1
|
Nguelefack-Mbuyo EP, Sonfack CS, Fofié CK, Fodem C, Ndjenda II MK, Dongmo AB, Nguelefack TB. Antihypertensive effect of the stem bark aqueous extract of Garcinia lucida Vesque (Clusiaceae) in L-NAME-treated rats: Contribution of endothelium-dependent and -independent vasorelaxation. Heliyon 2023; 9:e21896. [PMID: 38034670 PMCID: PMC10685198 DOI: 10.1016/j.heliyon.2023.e21896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Garcinia lucida is used in Cameroonian folk medicine to handle a variety of ailments, including arterial hypertension. This study aimed at determining the phytochemical profile and the antihypertensive effect of the stem bark aqueous extract of G. lucida (AEGL). AEGL was subjected to LC-MS analysis, and its effect (75, 150, and 300 mg/kg/day; by gavage) was evaluated against Nω-nitro-L-arginine methyl ester (L-NAME; 40 mg/kg)-induced hypertension in adult male Wistar rats for four consecutive weeks. Blood pressure and heart rate were monitored weekly using tail-cuff plethysmography. The vasorelaxant effect of cumulative concentrations (3-10-30-100-300 μg/mL) of AEGL was examined on endothelium-intact and denuded thoracic aorta rings which were precontracted with KCl (90 mM) or norepinephrine (NE; 10-5 M), and in the absence or presence of L-NAME (10-4 M), indomethacin (10-5 M), methylene blue (10-6 M), tetraethylammonium (TEA, 5 × 10-6 M), glibenclamide (10 × 10-6 M) or propranolol (5 × 10-6 M). The influence of AEGL on the response to NE, KCl, and CaCl2 was also investigated. Six compounds, including Garcinia biflavonoids GB1 and GB2, were identified. AEGL prevented the development of hypertension (p < 0.01 and p < 0.001) without affecting the heart rate. AEGL induced a concentration-dependent relaxation of aortic rings precontracted with NE (EC50 = 7.915 μg/mL) that was significantly inhibited by the removal of the endothelium, L-NAME, or methylene blue (p < 0.05-0.001). Indomethacin, propranolol, TEA, and glibenclamide did not affect AEGL-evoked vasorelaxation. Preincubation of aortic rings with AEGL reduced the magnitude of contraction elicited by CaCl2 but did not alter that of KCl or NE. AEGL possesses an antihypertensive effect that is mediated by both endothelium-dependent and endothelium-independent mechanisms. The activation of the NO/sGC/cGMP pathway accounts for the endothelium-dependent vasorelaxation. These pharmacological effects of AEGL could be attributed to the presence of the Garcinia biflavonoids GB1 and GB2.
Collapse
Affiliation(s)
- Elvine Pami Nguelefack-Mbuyo
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Christelle Stéphanie Sonfack
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Douala, P.O. Box 24157, Cameroon
| | - Christian Kuété Fofié
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Chamberlin Fodem
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Magloire Kanyou Ndjenda II
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Alain Bertrand Dongmo
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Douala, P.O. Box 24157, Cameroon
| | - Télesphore Benoît Nguelefack
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| |
Collapse
|
2
|
Sun Y, Zheng C, Li T, He X, Yang F, Guo W, Song J, Gao Y, Deng C, Huang X. GB1a Activates SIRT6 to Regulate Lipid Metabolism in Mouse Primary Hepatocytes. Int J Mol Sci 2023; 24:ijms24119540. [PMID: 37298491 DOI: 10.3390/ijms24119540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Lipid accumulation, oxidative stress, and inflammation in hepatocytes are features of nonalcoholic fatty liver disease (NAFLD). Garcinia biflavonoid 1a (GB1a) is a natural product capable of hepatic protection. In this study, the effect of GB1a on anti-inflammatory, antioxidant, and regulation of the accumulation in HepG2 cells and mouse primary hepatocytes (MPHs) was investigated, and its regulatory mechanism was further explored. The result showed that GB1a reduced triglyceride (TG) content and lipid accumulation by regulating the expression of SREBP-1c and PPARα; GB1a reduced reactive oxygen species (ROS) and improved cellular oxidative stress to protect mitochondrial morphology by regulating genes Nrf2, HO-1, NQO1, and Keap1; and GB1a reduced the damage of hepatocytes by inhibiting the expression of inflammatory cytokines interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and nuclear factor kappa B (NF-κB) p65. The activities of GB1a were lost in liver SIRT6-specific knockout mouse primary hepatocytes (SIRT6-LKO MPHs). This indicated that activating SIRT6 was critical for GB1a to perform its activity, and GB1a acted as an agonist of SIRT6. It was speculated that GB1a may be a potential drug for NAFLD treatment.
