1
|
Ebrahimi P, Hoxha L, Mihaylova D, Nicoletto M, Lante A. UV-A treatment of phenolic extracts impacts colour, bioactive compounds and antioxidant activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9559-9568. [PMID: 39072782 DOI: 10.1002/jsfa.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The unintended co-extraction of chlorophylls during the recovery of polyphenols from plant sources yields green-coloured phenolic extracts with limited use in colour-sensitive foods. This study aimed at decolourizing the ethanolic extracts of sugar beet leaves using a UV-A treatment (390 nm). RESULTS Exposure of the phenolic extracts to 30 UV-A LEDs at 8.64 J m-2 radiation dose decreased the total chlorophyll content by 69.23% and reduced the greenness parameter (-a*) significantly (P < 0.05) from 27.33 ± 0.32 to 8.64 ± 0.16. Additionally, UV-A treatment increased the content of most individual phenolic compounds (e.g. gallic acid, ferulic acid, etc.) significantly, resulting in an increase in the overall phenolic content in the extracts from 900.56 ± 14.11 μg g-1 fresh weight (FW) to a maximum of 975.09 ± 9.62 μg g-1 FW at 0.67 J m-2. However, rutin content had a significant decrease at the highest radiation dose (8.64 J m-2). The soluble sugar content (i.e. glucose and fructose) increased simultaneously with phenolic compounds after the UV-A treatment. Although the UV treatment reduced the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, it had no significant effect on the ferrous chelating activity and the extract's ability to delay lipid oxidation in corn oil. The antioxidant activity index of the treated extract was comparable to that of butylated hydroxytoluene, a synthetic antioxidant. CONCLUSION Key findings of this study include successful decolourization of the extract, decomposition of bound polyphenols to their free form, and maintaining the antioxidant activity of the extract in the oil system after UV-A exposure. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Peyman Ebrahimi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment - DAFNAE, University of Padova, Legnaro, Italy
| | - Luziana Hoxha
- Department of Agronomy, Food, Natural Resources, Animals, and Environment - DAFNAE, University of Padova, Legnaro, Italy
| | - Dasha Mihaylova
- Department of Biotechnology, University of Food Technologies, Plovdiv, Bulgaria
| | - Marino Nicoletto
- Istituto Nazionale di Fisica Nucleare, Sezione di Padova - INFN, Padova, Italy
| | - Anna Lante
- Department of Agronomy, Food, Natural Resources, Animals, and Environment - DAFNAE, University of Padova, Legnaro, Italy
| |
Collapse
|
2
|
Chou SP, Chuang YJ, Chen BS. Systems Biology Methods via Genome-Wide RNA Sequences to Investigate Pathogenic Mechanisms for Identifying Biomarkers and Constructing a DNN-Based Drug-Target Interaction Model to Predict Potential Molecular Drugs for Treating Atopic Dermatitis. Int J Mol Sci 2024; 25:10691. [PMID: 39409019 PMCID: PMC11477013 DOI: 10.3390/ijms251910691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
This study aimed to construct genome-wide genetic and epigenetic networks (GWGENs) of atopic dermatitis (AD) and healthy controls through systems biology methods based on genome-wide microarray data. Subsequently, the core GWGENs of AD and healthy controls were extracted from their real GWGENs by the principal network projection (PNP) method for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation. Then, we identified the abnormal signaling pathways by comparing the core signaling pathways of AD and healthy controls to investigate the pathogenesis of AD. Then, IL-1β, GATA3, Akt, and NF-κB were selected as biomarkers for their important roles in the abnormal regulation of downstream genes, leading to cellular dysfunctions in AD patients. Next, a deep neural network (DNN)-based drug-target interaction (DTI) model was pre-trained on DTI databases to predict molecular drugs that interact with these biomarkers. Finally, we screened the candidate molecular drugs based on drug toxicity, sensitivity, and regulatory ability as drug design specifications to select potential molecular drugs for these biomarkers to treat AD, including metformin, allantoin, and U-0126, which have shown potential for therapeutic treatment by regulating abnormal immune responses and restoring the pathogenic signaling pathways of AD.
