. A putative acid phosphatase called FS6 was identified using genetic profiles and sequences from different environments. FS6 showed high sequence similarity to type C acid phosphatases and retained more than 30% of consensus residues in its protein sequence. A histidine-tagged recombinant FS6 produced in Escherichia coli exhibited extremophile properties, functioning effectively in a broad pH range between 3.5 and 8.5. The enzyme demonstrated optimal activity at temperatures between 25 and 50°C, with a melting temperature of 51.6°C. Kinetic parameters were determined using various substrates, and the reaction catalysed by FS6 with physiological substrates was at least 100-fold more efficient than with p-nitrophenyl phosphate. Furthermore, FS6 was found to be a decamer in solution, unlike the dimeric forms of crystallized proteins in its family.
Collapse
Affiliation(s)
- Maria‐Isabel Recio
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental ProtectionGranadaSpain
| | - Jesús de la Torre
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental ProtectionGranadaSpain
| | - Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, Pharmacy SchoolGranada UniversityGranadaSpain
| | - Zulema Udaondo
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Estrella Duque
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental ProtectionGranadaSpain
| | - José Antonio Gavira
- Consejo Superior de Investigaciones Científicas, Instituto de Ciencias de la TierraGranadaSpain
| | - Carmen López‐Sánchez
- Consejo Superior de Investigaciones Científicas, Instituto de Ciencias de la TierraGranadaSpain
| | - Juan L. Ramos
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental ProtectionGranadaSpain
| |
Collapse
|
2
|
Lidbury IDEA, Hitchcock A, Groenhof SRM, Connolly AN, Moushtaq L. New insights in bacterial organophosphorus cycling: From human pathogens to environmental bacteria. Adv Microb Physiol 2024; 84:1-49. [PMID: 38821631 DOI: 10.1016/bs.ampbs.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
In terrestrial and aquatic ecosystems, phosphorus (P) availability controls primary production, with consequences for climate regulation and global food security. Understanding the microbial controls on the global P cycle is a prerequisite for minimising our reliance on non-renewable phosphate rock reserves and reducing pollution associated with excessive P fertiliser use. This recognised importance has reinvigorated research into microbial P cycling, which was pioneered over 75 years ago through the study of human pathogenic bacteria-host interactions. Immobilised organic P represents a significant fraction of the total P pool. Hence, microbes have evolved a plethora of mechanisms to transform this fraction into labile inorganic phosphate, the building block for numerous biological molecules. The 'genomics era' has revealed an extraordinary diversity of organic P cycling genes exist in the environment and studies going 'back to the lab' are determining how this diversity relates to function. Through this integrated approach, many hitherto unknown genes and proteins that are involved in microbial P cycling have been discovered. Not only do these fundamental discoveries push the frontier of our knowledge, but several examples also provide exciting opportunities for biotechnology and present possible solutions for improving the sustainability of how we grow our food, both locally and globally. In this review, we provide a comprehensive overview of bacterial organic P cycling, covering studies on human pathogens and how this knowledge is informing new discoveries in environmental microbiology.
Collapse
Affiliation(s)
- Ian D E A Lidbury
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom.
| | - Andrew Hitchcock
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom; Plants, Photosynthesis, and Soil, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Sophie R M Groenhof
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Alex N Connolly
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Laila Moushtaq
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
3
|
Perruzza L, Zagaglia C, Vitiello L, Sarshar M, Strati F, Pasqua M, Grassi F, Nicoletti M, Palamara AT, Ambrosi C, Scribano D. The Shigella flexneri virulence factor apyrase is released inside eukaryotic cells to hijack host cell fate. Microbiol Spectr 2023; 11:e0077523. [PMID: 37795996 PMCID: PMC10714728 DOI: 10.1128/spectrum.00775-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/19/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE In this paper, we demonstrated that apyrase is released within the host cell cytoplasm during infection to target the intracellular ATP pool. By degrading intracellular ATP, apyrase contributes to prevent caspases activation, thereby inhibiting the activation of pyroptosis in infected cells. Our results show, for the first time, that apyrase is involved in the modulation of host cell survival, thereby aiding this pathogen to dampen the inflammatory response. This work adds a further piece to the puzzle of Shigella pathogenesis. Due to its increased spread worldwide, prevention and controlling strategies are urgently needed. Overall, this study highlighted apyrase as a suitable target for an anti-virulence therapy to tackle this pathogen.