Collapse
Affiliation(s)
- Yongzhi Sun
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Congmin Zheng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ting Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xinqian He
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Fan Yang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wenfeng Guo
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Institute of Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jianping Song
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Institute of Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yong Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Changsheng Deng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Institute of Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xinan Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Institute of Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
3
|
Tauchen J, Frankova A, Manourova A, Valterova I, Lojka B, Leuner O. Garcinia kola: a critical review on chemistry and pharmacology of an important West African medicinal plant. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023:1-47. [PMID: 37359709 PMCID: PMC10205037 DOI: 10.1007/s11101-023-09869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/03/2023] [Indexed: 06/28/2023]
Abstract
Garcinia kola Heckel (Clusiaceae) is a tree indigenous to West and Central Africa. All plant parts, but especially the seeds, are of value in local folklore medicine. Garcinia kola is used in treatment of numerous diseases, including gastric disorders, bronchial diseases, fever, malaria and is used to induce a stimulating and aphrodisiac effect. The plant is now attracting considerable interest as a possible source of pharmaceutically important drugs. Several different classes of compounds such as biflavonoids, benzophenones, benzofurans, benzopyran, vitamin E derivatives, xanthones, and phytosterols, have been isolated from G. kola, of which many appears to be found only in this species, such as garcinianin (found in seeds and roots), kolanone (fruit pulp, seeds, roots), gakolanone (stem bark), garcinoic acid, garcinal (both in seeds), garcifuran A and B, and garcipyran (all in roots). They showed a wide range of pharmacological activities (e.g. analgesic, anticancer, antidiabetic, anti-inflammatory, antimalarial, antimicrobial, hepatoprotective and neuroprotective effects), though this has only been confirmed in animal models. Kolaviron is the most studied compound and is perceived by many studies as the active principle of G. kola. However, its research is associated with significant flaws (e.g. too high doses tested, inappropriate positive control). Garcinol has been tested under better conditions and is perhaps showing more promising results and should attract deeper research interest (especially in the area of anticancer, antimicrobial, and neuroprotective activity). Human clinical trials and mechanism-of-action studies must be carried out to verify whether any of the compounds present in G. kola may be used as a lead in the drug development.
Collapse
Affiliation(s)
- Jan Tauchen
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Adela Frankova
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Anna Manourova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Irena Valterova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Bohdan Lojka
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Adoga JO, Channa ML, Nadar A. Type-2 diabetic rat heart: The effect of kolaviron on mTOR-1, P70S60K, PKC-α, NF-kB, SOD-2, NRF-2, eNOS, AKT-1, ACE, and P38 MAPK gene expression profile. Biomed Pharmacother 2022; 148:112736. [PMID: 35202911 DOI: 10.1016/j.biopha.2022.112736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/02/2022] Open
Abstract
It has been established that genetic factors partially contribute to type-2 diabetes and vascular disease development. This study determined the effect of kolaviron on the expression profile of genes associated with the insulin signaling pathway and involved in regulating glucose and lipid metabolism, oxidative stress, inflammation, vascular functions, pro-survival and the apoptosis pathway in the heart of type-2 diabetic rats. After induction and confirmation of type-2 diabetes seven days after, the rats were treated with kolaviron for twenty-eight days before being euthanized. Organs were harvested and stored at - 80 °C in a biofreezer. Total RNA was extracted from the ventricle, reverse transcribed to cDNA followed by a real-time quantitative polymerase chain reaction (RT-qPCR) analysis of the expression of mTOR-1, P70S60K, PKC-α, NF-kB, SOD-2, NRF-2, eNOS, AKT-1, ACE, p38 MAPK and the reference gene (GAPDH), after which they were normalized/standardized. The results show an increase in the relative mRNA expression of mTOR/P70S60K/PKCα /P38MAPK/NF-KB/ACE and a decrease in the relative mRNA expression of NRF2/SOD/AKT/eNOS in the heart of the diabetic rats. Nevertheless, kolaviron modulated the expression profile of these genes, which suggest a therapeutic effect and target for vascular dysfunction and complications in type-2 diabetes through the activation of the NRF-2/AKT-1/eNOS signaling pathway and suppression of the NF-kB/PKC signaling pathway.