Collapse
Affiliation(s)
- Sheng-Ping Chou
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Yung-Jen Chuang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| |
Collapse
|
3
|
Jesus A, Sousa E, Cidade H, Cruz MT, Almeida IF. How to fight acute sun damage? Current skin care strategies. Photochem Photobiol Sci 2024; 23:1915-1930. [PMID: 39342016 DOI: 10.1007/s43630-024-00641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Excessive exposure to sunlight can contribute for skin photo-damage, such as sunburn, dryness, wrinkles, hyperpigmentation, immunosuppressive events and skin sensitization reactions. The use of aftersun products is an effective strategy to reduce the visible signs and symptoms of acute photodamage in the skin. Aiming to unveil the active ingredients able to offset acute sun damage, this work focuses on the characterization of the aftersun products market. A total of 84 after-sun formulations from 41 international brands currently marketed in Portugal were analyzed concerning the composition described on the product label, identifying natural and synthetic/semi-synthetic ingredients with the ability to mitigate solar-induced effects. The majority of aftersun formulations contained ingredients derived from terrestrial and marine sources (> 80%). An in-depth examination of these compounds is also offered, revealing the top of the most used natural and synthetic/semi-synthetic ingredients present in aftersun products, as well as their mechanism of action. A critical appraisal of the scientific data was made aiming to highlight the scientific evidence of ingredients able to mitigate skin photodamage. Amino acids and peptides, and A. barbadensis extract were tested for their in vivo efficacy. Nevertheless, all the ingredients were analyzed with in vitro studies as preliminary screening before in vivo, ex vivo and/or clinical studies. In summary, this study provides an overview of the use of active ingredients in commercial aftersun products to understand better the benefits associated with their use in cosmetic formulations and identify opportunities for innovation.
Collapse
Affiliation(s)
- Ana Jesus
- Faculty of Pharmacy, UCIBIO-Applied Molecular Biosciences Unit, University of Porto, 4050-313, Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- CIIMAR-Interdisciplinary Center of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- CIIMAR-Interdisciplinary Center of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - Maria T Cruz
- Faculty of Pharmacy, University of Coimbra, 3004-531, Coimbra, Portugal.
- Center for Neuroscience and Cell Biology, 3004-504, Coimbra, Portugal.
| | - Isabel F Almeida
- Faculty of Pharmacy, UCIBIO-Applied Molecular Biosciences Unit, University of Porto, 4050-313, Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| |
Collapse
|
4
|
Tzima S, Georgiopoulou I, Louli V, Magoulas K. Recent Advances in Supercritical CO 2 Extraction of Pigments, Lipids and Bioactive Compounds from Microalgae. Molecules 2023; 28:molecules28031410. [PMID: 36771076 PMCID: PMC9920624 DOI: 10.3390/molecules28031410] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Supercritical CO2 extraction is a green method that combines economic and environmental benefits. Microalgae, on the other hand, is a biomass in abundance, capable of providing a vast variety of valuable compounds, finding applications in the food industry, cosmetics, pharmaceuticals and biofuels. An extensive study on the existing literature concerning supercritical fluid extraction (SFE) of microalgae has been carried out focusing on carotenoids, chlorophylls, lipids and fatty acids recovery, as well as the bioactivity of the extracts. Moreover, kinetic models used to describe SFE process and experimental design are included. Finally, biomass pretreatment processes applied prior to SFE are mentioned, and other extraction methods used as benchmarks are also presented.
Collapse
|
5
|
Biocompatibility and Antibacterial Action of Salvadora persica Extract as Intracanal Medication (In Vitro and Ex Vivo Experiment). MATERIALS 2022; 15:ma15041373. [PMID: 35207914 PMCID: PMC8878108 DOI: 10.3390/ma15041373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023]
Abstract
This study aimed to test the biocompatibility and antibacterial properties of Salvadora persica (S. persica) extract, a natural product, as an intracanal medication in comparison with calcium hydroxide (Metapaste, META BIOMED, Cheongju, Korea). The pH values of both materials were tested. The biocompatibility of S. persica extract and Metapaste was determined using light microscopy and MTT assays. The antibacterial action was tested using the zone of bacterial inhibition on four common bacterial species. In addition, intracanal medication was administered using 68 extracted single-rooted teeth contaminated with Enterococcus faecalis (E. faecalis), and the percentage reduction in colony count (% RCC) at 1, 3, and 7 days was measured. The extension of activity for both materials was assessed using histological sections and scanning electron microscopy. S. persica was found to be acidic in nature. Both materials showed significantly lower cell viability than the positive control cells on days 1 and 3 but not on day 7. S. persica showed better antibacterial effects against E. faecalis and S. mutans. S. persica extract showed 97.6%, 98.9%, and 99.3% RCC values at 1, 3, and 7 days, respectively, which are comparable to those of Metapaste. S. persica herbal extract is a promising material that can be utilized as an intracanal medication, but its use requires further research.