Collapse
Affiliation(s)
- Lisa Perruzza
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
- Humabs BioMed, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Carlo Zagaglia
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Laura Vitiello
- Laboratory of Flow Cytometry, IRCCS San Raffaele Roma, Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Francesco Strati
- Mucosal Immunology Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Martina Pasqua
- Institute Pasteur Italy, Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Mauro Nicoletti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, Rome, Italy
- Department Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
- Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, IRCCS San Raffaele Roma, Rome, Italy
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Martínez-Canseco C, Franco-Bourland RE, González-Huerta N, Paredes-Espinosa MA, Giono-Cerezo S, Sánchez-Chapul L, Paniagua-Pérez R, Valdez-Mijares R, Hernández-Flores C. Detection and expression of SapS, a class C nonspecific acid phosphatase with O-phospho-Ltyrosine- phosphatase activity, in Staphylococcus aureus isolates from patients with chronic osteomyelitis. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:200-212. [PMID: 37433170 PMCID: PMC10515701 DOI: 10.7705/biomedica.6604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 03/28/2023] [Indexed: 07/13/2023]
Abstract
INTRODUCTION The identity of Staphylococcus aureus virulence factors involved in chronic osteomyelitis remains unresolved. SapS is a class C non-specific acid phosphatase and a well-known virulence factor that has been identified in S. aureus strain 154 but in protein extracts from rotting vegetables. OBJECTIVE To identify the SapS gene and characterize the activity of SapS from S. aureus strains: 12 isolates from bone infected samples of patients treated for chronic osteomyelitis and 49 from a database with in silico analysis of complete bacterial genomes. MATERIALS AND METHODS The SapS gene was isolated and sequenced from 12 S. aureus clinical isolates and two reference strains; 49 S. aureus strains and 11 coagulase-negative staphylococci were tested using in silico PCR. Culture media semi-purified protein extracts from the clinical strains were assayed for phosphatase activity with p-nitro-phenylphosphate, O-phospho-L-tyrosine, O-phospho-L-serine, and OphosphoL-threonine in conjunction with various phosphatase inhibitors. RESULTS SapS was detected in the clinical and in-silico S. aureus strains, but not in the in silico coagulase-negative staphylococci strains. Sec-type I lipoprotein-type N-terminal signal peptide sequences; secreted proteins, and aspartate bipartite catalytic domains coding sequences were found in the SapS nucleotide and amino acid sequence analysis. SapS dephosphorylated with p-nitro-phenyl-phosphate and ophosphoLtyrosine were selectively resistant to tartrate and fluoride, but sensitive to vanadate and molybdate. CONCLUSION SapS gene was found in the genome of the clinical isolates and the in silico Staphylococcus aureus strains. SapS shares biochemical similarities with known virulent bacterial, such as protein tyrosine phosphatases, suggesting it may be a virulence factor in chronic osteomyelitis.
Collapse
Affiliation(s)
- Carlos Martínez-Canseco
- Servicio de Bioquímica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Ciudad de México, México.
| | - Rebecca E Franco-Bourland
- Servicio de Bioquímica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Ciudad de México, México.
| | - Norma González-Huerta
- Servicio de Medicina Genómica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Ciudad de México, México.
| | - Marco Antonio Paredes-Espinosa
- Servicio de Bioterio y Cirugía Experimental, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Ciudad de México, México.
| | - Silvia Giono-Cerezo
- Laboratorio de Bacteriología Médica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México.
| | - Laura Sánchez-Chapul
- Laboratorio de Enfermedades Neuromusculares, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Ciudad de México, México.
| | - Rogelio Paniagua-Pérez
- Servicio de Bioquímica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Ciudad de México, México.
| | - René Valdez-Mijares
- Servicio de Bioquímica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Ciudad de México, México.
| | - Cecilia Hernández-Flores
- Servicio de Bioquímica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Ciudad de México, México.
| |
Collapse
|
5
|
de Andrade LA, Santos CHB, Frezarin ET, Sales LR, Rigobelo EC. Plant Growth-Promoting Rhizobacteria for Sustainable Agricultural Production. Microorganisms 2023; 11:microorganisms11041088. [PMID: 37110511 PMCID: PMC10146397 DOI: 10.3390/microorganisms11041088] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Rhizosheric bacteria with several abilities related to plant growth and health have been denominated Plant Growth-Promoting Rhizobacteria (PGPR). PGPR promote plant growth through several modes of action, be it directly or indirectly. The benefits provided by these bacteria can include increased nutrient availability, phytohormone production, shoot and root development, protection against several phytopathogens, and reduced diseases. Additionally, PGPR can help plants to withstand abiotic stresses such as salinity and drought and produce enzymes that detoxify plants from heavy metals. PGPR have become an important strategy in sustainable agriculture due to the possibility of reducing synthetic fertilizers and pesticides, promoting plant growth and health, and enhancing soil quality. There are many studies related to PGPR in the literature. However, this review highlights the studies that used PGPR for sustainable production in a practical way, making it possible to reduce the use of fertilizers such as phosphorus and nitrogen and fungicides, and to improve nutrient uptake. This review addresses topics such as unconventional fertilizers, seed microbiome for rhizospheric colonization, rhizospheric microorganisms, nitrogen fixation for reducing chemical fertilizers, phosphorus solubilizing and mineralizing, and siderophore and phytohormone production for reducing the use of fungicides and pesticides for sustainable agriculture.
Collapse
Affiliation(s)
- Luana Alves de Andrade
- Agricultural and Livestock Microbiology Graduate Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), São Paulo 14884-900, Brazil
| | - Carlos Henrique Barbosa Santos
- Agricultural and Livestock Microbiology Graduate Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), São Paulo 14884-900, Brazil
| | - Edvan Teciano Frezarin
- Agricultural and Livestock Microbiology Graduate Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), São Paulo 14884-900, Brazil
| | - Luziane Ramos Sales
- Agricultural and Livestock Microbiology Graduate Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), São Paulo 14884-900, Brazil
| | - Everlon Cid Rigobelo
- Agricultural and Livestock Microbiology Graduate Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), São Paulo 14884-900, Brazil
| |
Collapse
|
6
|
Shakirov ZS, Mamanazarova KS, Yakubov IT, Zakiryaeva SI, Khamidova KM. Nitrogen-fixing, phosphate-potassium-mobilizing ability of Rahnella bacteria isolated from wheat roots. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
As the number of people on earth increases, so does the need for food. Providing the population with environmentally friendly agricultural food is one of the urgent problems of our time. Currently, the main direction of modern organic farming is the use of biofertilizers. Bacterial preparations are capable of influencing the physiological processes of plants in small quantities, leading to increase in plant productivity. The objective of this work was to study rhizobacteria associated with wheat roots. For this purpose, we took more than 100 isolates of rhizobacteria from the rhizosphere and root surface of wheat plants grown in irrigated fields of Tashkent, Syrdarya, Andijan, Kashkadarya regions. Rhizobacteria were grown on nutrient media of Döbereiner, Ashby, Pikovsky, and Zack, and 25 isolates of associative rhizobacteria were selected based on the characteristics of absorption of molecular nitrogen, mobilization of phosphorus and potassium. They actively dissolved Сa3(PO4)2 and KAlSiO4 for 3 days. They were found to produce organic acids. In organic farming, nitrogen-fixing, phosphorus- and potassium-mobilizing rhizobacteria are of great practical importance, while our experiments on obtaining biological products are considered as an environmentally friendly and cost-effective way to increase crop yields. From the surface of wheat roots grown in different zones of Uzbekistan, when screening for nitrogen fixation, we selected 3 isolates with acetylene reductase activity of 79–91 nmol C2H4/flacon/24h. We determined that bacteria completely mobilized phosphate, forming 100% acid when grown in a medium containing Ca3(PO4)2 for 5 days. The ability of the bacteria to mobilize potassium was studied on a nutrient KAlSiO4-containing medium. The bacteria were observed to mobilize potassium, forming 90–100% acid within 15 days. Based on the study of the 16S rRNA gene of bacteria, we identified rhizobacteria UT3, UT4, and UT9 as Rahnella aquatilis.