Collapse
Affiliation(s)
- Jeffrey O Adoga
- Department of Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa.
| | - Mahendra L Channa
- Department of Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Anand Nadar
- Department of Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
5
|
Emmanuel O, Uche ME, Dike ED, Etumnu LR, Ugbogu OC, Ugbogu EA. A review on garcinia kola heckel: traditional uses, phytochemistry, pharmacological activities, and toxicology. Biomarkers 2021; 27:101-117. [PMID: 34904497 DOI: 10.1080/1354750x.2021.2016974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE Garcinia kola is a medicinal plant commonly known as bitter kola. It is utilised in ethnomedicine for the treatment of diarrhoea, bronchitis, bacterial infection, cough, hepatitis, gonorrhoea, laryngitis, food poison, liver and gastric diseases. OBJECTIVE This study reviewed the phytochemistry, pharmacological activities, and ethnomedicinal potentials of G. kola. MATERIALS AND METHODS An extensive review was performed using electronic literature collated from ScienceDirect, Springer, Wiley, and PubMed databases. RESULTS Phytochemical analysis revealed the isolation of several chemical compounds including 9-octadecenoic acid, linoleic acid, 14-methylpentadecanoic acid, 1-butanol, hexadecanamide, I-4',II-4',I-5,II-5,I-7,II-7-hexahydroxy-I-3,II-8-biflavanone, lanost-7-en-3-one, kolaflavanone (8E)-4-geranyl-3,5-dihydroxybenzophenone, glutinol, Garcinia biflavonoid (GB-2a-II-4'-OMe), 9,19-cyclolanost-24-en-3-ol, 24-methylene, tirucallol, lupeol, β-amyrin, obtusifoliol and Kolaviron. Diverse pharmacological in-vivo and in vitro investigations revealed that G. kola has anti-inflammatory, antimalarial, hepatoprotective, cardioprotective, anti-asthmatic, neuroprotective, antioxidant, and antidiabetic activities. CONCLUSION The present study revealed that G. kola has preventive and therapeutic potentials against various diseases in both in vivo and in vitro studies and therefore can be utilised as a raw material in the pharmaceutical industries for the development of therapeutic products. However, there is a need for clinical trial experiments to validate and provide accurate and substantial information on the required safe dosage and efficacy for the treatment of several diseases.
Collapse
Affiliation(s)
- Okezie Emmanuel
- Department of Biochemistry, Abia State University, Uturu, Nigeria
| | - Miracle E Uche
- Department of Biochemistry, Abia State University, Uturu, Nigeria
| | - Emmanuel D Dike
- Department of Biochemistry, Abia State University, Uturu, Nigeria
| | - Lotanna R Etumnu
- Department of Biochemistry, Abia State University, Uturu, Nigeria
| | | | - Eziuche A Ugbogu
- Department of Biochemistry, Abia State University, Uturu, Nigeria
| |
Collapse
|
6
|
Fategbe MA, Avwioroko OJ, Ibukun EO. Comparative Biochemical Evaluation of the Proximate, Mineral, and Phytochemical Constituents of Xylopia aethiopica Whole Fruit, Seed, and Pericarp. Prev Nutr Food Sci 2021; 26:219-229. [PMID: 34316487 PMCID: PMC8276704 DOI: 10.3746/pnf.2021.26.2.219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/06/2022] Open
Abstract
This study evaluated the relative abundance of proximate, mineral, and phytochemical constituents of the anatomical parts of Xylopia aethiopica (XA) fruit using standard analytical procedures. The results showed that whole fruits (WF) have higher contents of crude protein, crude fiber, fat, ash, and moisture than the seeds (S) and pericarps (P). However, highest contents of crude carbohydrate and nitrogen free extracts were found in the P, followed by the S. The content of minerals (sodium, potassium, calcium, phosphorus, iron, zinc, magnesium, and copper) and phytochemicals were present in the following order of abundance: WF>S>P. Furthermore, the phytochemical constituents in each XA parts were present in the following order of relative abundance: total flavonoids>tannins>total phenolics>cardiac glycoside>alkaloids>steroids. Vitamin A was abundant in all three parts, with the abundance highest in WF [4.83±0.06 g vitamin A equivalent (vit A eq)/100 g] and lowest in P (1.64±0.02 g vit A eq/100 g). This preliminary study indicates XA fruits are rich in minerals, anti-nutrients, and phytochemicals. Therefore, these data could represent a biochemical rationale for inclusion of XA as a spice or functional ingredient in many Nigerian local soups to help prevent ailments.
