1
|
Pan X, Tao J, Xing Q, Wang B, Dou M, Zhang Y, Jin S, Wu J. Borneol promotes berberine-induced cardioprotection in a rat model of myocardial ischemia/reperfusion injury via inhibiting P-glycoprotein expression. Eur J Pharmacol 2024; 983:177009. [PMID: 39306269 DOI: 10.1016/j.ejphar.2024.177009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Berberine is reported to protect the heart against ischemia/reperfusion (I/R) injury, although efficacy is limited by low bioavailability. This study aims to determine whether borneol, a classic guiding drug, can enhance the cardioprotection induced by berberine and to clarify the underlying mechanisms involving P-glycoprotein (P-gp) in the heart. Adult male Sprague Dawley rats were gavaged with berberine (200 mg/kg) with or without borneol (100 mg/kg) for 7 consecutive days. A rat model of myocardial I/R injury was established by 30 min left coronary artery occlusion followed with 120 min reperfusion. The arrhythmia score, cardiac enzyme content, and myocardial infarct size were determined following reperfusion. Heart tissues were collected for Western blot and immunofluorescence analyses to measure the protein expression levels of Bcl-2, Bax, and P-gp. The results showed that administration of berberine protected the heart against I/R injury, as demonstrated by lower arrhythmia scores, serum cTnI contents, myocardial infarct size, and cardiomyocytes apoptosis. Moreover, borneol substantially enhanced the cardioprotective effects of berberine. Western blot and immunofluorescence analyses showed that both berberine and I/R injury did not alter P-gp expression in heart. In contrast, borneol combined with berberine significantly reduced P-gp levels by 43.4% (P = 0.0240). Interestingly, treatment with borneol alone decreased P-gp levels, but did not protect against myocardial I/R injury. These findings suggest that borneol, as an adjuvant drug, improved the cardioprotective effects of berberine by inhibiting P-gp expression in heart. Borneol combined with berberine administration provides a new strategy to protect the heart against I/R injury.
Collapse
Affiliation(s)
- Xinxin Pan
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Jing Tao
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China; Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Qijing Xing
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Baoli Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Mengyun Dou
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Ye Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China.
| | - Shiyun Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China.
| | - Juan Wu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
2
|
Han Z, Zhao Z, Yu H, Wang L, Yue C, Zhu B, Zhu Y, Li Z, Sha Z. Microenvironment-Responsive Hydrogel Reduces Seizures After Traumatic Brain Injury in Juvenile Rats by Reducing Oxidative Stress and Hippocampal Inflammation. Macromol Biosci 2024; 24:e2400050. [PMID: 38810210 DOI: 10.1002/mabi.202400050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Indexed: 05/31/2024]
Abstract
Traumatic brain injury (TBI) is the primary cause of child mortality and disability worldwide. It can result in severe complications that significantly impact children's quality of life, including post-traumatic epilepsy (PTE). An increasing number of studies suggest that TBI-induced oxidative stress and neuroinflammatory sequelae (especially, inflammation in the hippocampus region) may lead to the development of PTE. Due to the blood-brain barrier (BBB), typical systemic pharmacological therapy for TBI cannot deliver berberine (BBR) to the targeted location in the early stages of the injury, although BBR has strong anti-inflammatory properties. To break through this limitation, a microenvironment-responsive gelatin methacrylate (GM) hydrogel to deliver poly(propylene sulfide)60 (PPS60) and BBR (GM/PB) is developed for regulating neuroinflammatory reactions and removing reactive oxygen species (ROS) in the brain trauma microenvironment through PPS60. In situ injection of the GM/PB hydrogel efficiently bypasses the BBB and is administered directly to the surface of brain tissue. In post-traumatic brain injury models, GM/PB has the potential to mitigate oxidative stress and neuroinflammatory responses, facilitate functional recovery, and lessen seizing. These findings can lead to a new treatment for brain injuries, which minimizes complications and improves the quality of life.