Collapse
|
7
|
Abdelgalil SA, Kaddah MMY, Duab MEA, Abo-Zaid GA. A sustainable and effective bioprocessing approach for improvement of acid phosphatase production and rock phosphate solubilization by Bacillus haynesii strain ACP1. Sci Rep 2022; 12:8926. [PMID: 35624119 PMCID: PMC9142604 DOI: 10.1038/s41598-022-11448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
There is indeed a tremendous increase in biotechnological production on a global scale, more and more innovative bioprocesses, therefore, require to perform ideally not only in a small lab- but also on large production scales. Efficient microbial process optimization is a significant challenge when accomplishing a variety of sustainable development and bioengineering application objectives. In Egypt's mines, several distinct types of rock phosphate (RP) are utilized as a source of phosphate fertilizers in agriculture. It is more ecologically beneficial to utilize RP bio-solubilization than acidulation. Therefore, this work aimed to strategically scale up the acid phosphatase (ACP) production and RP bio-solubilization by the newly-discovered Bacillus haynesii. The use of consecutive statistical experimental approaches of Plackett-Burman Design (PBD), and Rotatable Central Composite Design (RCCD), followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor revealed an innovative medium formulation. These approaches substantially improved ACP production, reaching 207.6 U L-1 with an ACP yield coefficient Yp/x of 25.2 and a specific growth rate (µ) of 0.07 h-1. The metals Na, Li, and Mn were the most efficiently released from RP during the solubilization process by B. haynesii. The uncontrolled pH culture condition is the most suitable setting for simultaneously improving the ACP and organic acids production. The most abundant organic acid produced through the cultivation process was lactic acid, followed by glutamic acid and hydroxybenzoic acid isomer. The findings of TGA, DSC, SEM, EDS, FTIR, and XRD analysis emphasize the significant influence of organic acids and ACP activity on the solubilization of RP particles.
Collapse
Affiliation(s)
- Soad A Abdelgalil
- Bioprocess Development Department, Genetic Engineering, and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Mahmoud E A Duab
- Bioprocess Development Department, Genetic Engineering, and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Gaber A Abo-Zaid
- Bioprocess Development Department, Genetic Engineering, and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934, Egypt
| |
Collapse
|
8
|
Rangu SS, Singh R, Gaur NK, Rath D, Makde RD, Mukhopadhyaya R. Isolation and characterization of a recombinant class C acid phosphatase from Sphingobium sp. RSMS strain. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 33:e00709. [PMID: 35242619 PMCID: PMC8857453 DOI: 10.1016/j.btre.2022.e00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Tributyl phosphate (TBP) is extensively used in nuclear industry and is a major environmental pollutant. The mechanism for TBP degradation is not identified in any TBP-degrading bacteria. Here, we report identification of an acid phosphatase from Sphingobium sp. RSMS (Aps) that exhibits high specific activity towards monobutyl phosphate (MBP) and could be a terminal component of the TBP degradation process. A genomic DNA library of the bacteria was screened using a histochemical method which yielded 35 phosphatase clones. Among these, the clone that showed the highest MBP degradation was studied further. DNA sequence analysis showed that the genomic insert encodes a protein (Aps) which belongs to class C acid phosphatase. The recombinant Aps was found to be a dimer and hydrolysed MBP with a Kcat 68.1 ± 5.46 s- 1 and Km 2.5 mM ± 0.50. The protein was found to be nonspecific for phosphatase activity and hydrolyzed disparate organophosphates.