Collapse
Affiliation(s)
- Mojisola Adebimpe Fategbe
- Department of Biochemistry, School of Science, Federal University of Technology Akure, Ondo State 340252, Nigeria
| | - Oghenetega Jonathan Avwioroko
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State 232102, Nigeria
| | - Emmanuel Olufemi Ibukun
- Department of Biochemistry, School of Science, Federal University of Technology Akure, Ondo State 340252, Nigeria
| |
Collapse
|
7
|
Ginkgetin Alleviates Inflammation, Oxidative Stress, and Apoptosis Induced by Hypoxia/Reoxygenation in H9C2 Cells via Caspase-3 Dependent Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1928410. [PMID: 33204684 PMCID: PMC7661124 DOI: 10.1155/2020/1928410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/04/2020] [Accepted: 08/24/2020] [Indexed: 11/18/2022]
Abstract
Ginkgetin, the extract of Ginkgo biloba leaves, has been reported to exert preventive and therapeutic effects on cardiovascular disease. However, little is known about its role in myocardial ischemia-reperfusion injury (MIRI). The present study aimed to unveil the function of ginkgetin in cardiomyocytes subjected to hypoxia/reoxygenation (H/R) injury. Cell Counting Kit-8 (CCK-8) was employed to evaluate the impact of ginkgetin on cell viability in the absence or presence of H/R. Proinflammatory cytokines and malondialdehyde (MDA), reactive oxygen species (SOD), and lactate dehydrogenase (LDH) were determined via corresponding kits. In addition, flow cytometry was performed to detect apoptotic level. Western blot analysis was utilized to estimate caspase-3 and cytochrome C. Ginkgetin had no significant effect on cell viability; however, it could enhance viability of H9C2 cells exposed to H/R. Inflammation and oxidative stress induced by H/R injury were relieved via pretreatment with ginkgetin. Preconditioning of ginkgetin also decreased apoptotic rate and the protein levels of caspase-3, cytochrome C under H/R condition. Furthermore, 2-HBA, an inducer of caspase-3, was used for the activation of caspase-3 signaling pathway. It was found that induction of caspase-3 eliminated the protective effect of ginkgetin on H9C2 cells exposed to H/R. These results indicated that ginkgetin attenuated inflammation, oxidative stress, and apoptosis. These protective roles of ginkgetin may attribute to caspase-3 dependent pathway.
Collapse
|
8
|
Caplan IF, Maguire-Zeiss KA. Toll-Like Receptor 2 Signaling and Current Approaches for Therapeutic Modulation in Synucleinopathies. Front Pharmacol 2018; 9:417. [PMID: 29780321 PMCID: PMC5945810 DOI: 10.3389/fphar.2018.00417] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/10/2018] [Indexed: 12/18/2022] Open
Abstract
The innate immune response in the central nervous system (CNS) is implicated as both beneficial and detrimental to health. Integral to this process are microglia, the resident immune cells of the CNS. Microglia express a wide variety of pattern-recognition receptors, such as Toll-like receptors, that detect changes in the neural environment. The activation of microglia and the subsequent proinflammatory response has become increasingly relevant to synucleinopathies, including Parkinson's disease the second most prevalent neurodegenerative disease. Within these diseases there is evidence of the accumulation of endogenous α-synuclein that stimulates an inflammatory response from microglia via the Toll-like receptors. There have been recent developments in both new and old pharmacological agents designed to target microglia and curtail the inflammatory environment. This review will aim to delineate the process of microglia-mediated inflammation and new therapeutic avenues to manage the response.
Collapse
Affiliation(s)
- Ian F Caplan
- Biology Department, Georgetown University, Washington, DC, United States
| | - Kathleen A Maguire-Zeiss
- Biology Department, Georgetown University, Washington, DC, United States.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|