Collapse
|
6
|
Allantoin from Valuable Romanian Animal and Plant Sources with Promising Anti-Inflammatory Activity as a Nutricosmetic Ingredient. SUSTAINABILITY 2021. [DOI: 10.3390/su131810170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Helix aspersa (HA), Helix pomatia (HP) and Symphytum officinale are common organisms in Romania’s biosphere, widely known for their allantoin content and their therapeutic properties. Herein, the allantoin was separated and quantified from the aqueous extracts of Romanian comfrey root and the secretions of HA and HP snails. This study also focused on determining the antioxidant and anti-inflammatory activities of these Romanian allantoin-rich samples. The plant extracts were obtained through two methods: ultrasonic extraction and enzymatic ultrasonic extraction. A microplate method was used for the quantitative determination of allantoin content. The antioxidant activity was measured by using the DPPH radical scavenging method. The antioxidant capacity of the samples was studied in order to observe the type of interactions generated by the chemical complex present in their composition. High concentrations of allantoin were obtained by enzymatic ultrasonic extraction method (EUE—102 ± 0.74 μg/mL), and also in the water-soluble fraction of the snail secretion (FS1—22.051 μg/mL). The antioxidant screening suggests that Symphytum officinale and snail mucus extracts could be used as promising natural substitutes for synthetic antioxidants in products used for therapeutic purposes. The evaluation of anti-inflammatory activity was also investigated, allantoin-rich samples showing a promising action (FS1—81.87 ± 2.34%). In future, the inclusion of allantoin-rich extracts in various novel pharmaceutical forms for new therapeutic applications could be achieved. The study will continue with the formulation of a nutricosmetic product with snail mucus and Symphytum officinale extract as principal bioactive ingredients.
Collapse
|
7
|
Aman RM, Zaghloul RA, El-Dahhan MS. Formulation, optimization and characterization of allantoin-loaded chitosan nanoparticles to alleviate ethanol-induced gastric ulcer: in-vitro and in-vivo studies. Sci Rep 2021; 11:2216. [PMID: 33500454 PMCID: PMC7838192 DOI: 10.1038/s41598-021-81183-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Allantoin (ALL) is a phytochemical possessing an impressive array of biological activities. Nonetheless, developing a nanostructured delivery system targeted to augment the gastric antiulcerogenic activity of ALL has not been so far investigated. Consequently, in this survey, ALL-loaded chitosan/sodium tripolyphosphate nanoparticles (ALL-loaded CS/STPP NPs) were prepared by ionotropic gelation technique and thoroughly characterized. A full 24 factorial design was adopted using four independently controlled parameters (ICPs). Comprehensive characterization, in vitro evaluations as well as antiulcerogenic activity study against ethanol-induced gastric ulcer in rats of the optimized NPs formula were conducted. The optimized NPs formula, (CS (1.5% w/v), STPP (0.3% w/v), CS:STPP volume ratio (5:1), ALL amount (13 mg)), was the most convenient one with drug content of 6.26 mg, drug entrapment efficiency % of 48.12%, particle size of 508.3 nm, polydispersity index 0.29 and ζ-potential of + 35.70 mV. It displayed a sustained in vitro release profile and mucoadhesive strength of 45.55%. ALL-loaded CS/STPP NPs (F-9) provoked remarkable antiulcerogenic activity against ethanol-induced gastric ulceration in rats, which was accentuated by histopathological, immunohistochemical (IHC) and biochemical studies. In conclusion, the prepared ALL-loaded CS/STPP NPs could be presented to the phytomedicine field as an auspicious oral delivery system for gastric ulceration management.