Collapse
Affiliation(s)
- Shyam Sunder Rangu
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Rahul Singh
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Neeraj Kailash Gaur
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Devashish Rath
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Ravindra D. Makde
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Rita Mukhopadhyaya
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|
9
|
A widely distributed phosphate-insensitive phosphatase presents a route for rapid organophosphorus remineralization in the biosphere. Proc Natl Acad Sci U S A 2022; 119:2118122119. [PMID: 35082153 PMCID: PMC8812569 DOI: 10.1073/pnas.2118122119] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2021] [Indexed: 11/24/2022] Open
Abstract
At several locations across the globe, terrestrial and marine primary production, which underpin global food security, biodiversity, and climate regulation, are limited by inorganic phosphate availability. A major fraction of the total phosphorus pool exists in organic form, requiring mineralization to phosphate by enzymes known as phosphatases prior to incorporation into cellular biomolecules. Phosphatases are typically synthesized in response to phosphate depletion, assisting with phosphorus acquisition. Here, we reveal that a unique bacterial phosphatase, PafA, is widely distributed in the biosphere and has a distinct functional role in carbon acquisition, releasing phosphate as a by-product. PafA, therefore, represents an overlooked mechanism in the global phosphorus cycle and a hitherto cryptic route for the regeneration of bioavailable phosphorus in nature. The regeneration of bioavailable phosphate from immobilized organophosphorus represents a key process in the global phosphorus cycle and is facilitated by enzymes known as phosphatases. Most bacteria possess at least one of three phosphatases with broad substrate specificity, known as PhoA, PhoX, and PhoD, whose activity is optimal under alkaline conditions. The production and activity of these phosphatases is repressed by phosphate availability. Therefore, they are only fully functional when bacteria experience phosphorus-limiting growth conditions. Here, we reveal a previously overlooked phosphate-insensitive phosphatase, PafA, prevalent in Bacteroidetes, which is highly abundant in nature and represents a major route for the regeneration of environmental phosphate. Using the enzyme from Flavobacterium johnsoniae, we show that PafA is highly active toward phosphomonoesters, is fully functional in the presence of excess phosphate, and is essential for growth on phosphorylated carbohydrates as a sole carbon source. These distinct properties of PafA may expand the metabolic niche of Bacteroidetes by enabling the utilization of abundant organophosphorus substrates as C and P sources, providing a competitive advantage when inhabiting zones of high microbial activity and nutrient demand. PafA, which is constitutively synthesized by soil and marine flavobacteria, rapidly remineralizes phosphomonoesters releasing bioavailable phosphate that can be acquired by neighboring cells. The pafA gene is highly diverse in plant rhizospheres and is abundant in the global ocean, where it is expressed independently of phosphate availability. PafA therefore represents an important enzyme in the context of global biogeochemical cycling and has potential applications in sustainable agriculture.
Collapse
|
10
|
Zakataeva NP. Microbial 5'-nucleotidases: their characteristics, roles in cellular metabolism, and possible practical applications. Appl Microbiol Biotechnol 2021; 105:7661-7681. [PMID: 34568961 PMCID: PMC8475336 DOI: 10.1007/s00253-021-11547-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
5′-Nucleotidases (EC 3.1.3.5) are enzymes that catalyze the hydrolytic dephosphorylation of 5′-ribonucleotides and 5′-deoxyribonucleotides to their respective nucleosides and phosphate. Most 5′-nucleotidases have broad substrate specificity and are multifunctional enzymes capable of cleaving phosphorus from not only mononucleotide phosphate molecules but also a variety of other phosphorylated metabolites. 5′-Nucleotidases are widely distributed throughout all kingdoms of life and found in different cellular locations. The well-studied vertebrate 5′-nucleotidases play an important role in cellular metabolism. These enzymes are involved in purine and pyrimidine salvage pathways, nucleic acid repair, cell-to-cell communication, signal transduction, control of the ribo- and deoxyribonucleotide pools, etc. Although the first evidence of microbial 5′-nucleotidases was obtained almost 60 years ago, active studies of genetic control and the functions of microbial 5′-nucleotidases started relatively recently. The present review summarizes the current knowledge about microbial 5′-nucleotidases with a focus on their diversity, cellular localizations, molecular structures, mechanisms of catalysis, physiological roles, and activity regulation and approaches to identify new 5′-nucleotidases. The possible applications of these enzymes in biotechnology are also discussed. Key points • Microbial 5′-nucleotidases differ in molecular structure, hydrolytic mechanism, and cellular localization. • 5′-Nucleotidases play important and multifaceted roles in microbial cells. • Microbial 5′-nucleotidases have wide range of practical applications.
Collapse
Affiliation(s)
- Natalia P Zakataeva
- Ajinomoto-Genetika Research Institute, 1st Dorozhny Proezd, b.1-1, Moscow, 117545, Russia.
| |
Collapse
|
11
|
Biochemical characterization of a recombinant acid phosphatase from Acinetobacter baumannii. PLoS One 2021; 16:e0252377. [PMID: 34077475 PMCID: PMC8172068 DOI: 10.1371/journal.pone.0252377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 05/15/2021] [Indexed: 11/27/2022] Open
Abstract
Genomic sequence analysis of Acinetobacter baumannii revealed the presence of a putative Acid Phosphatase (AcpA; EC 3.1.3.2). A plasmid construct was made, and recombinant protein (rAcpA) was expressed in E. coli. PAGE analysis (carried out under denaturing/reducing conditions) of nickel-affinity purified protein revealed the presence of a near-homogeneous band of approximately 37 kDa. The identity of the 37 kDa species was verified as rAcpA by proteomic analysis with a molecular mass of 34.6 kDa from the deduced sequence. The dependence of substrate hydrolysis on pH was broad with an optimum observed at 6.0. Kinetic analysis revealed relatively high affinity for PNPP (Km = 90 μM) with Vmax, kcat, and Kcat/Km values of 19.2 pmoles s-1, 4.80 s-1(calculated on the basis of 37 kDa), and 5.30 x 104 M-1s-1, respectively. Sensitivity to a variety of reagents, i.e., detergents, reducing, and chelating agents as well as classic acid phosphatase inhibitors was examined in addition to assessment of hydrolysis of a number of phosphorylated compounds. Removal of phosphate from different phosphorylated compounds is supportive of broad, i.e., ‘nonspecific’ substrate specificity; although, the enzyme appears to prefer phosphotyrosine and/or peptides containing phosphotyrosine in comparison to serine and threonine. Examination of the primary sequence indicated the absence of signature sequences characteristic of Type A, B, and C nonspecific bacterial acid phosphatases.