Collapse
Affiliation(s)
- Zhengzhong Han
- Department of Neurosurgery, Xuzhou Children's Hospital, No. 18 Sudi North Road, Quanshan District, Xuzhou, 221002, P. R. China
- Clinical College, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221002, P. R. China
| | - Zeqi Zhao
- Clinical College, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221002, P. R. China
- Department of Otolaryngology, The Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Xuzhou, 221002, P. R. China
| | - Hao Yu
- Pediatric Epilepsy Center, Peking University First Hospital, No. 5 Leyuan Road, Daxing District, Beijing, 102627, P. R. China
| | - Lansheng Wang
- Clinical College, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221002, P. R. China
| | - Chenglong Yue
- Department of Neurosurgery, Xuzhou Children's Hospital, No. 18 Sudi North Road, Quanshan District, Xuzhou, 221002, P. R. China
- Clinical College, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221002, P. R. China
| | - Bingxin Zhu
- Department of Neurosurgery, Xuzhou Children's Hospital, No. 18 Sudi North Road, Quanshan District, Xuzhou, 221002, P. R. China
- Clinical College, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221002, P. R. China
| | - Yongqi Zhu
- Department of Neurosurgery, Xuzhou Children's Hospital, No. 18 Sudi North Road, Quanshan District, Xuzhou, 221002, P. R. China
- Clinical College, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221002, P. R. China
| | - Zhengwei Li
- Department of Neurosurgery, Xuzhou Children's Hospital, No. 18 Sudi North Road, Quanshan District, Xuzhou, 221002, P. R. China
- Clinical College, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221002, P. R. China
| | - Zhuang Sha
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Xuzhou, 221002, P. R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Ministry of Education, 154 Anshan Road, Heping District, Tianjin, 300052, China
| |
Collapse
|
3
|
Shakeri F, Kiani S, Rahimi G, Boskabady MH. Anti-inflammatory, antioxidant, and immunomodulatory effects of Berberis vulgaris and its constituent berberine, experimental and clinical, a review. Phytother Res 2024; 38:1882-1902. [PMID: 38358731 DOI: 10.1002/ptr.8077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 02/16/2024]
Abstract
Berberis vulgaris (B. vulgaris or barberry) is a medicinal plant that has been used for various purposes in traditional medicine. Berberine is one of the main alkaloids isolated from B. vulgaris and other plants. Both B. vulgaris and berberine have shown anti-inflammatory, antioxidant, and immunomodulatory effects in different experimental models and clinical trials. This review aims to summarize the current evidence on the mechanisms and applications of B. vulgaris and berberine in modulating inflammation, oxidative stress, and immune responses. The literature search was performed using PubMed, Scopus, and Google Scholar databases until August 2023. The results indicated that B. vulgaris and berberine could inhibit the production of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), interleukin 6 (IL-6), and interleukin-17 (IL-17), and enhance the expression of anti-inflammatory cytokines, such as interleukin 10 (IL-10) and transforming growth factor-β (TGF-β), in various cell types and tissues. B. vulgaris and berberine can also scavenge free radicals, increase antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and reduce lipid peroxidation and DNA damage. B. vulgaris and berberine have been reported to exert beneficial effects in several inflammatory, oxidative, and immune-related diseases, such as diabetes, obesity, cardiovascular diseases, neurodegenerative diseases, autoimmune diseases, allergic diseases, and infections. However, more studies are needed to elucidate the optimal doses, safety profiles, and potential interactions of B. vulgaris and berberine with other drugs or natural compounds.