Collapse
Affiliation(s)
- Reham Mokhtar Aman
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Randa A Zaghloul
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Marwa S El-Dahhan
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
8
|
Salehi B, Sharopov F, Boyunegmez Tumer T, Ozleyen A, Rodríguez-Pérez C, Ezzat SM, Azzini E, Hosseinabadi T, Butnariu M, Sarac I, Bostan C, Acharya K, Sen S, Nur Kasapoglu K, Daşkaya-Dikmen C, Özçelik B, Baghalpour N, Sharifi-Rad J, Valere Tsouh Fokou P, Cho WC, Martins N. Symphytum Species: A Comprehensive Review on Chemical Composition, Food Applications and Phytopharmacology. Molecules 2019; 24:2272. [PMID: 31216776 PMCID: PMC6631335 DOI: 10.3390/molecules24122272,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 06/28/2023] Open
Abstract
Symphytum species belongs to the Boraginaceae family and have been used for centuries for bone breakages, sprains and rheumatism, liver problems, gastritis, ulcers, skin problems, joint pain and contusions, wounds, gout, hematomas and thrombophlebitis. Considering the innumerable potentialities of the Symphytum species and their widespread use in the world, it is extremely important to provide data compiling the available literature to identify the areas of intense research and the main gaps in order to design future studies. The present review aims at summarizing the main data on the therapeutic indications of the Symphytum species based on the current evidence, also emphasizing data on both the efficacy and adverse effects. The present review was carried out by consulting PubMed (Medline), Web of Science, Embase, Scopus, Cochrane Database, Science Direct and Google Scholar (as a search engine) databases to retrieve the most updated articles on this topic. All articles were carefully analyzed by the authors to assess their strengths and weaknesses, and to select the most useful ones for the purpose of review, prioritizing articles published from 1956 to 2018. The pharmacological effects of the Symphytum species are attributed to several chemical compounds, among them allantoin, phenolic compounds, glycopeptides, polysaccharides and some toxic pyrrolizidine alkaloids. Not less important to highlight are the risks associated with its use. In fact, there is increasing consumption of over-the-counter drugs, which when associated with conventional drugs can cause serious and even fatal adverse events. Although clinical trials sustain the folk topical application of Symphytum species in musculoskeletal and blunt injuries, with minor adverse effects, its antimicrobial potency was still poorly investigated. Further studies are needed to assess the antimicrobial spectrum of Symphytum species and to characterize the active molecules both in vitro and in vivo.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran.
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan.
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey.
| | - Adem Ozleyen
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey.
| | - Celia Rodríguez-Pérez
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, E-18071 Granada, Spain.
- Institute of Nutrition and Food Technology (INYTA) 'José Mataix', Biomedical Research Centre, University of Granada, Avenida del Conocimiento s/n, E-18071 Granada, Spain.
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Science and Arts (MSA), 6th October City 12566, Egypt.
| | - Elena Azzini
- Centre for Research on Food and Nutrition, Council for Agricultural Research and Economics, Rome 546-00178 , Italy.
| | - Tahereh Hosseinabadi
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, 300645 Calea Aradului 119, Timis, Romania.
| | - Ioan Sarac
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, 300645 Calea Aradului 119, Timis, Romania.
| | - Cristian Bostan
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, 300645 Calea Aradului 119, Timis, Romania.
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India.
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India.
- Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal 743331, India.
| | - Kadriye Nur Kasapoglu
- Istanbul Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Ayazağa Campus, Maslak 34469, Istanbul, Turkey.
| | - Ceren Daşkaya-Dikmen
- Istanbul Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Ayazağa Campus, Maslak 34469, Istanbul, Turkey.
- Istanbul Gedik University, Department of Gastronomy and Culinary Arts, 34876 Kartal, Istanbul, Turkey.
| | - Beraat Özçelik
- Istanbul Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Ayazağa Campus, Maslak 34469, Istanbul, Turkey.