Collapse
|
12
|
L Neal A, McLaren T, Lourenço Campolino M, Hughes D, Marcos Coelho A, Gomes de Paula Lana U, Aparecida Gomes E, Morais de Sousa S. Crop type exerts greater influence upon rhizosphere phosphohydrolase gene abundance and phylogenetic diversity than phosphorus fertilization. FEMS Microbiol Ecol 2021; 97:6145522. [PMID: 33609137 DOI: 10.1093/femsec/fiab033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 02/18/2021] [Indexed: 02/04/2023] Open
Abstract
Rock phosphate is an alternative form of phosphorus (P) fertilizer; however, there is no information regarding the influence of P fertilizer sources in Brazilian Cerrado soils upon microbial genes coding for phosphohydrolase enzymes in crop rhizospheres. Here, we analyze a field experiment comparing maize and sorghum grown under different P fertilization (rock phosphate and triple superphosphate) upon crop performance, phosphatase activity and rhizosphere microbiomes at three levels of diversity: small subunit rRNA marker genes of bacteria, archaea and fungi; a suite of alkaline and acid phosphatase and phytase genes; and ecotypes of individual genes. We found no significant difference in crop performance between the fertilizer sources, but the accumulation of fertilizer P into pools of organic soil P differed. Phosphatase activity was the only biological parameter influenced by P fertilization. Differences in rhizosphere microbiomes were observed at all levels of biodiversity due to crop type, but not fertilization. Inspection of phosphohydrolase gene ecotypes responsible for differences between the crops suggests a role for lateral genetic transfer in establishing ecotype distributions. Moreover, they were not reflected in microbial community composition, suggesting that they confer competitive advantage to individual cells rather than species in the sorghum rhizosphere.
Collapse
Affiliation(s)
- Andrew L Neal
- Department of Sustainable Agricultural Sciences, Rothamsted Research, North Wyke, Devon EX20 2SB, UK
| | - Timothy McLaren
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Eschikon 33, 8315 Lindau, Switzerland
| | - Mariana Lourenço Campolino
- Universidade Federal de São João del-Rei, Bioengineering, R. Padre João Pimentel, 80 - Dom Bosco, São João del-Rei, Minas Gerais, 36301-158, Brazil.,Empresa Brasileira de Pesquisa Agropecuária, Embrapa Milho e Sorgo, Rod MG 424 Km 65, Sete Lagoas, Minas Gerais, 35701-970, Brazil
| | - David Hughes
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Antônio Marcos Coelho
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Milho e Sorgo, Rod MG 424 Km 65, Sete Lagoas, Minas Gerais, 35701-970, Brazil
| | - Ubiraci Gomes de Paula Lana
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Milho e Sorgo, Rod MG 424 Km 65, Sete Lagoas, Minas Gerais, 35701-970, Brazil
| | - Eliane Aparecida Gomes
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Milho e Sorgo, Rod MG 424 Km 65, Sete Lagoas, Minas Gerais, 35701-970, Brazil
| | - Sylvia Morais de Sousa
- Universidade Federal de São João del-Rei, Bioengineering, R. Padre João Pimentel, 80 - Dom Bosco, São João del-Rei, Minas Gerais, 36301-158, Brazil.,Empresa Brasileira de Pesquisa Agropecuária, Embrapa Milho e Sorgo, Rod MG 424 Km 65, Sete Lagoas, Minas Gerais, 35701-970, Brazil
| |
Collapse
|
13
|
Niche-adaptation in plant-associated Bacteroidetes favours specialisation in organic phosphorus mineralisation. THE ISME JOURNAL 2021; 15:1040-1055. [PMID: 33257812 PMCID: PMC8115612 DOI: 10.1038/s41396-020-00829-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
Bacteroidetes are abundant pathogen-suppressing members of the plant microbiome that contribute prominently to rhizosphere phosphorus mobilisation, a frequent growth-limiting nutrient in this niche. However, the genetic traits underpinning their success in this niche remain largely unknown, particularly regarding their phosphorus acquisition strategies. By combining cultivation, multi-layered omics and biochemical analyses we first discovered that all plant-associated Bacteroidetes express constitutive phosphatase activity, linked to the ubiquitous possession of a unique phosphatase, PafA. For the first time, we also reveal a subset of Bacteroidetes outer membrane SusCD-like complexes, typically associated with carbon acquisition, and several TonB-dependent transporters, are induced during Pi-depletion. Furthermore, in response to phosphate depletion, the plant-associated Flavobacterium used in this study expressed many previously characterised and novel proteins targeting organic phosphorus. Collectively, these enzymes exhibited superior phosphatase activity compared to plant-associated Pseudomonas spp. Importantly, several of the novel low-Pi-inducible phosphatases and transporters, belong to the Bacteroidetes auxiliary genome and are an adaptive genomic signature of plant-associated strains. In conclusion, niche adaptation to the plant microbiome thus appears to have resulted in the acquisition of unique phosphorus scavenging loci in Bacteroidetes, enhancing their phosphorus acquisition capabilities. These traits may enable their success in the rhizosphere and also present exciting avenues to develop sustainable agriculture.
Collapse
|
14
|
Udaondo Z, Duque E, Daddaoua A, Caselles C, Roca A, Pizarro-Tobias P, Ramos JL. Developing robust protein analysis profiles to identify bacterial acid phosphatases in genomes and metagenomic libraries. Environ Microbiol 2020; 22:3561-3571. [PMID: 32564477 DOI: 10.1111/1462-2920.15138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022]
Abstract
Phylogenetic analysis of more than 4000 annotated bacterial acid phosphatases was carried out. Our analysis enabled us to sort these enzymes into the following three types: (1) class B acid phosphatases, which were distantly related to the other types, (2) class C acid phosphatases and (3) generic acid phosphatases (GAP). Although class B phosphatases are found in a limited number of bacterial families, which include known pathogens, class C acid phosphatases and GAP proteins are found in a variety of microbes that inhabit soil, fresh water and marine environments. As part of our analysis, we developed three profiles, named Pfr-B-Phos, Pfr-C-Phos and Pfr-GAP, to describe the three groups of acid phosphatases. These sequence-based profiles were then used to scan genomes and metagenomes to identify a large number of formerly unknown acid phosphatases. A number of proteins in databases annotated as hypothetical proteins were also identified by these profiles as putative acid phosphatases. To validate these in silico results, we cloned genes encoding candidate acid phosphatases from genomic DNA or recovered from metagenomic libraries or genes synthesized in vitro based on protein sequences recovered from metagenomic data. Expression of a number of these genes, followed by enzymatic analysis of the proteins, further confirmed that sequence similarity searches using our profiles could successfully identify previously unknown acid phosphatases.
Collapse
Affiliation(s)
- Zulema Udaondo
- Estación Experimental del Zaidín, CSIC, Granada, E-18008, Spain.,Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Estrella Duque
- Estación Experimental del Zaidín, CSIC, Granada, E-18008, Spain
| | - Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Carlos Caselles
- Estación Experimental del Zaidín, CSIC, Granada, E-18008, Spain
| | | | | | - Juan L Ramos
- Estación Experimental del Zaidín, CSIC, Granada, E-18008, Spain
| |
Collapse
|
15
|
Boyaci Gunduz CP, Gaglio R, Franciosi E, Settanni L, Erten H. Molecular analysis of the dominant lactic acid bacteria of chickpea liquid starters and doughs and propagation of chickpea sourdoughs with selected Weissella confusa. Food Microbiol 2020; 91:103490. [PMID: 32539978 DOI: 10.1016/j.fm.2020.103490] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
Fermented chickpea liquid is used as a leavening agent in chickpea bread production. In the present study, traditional chickpea liquid starter and dough samples were collected from bakeries in Turkey and microbiologically investigated. Culture-independent analysis for microbiota diversity, performed by MiSeq Illumina, identified Clostridium perfringens as major group in all samples, while Weissella spp. Dominated LAB community. A culture-dependent methodology was applied and 141 isolates were confirmed to be members of the LAB group based on 16s rRNA gene sequence analysis. In particular, 11 different LAB species were identified confirming the high frequency of isolation of weissellas, since Weissella confusa and Weissella cibaria constituted 47.8 and 12.4%, respectively, of total LAB isolated. The other species were Enterococcus faecium, Enterococcus lactis, Lactobacillus brevis, Lactobacillus plantarum, Leuconostoc mesenteroides, Leuconostoc mesenteroides subsp. Dextranium, Pediococcus acidilactici, Pediococcus pentosaceus and Streptococcus lutetiensis. Due to high frequency of isolation, W. confusa strains were investigated at technological level and W. confusa RL1139 was used as mono-culture starter in the experimental chickpea sourdough production. Chemical and microbiological properties, as well as volatile organic compounds (VOCs) of the chickpea liquid starters and doughs were subjected to a multivariate analysis. Control and W. confusa inoculated chickpea liquid starter and dough samples were close to each other in terms of some characteristics related to chemical, microbiological and VOCs profile, but the inoculated sourdough showed a higher generation of certain VOCs, like butanoic acid (81.52%) and ethyl acetate (8.15%) than control sourdough. This is important in order to maintain typical characteristics of the traditional chickpea dough, but at the same time improving the aroma profile. This work demonstrated that W. confusa RL1139 can be applied at large scale production level without compromising the typical characteristics of the final product.
Collapse
Affiliation(s)
| | - Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| | - Elena Franciosi
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, San Michele all'Adige, Italy
| | - Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| | - Huseyin Erten
- Cukurova University, Faculty of Agriculture, Department of Food Engineering, 01330, Adana, Turkey.
| |
Collapse
|
16
|
Amoozadeh M, Behbahani M, Mohabatkar H, Keyhanfar M. Analysis and comparison of alkaline and acid phosphatases of Gram-negative bacteria by bioinformatic and colorimetric methods. J Biotechnol 2020; 308:56-62. [DOI: 10.1016/j.jbiotec.2019.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/20/2019] [Accepted: 11/03/2019] [Indexed: 11/17/2022]
|
17
|
Neal AL, Glendining MJ. Calcium exerts a strong influence upon phosphohydrolase gene abundance and phylogenetic diversity in soil. SOIL BIOLOGY & BIOCHEMISTRY 2019; 139:107613. [PMID: 31885404 PMCID: PMC6919939 DOI: 10.1016/j.soilbio.2019.107613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 09/21/2019] [Accepted: 09/29/2019] [Indexed: 05/26/2023]
Abstract
The mechanisms by which microbial communities maintain functions within the context of changing environments are key to a wide variety of environmental processes. In soil, these mechanisms support fertility. Genes associated with hydrolysis of organic phosphoesters represent an interesting set of genes with which to study maintenance of function in microbiomes. Here, we shown that the richness of ecotypes for each gene varies considerably in response to application of manure and various inorganic fertilizer combinations. We show, at unprecedented phylogenetic resolution, that phylogenetic diversity of phosphohydrolase genes are more responsive to soil management and edaphic factors than the taxonomic biomarker 16S rRNA gene. Available phosphorus - assessed by measuring Olsen-P - exerted some influence on alkaline phosphatase distribution: however, consistent and significant differences were observed in gene abundance between treatments that were inconsistent with bioavailable orthophosphate being the dominant factor determining gene abundance. Instead, we observed gene niche separation which was most strongly associated with soil exchangeable calcium. Our study suggests that the bioavailability of enzyme cofactors (exchangeable calcium in the case of phoD, phoX and βPPhy studied here) influence the abundance of genes in soil microbial communities; in the absence of cofactors, genes coding for alternative enzyme families that do not require the limiting cofactor (for example, non-specific acid phosphatases which require vanadate) become more abundant.