- Bioactive Research & Innovation Food Manufac. Indust. Trade Ltd., Katar Street, Teknokent ARI-3, B110, Sarıyer 34467, Istanbul, Turkey.
| | - Navid Baghalpour
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | - Patrick Valere Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, Annex Fac. Sci, Yaounde 812, Cameroon.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
9
|
Salehi B, Sharopov F, Boyunegmez Tumer T, Ozleyen A, Rodríguez-Pérez C, Ezzat SM, Azzini E, Hosseinabadi T, Butnariu M, Sarac I, Bostan C, Acharya K, Sen S, Nur Kasapoglu K, Daşkaya-Dikmen C, Özçelik B, Baghalpour N, Sharifi-Rad J, Valere Tsouh Fokou P, Cho WC, Martins N. Symphytum Species: A Comprehensive Review on Chemical Composition, Food Applications and Phytopharmacology. Molecules 2019; 24:E2272. [PMID: 31216776 PMCID: PMC6631335 DOI: 10.3390/molecules24122272] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
Symphytum species belongs to the Boraginaceae family and have been used for centuries for bone breakages, sprains and rheumatism, liver problems, gastritis, ulcers, skin problems, joint pain and contusions, wounds, gout, hematomas and thrombophlebitis. Considering the innumerable potentialities of the Symphytum species and their widespread use in the world, it is extremely important to provide data compiling the available literature to identify the areas of intense research and the main gaps in order to design future studies. The present review aims at summarizing the main data on the therapeutic indications of the Symphytum species based on the current evidence, also emphasizing data on both the efficacy and adverse effects. The present review was carried out by consulting PubMed (Medline), Web of Science, Embase, Scopus, Cochrane Database, Science Direct and Google Scholar (as a search engine) databases to retrieve the most updated articles on this topic. All articles were carefully analyzed by the authors to assess their strengths and weaknesses, and to select the most useful ones for the purpose of review, prioritizing articles published from 1956 to 2018. The pharmacological effects of the Symphytum species are attributed to several chemical compounds, among them allantoin, phenolic compounds, glycopeptides, polysaccharides and some toxic pyrrolizidine alkaloids. Not less important to highlight are the risks associated with its use. In fact, there is increasing consumption of over-the-counter drugs, which when associated with conventional drugs can cause serious and even fatal adverse events. Although clinical trials sustain the folk topical application of Symphytum species in musculoskeletal and blunt injuries, with minor adverse effects, its antimicrobial potency was still poorly investigated. Further studies are needed to assess the antimicrobial spectrum of Symphytum species and to characterize the active molecules both in vitro and in vivo.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran.
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan.
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey.
| | - Adem Ozleyen
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey.
| | - Celia Rodríguez-Pérez
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, E-18071 Granada, Spain.
- Institute of Nutrition and Food Technology (INYTA) 'José Mataix', Biomedical Research Centre, University of Granada, Avenida del Conocimiento s/n, E-18071 Granada, Spain.
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Science and Arts (MSA), 6th October City 12566, Egypt.
| | - Elena Azzini
- Centre for Research on Food and Nutrition, Council for Agricultural Research and Economics, Rome 546-00178 , Italy.
| | - Tahereh Hosseinabadi
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, 300645 Calea Aradului 119, Timis, Romania.
| | - Ioan Sarac
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, 300645 Calea Aradului 119, Timis, Romania.
| | - Cristian Bostan
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, 300645 Calea Aradului 119, Timis, Romania.
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India.
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India.
- Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal 743331, India.
| | - Kadriye Nur Kasapoglu
- Istanbul Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Ayazağa Campus, Maslak 34469, Istanbul, Turkey.
| | - Ceren Daşkaya-Dikmen
- Istanbul Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Ayazağa Campus, Maslak 34469, Istanbul, Turkey.
- Istanbul Gedik University, Department of Gastronomy and Culinary Arts, 34876 Kartal, Istanbul, Turkey.
| | - Beraat Özçelik
- Istanbul Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Ayazağa Campus, Maslak 34469, Istanbul, Turkey.
- Bioactive Research & Innovation Food Manufac. Indust. Trade Ltd., Katar Street, Teknokent ARI-3, B110, Sarıyer 34467, Istanbul, Turkey.
| | - Navid Baghalpour
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | - Patrick Valere Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, Annex Fac. Sci, Yaounde 812, Cameroon.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| |
Collapse
|