Collapse
Affiliation(s)
- Andrew L. Neal
- Department of Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Margaret J. Glendining
- Computational and Analytical Sciences, Rothamsted Research, Harpenden, Hertfordshire, UK
| |
Collapse
|
18
|
Lidbury IDEA, Fraser T, Murphy ARJ, Scanlan DJ, Bending GD, Jones AME, Moore JD, Goodall A, Tibbett M, Hammond JP, Wellington EMH. The 'known' genetic potential for microbial communities to degrade organic phosphorus is reduced in low-pH soils. Microbiologyopen 2017; 6:e00474. [PMID: 28419748 PMCID: PMC5552915 DOI: 10.1002/mbo3.474] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/01/2017] [Accepted: 02/16/2017] [Indexed: 11/29/2022] Open
Abstract
In soil, bioavailable inorganic orthophosphate is found at low concentrations and thus limits biological growth. To overcome this phosphorus scarcity, plants and bacteria secrete numerous enzymes, namely acid and alkaline phosphatases, which cleave orthophosphate from various organic phosphorus substrates. Using profile hidden Markov modeling approaches, we investigated the abundance of various non specific phosphatases, both acid and alkaline, in metagenomes retrieved from soils with contrasting pH regimes. This analysis uncovered a marked reduction in the abundance and diversity of various alkaline phosphatases in low-pH soils that was not counterbalanced by an increase in acid phosphatases. Furthermore, it was also discovered that only half of the bacterial strains from different phyla deposited in the Integrated Microbial Genomes database harbor alkaline phosphatases. Taken together, our data suggests that these 'phosphatase lacking' isolates likely increase in low-pH soils and future research should ascertain how these bacteria overcome phosphorus scarcity.
Collapse
Affiliation(s)
| | - Tandra Fraser
- School of Agriculture, Policy, and DevelopmentUniversity of ReadingWhiteknightsUnited Kingdom
| | - Andrew R. J. Murphy
- School of Life SciencesUniversity of WarwickCoventryWest MidlandsUnited Kingdom
| | - David J. Scanlan
- School of Life SciencesUniversity of WarwickCoventryWest MidlandsUnited Kingdom
| | - Gary D. Bending
- School of Life SciencesUniversity of WarwickCoventryWest MidlandsUnited Kingdom
| | | | - Jonathan D. Moore
- The Genome Analysis CentreNorwich Research ParkNorwichUnited Kingdom
| | - Andrew Goodall
- School of Agriculture, Policy, and DevelopmentUniversity of ReadingWhiteknightsUnited Kingdom
| | - Mark Tibbett
- School of Agriculture, Policy, and DevelopmentUniversity of ReadingWhiteknightsUnited Kingdom
| | - John P. Hammond
- School of Agriculture, Policy, and DevelopmentUniversity of ReadingWhiteknightsUnited Kingdom
- Southern Cross Plant ScienceSouthern Cross UniversityLismoreAustralia
| | | |
Collapse
|
19
|
Neal AL, Blackwell M, Akkari E, Guyomar C, Clark I, Hirsch PR. Phylogenetic distribution, biogeography and the effects of land management upon bacterial non-specific Acid phosphatase Gene diversity and abundance. PLANT AND SOIL 2017; 427:175-189. [PMID: 30996484 PMCID: PMC6438641 DOI: 10.1007/s11104-017-3301-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/25/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS Bacterial Non-Specific Acid Phosphatase (NSAP) enzymes are capable of dephosphorylating diverse organic phosphoesters but are rarely studied: their distribution in natural and managed environments is poorly understood. The aim of this study was to generate new insight into the environmental distribution of NSAPs and establish their potential global relevance to cycling of organic phosphorus. METHODS We employed bioinformatic tools to determine NSAP diversity and subcellular localization in microbial genomes; used the corresponding NSAP gene sequences to census metagenomes from diverse ecosystems; studied the effect of long-term land management upon NSAP diversity and abundance. RESULTS Periplasmic class B NSAPs are poorly represented in marine and terrestrial environments, reflecting their association with enteric and pathogenic bacteria. Periplasmic class A and outer membrane-associated class C NSAPs are cosmopolitan. NSAPs are more abundant in marine than terrestrial ecosystems and class C more abundant than class A genes, except in an acidic peat where class A genes dominate. A clear effect of land management upon gene abundance was identified. CONCLUSIONS NSAP genes are cosmopolitan. Class C genes are more widely distributed: their association with the outer-membrane of cells gives them a clear role in the cycling of organic phosphorus, particularly in soils.
Collapse
Affiliation(s)
- Andrew L. Neal
- Department of Sustainable Agricultural Sciences, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| | - Martin Blackwell
- Department of Sustainable Agricultural Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB UK
| | - Elsy Akkari
- Department of Sustainable Agricultural Sciences, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| | - Cervin Guyomar
- Department of Sustainable Agricultural Sciences, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
- Inria/IRISA GenScale, Campus de Beaulieu, cedex, 35042 Rennes, France
| | - Ian Clark
- Department of Sustainable Agricultural Sciences, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| | - Penny R. Hirsch
- Department of Sustainable Agricultural Sciences, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| |
Collapse
|
20
|
Story S, Brigmon RL. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 137:165-171. [PMID: 27936402 DOI: 10.1016/j.ecoenv.2016.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soil resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. These results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications.
Collapse
Affiliation(s)
- Sandra Story
- Savannah River National Laboratory, Aiken, SC 29808, USA.
| | | |
Collapse
|
21
|
Interaction of Uranium with Bacterial Cell Surfaces: Inferences from Phosphatase-Mediated Uranium Precipitation. Appl Environ Microbiol 2016; 82:4965-74. [PMID: 27287317 DOI: 10.1128/aem.00728-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/30/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Deinococcus radiodurans and Escherichia coli expressing either PhoN, a periplasmic acid phosphatase, or PhoK, an extracellular alkaline phosphatase, were evaluated for uranium (U) bioprecipitation under two specific geochemical conditions (GCs): (i) a carbonate-deficient condition at near-neutral pH (GC1), and (ii) a carbonate-abundant condition at alkaline pH (GC2). Transmission electron microscopy revealed that recombinant cells expressing PhoN/PhoK formed cell-associated uranyl phosphate precipitate under GC1, whereas the same cells displayed extracellular precipitation under GC2. These results implied that the cell-bound or extracellular location of the precipitate was governed by the uranyl species prevalent at that particular GC, rather than the location of phosphatase. MINTEQ modeling predicted the formation of predominantly positively charged uranium hydroxide ions under GC1 and negatively charged uranyl carbonate-hydroxide complexes under GC2. Both microbes adsorbed 6- to 10-fold more U under GC1 than under GC2, suggesting that higher biosorption of U to the bacterial cell surface under GC1 may lead to cell-associated U precipitation. In contrast, at alkaline pH and in the presence of excess carbonate under GC2, poor biosorption of negatively charged uranyl carbonate complexes on the cell surface might have resulted in extracellular precipitation. The toxicity of U observed under GC1 being higher than that under GC2 could also be attributed to the preferential adsorption of U on cell surfaces under GC1. This work provides a vivid description of the interaction of U complexes with bacterial cells. The findings have implications for the toxicity of various U species and for developing biological aqueous effluent waste treatment strategies. IMPORTANCE The present study provides illustrative insights into the interaction of uranium (U) complexes with recombinant bacterial cells overexpressing phosphatases. This work demonstrates the effects of aqueous speciation of U on the biosorption of U and the localization pattern of uranyl phosphate precipitated as a result of phosphatase action. Transmission electron microscopy revealed that location of uranyl phosphate (cell associated or extracellular) was primarily influenced by aqueous uranyl species present under the given geochemical conditions. The data would be useful for understanding the toxicity of U under different geochemical conditions. Since cell-associated precipitation of metal facilitates easy downstream processing by simple gravity-based settling down of metal-loaded cells, compared to cumbersome separation techniques, the results from this study are of considerable relevance to effluent treatment using such cells.
Collapse
|
22
|
Plant-Microbiota Interactions as a Driver of the Mineral Turnover in the Rhizosphere. ADVANCES IN APPLIED MICROBIOLOGY 2016; 95:1-67. [PMID: 27261781 DOI: 10.1016/bs.aambs.2016.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A major challenge facing agriculture in the 21st century is the need to increase the productivity of cultivated land while reducing the environmentally harmful consequences of mineral fertilization. The microorganisms thriving in association and interacting with plant roots, the plant microbiota, represent a potential resource of plant probiotic function, capable of conjugating crop productivity with sustainable management in agroecosystems. However, a limited knowledge of the organismal interactions occurring at the root-soil interface is currently hampering the development and use of beneficial plant-microbiota interactions in agriculture. Therefore, a comprehensive understanding of the recruitment cues of the plant microbiota and the molecular basis of nutrient turnover in the rhizosphere will be required to move toward efficient and sustainable crop nutrition. In this chapter, we will discuss recent insights into plant-microbiota interactions at the root-soil interface, illustrate the processes driving mineral dynamics in soil, and propose experimental avenues to further integrate the metabolic potential of the plant microbiota into crop management and breeding strategies for sustainable agricultural production.
Collapse
|
23
|
Schmalenberger A, Fox A. Bacterial Mobilization of Nutrients From Biochar-Amended Soils. ADVANCES IN APPLIED MICROBIOLOGY 2016; 94:109-59. [PMID: 26917243 DOI: 10.1016/bs.aambs.2015.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Soil amendments with biochar to improve soil fertility and increase soil carbon stocks have received some high-level attention. Physical and chemical analyses of amended soils and biochars from various feedstocks are reported, alongside some evaluations of plant growth promotion capabilities. Fewer studies investigated the soil microbiota and their potential to increase cycling and mobilization of nutrients in biochar-amended soils. This review is discussing the latest findings in the bacterial contribution to cycling and mobilizing nitrogen, phosphorus, and sulfur in biochar-amended soils and potential contributions to plant growth promotion. Depending on feedstock, pyrolysis, soil type, and plant cover, changes in the bacterial community structure were observed for a majority of the studies using amplicon sequencing or genetic fingerprinting methods. Prokaryotic nitrification largely depends on the availability of ammonium and can vary considerably under soil biochar amendment. However, denitrification to di-nitrogen and in particular, nitrous oxide reductase activity is commonly enhanced, resulting in reduced nitrous oxide emissions. Likewise, bacterial fixation of di-nitrogen appears to be regularly enhanced. A paucity of studies suggests that bacterial mobilization of phosphorus and sulfur is enhanced as well. However, most studies only tested for extracellular sulfatase and phosphatase activity. Further research is needed to reveal details of the bacterial nutrient mobilizing capabilities and this is in particular the case for the mobilization of phosphorus and sulfur.
Collapse
|