Collapse
Affiliation(s)
- Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Kiani
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Golnoosh Rahimi
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Peng Y, Sun L, Guo W, Liu Z, Wang T, Zou T, Zhou J, Yang X, Fan X. Berberine protects cyclophosphamide and busulfan-induced premature ovarian insufficiency in mouse model. J Pharmacol Sci 2023; 153:46-54. [PMID: 37524454 DOI: 10.1016/j.jphs.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a clinical syndrome that declines ovarian function in women. Berberine (BBR) is a compound with anti-inflammatory, antioxidant, and anti-apoptotic activities. However, the role of BBR on POI is still unknown. In this study, we investigated the role of BBR on ovarian function decline by establishing a POI mouse model using cyclophosphamide (CTX) and busulfan (BU). Our results showed that POI was attenuated by BBR, which was evidenced by enhanced body weight and ovarian weight, improved morphology of ovary, increased the number of healthy follicles, decreased the production of atretic follicles and restored serum hormone levels, including estradiol, anti-Müllerian hormone and follicle-stimulating hormone. In addition, we showed that germ cell function markers, mouse vasa homologue (MVH) and octamer-binding transcription factor 4 (OCT4) were enhanced by BBR, at both protein and mRNA levels. Furthermore, our results revealed that BBR inhibited inflammation and oxidative stress by reducing nuclear factor kappa B (NF-κB) and enhancing nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. Taken together, we demonstrate that BBR can effectively improve ovarian function in POI mice, which is mainly mediated by reducing oxidative stress and inflammatory response. Our study also provides new strategy for POI treatment.
Collapse
Affiliation(s)
- Ying Peng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lu Sun
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Wentong Guo
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhigang Liu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tianxiang Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tingfeng Zou
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jie Zhou
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Xiaodong Fan
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China.
| |
Collapse
|
5
|
Nadalin P, Kim YG, Park SU. Recent studies on berberine and its biological and pharmacological activities. EXCLI JOURNAL 2023; 22:315-328. [PMID: 37223077 PMCID: PMC10201012 DOI: 10.17179/excli2022-5898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 05/25/2023]
Affiliation(s)
- Priscilla Nadalin
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Yong-Goo Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| |
Collapse
|
6
|
Fu K, Chen H, Mei L, Wang J, Gong B, Li Y, Cao R. Berberine enhances autophagic flux by activating the Nrf2 signaling pathway in bovine endometrial epithelial cells to resist LPS-induced apoptosis. Anim Sci J 2023; 94:e13847. [PMID: 37427761 DOI: 10.1111/asj.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/20/2023] [Accepted: 04/18/2023] [Indexed: 07/11/2023]
Abstract
Berberine exerts many beneficial effects on lipopolysaccharide (LPS)-induced bovine endometrial epithelial cells (BEECs). Recently, we also found that berberine shows significant antiapoptotic and autophagy-promoting activities, but the underlying mechanism has not been elucidated. This research explored the association between the antiapoptotic and autophagy-promoting activities of berberine in LPS-treated BEECs. BEECs were first preconditioned with an inhibitor of autophagic flux (chloroquine [CQ]) for 1 h, treated with berberine for 2 h, and then incubated with LPS for 3 h. Cell apoptosis was assessed by flow cytometry, and autophagy activities were assessed by immunoblot analysis of LC3II and p62. The results indicated that the antiapoptotic activity of berberine was notably inhibited in LPS-treated BEECs after preconditioning with CQ for 1 h. Furthermore, to determine whether berberine promoted autophagy by activating the nuclear factor-erythroid 2 related factor 2 (Nrf2) signaling pathway, we assessed autophagy in LPS-treated BEECs after preconditioning with a signaling pathway inhibitor of Nrf2 (ML385). The results indicated that the enhanced autophagy activity induced by berberine was partially reversed in LPS-treated BEECs after the Nrf2 signaling pathway was disturbed by ML385. In conclusion, berberine enhances autophagic flux to allow resistance to LPS-induced apoptosis by activating the Nrf2 signaling pathway in BEECs. The present study may provide new insight into the antiapoptotic mechanism of berberine in LPS-induced BEECs.
Collapse
Affiliation(s)
- Kaiqiang Fu
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, Qingdao, China
| | - Han Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, Qingdao, China
| | - Lian Mei
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, Qingdao, China
| | - Jifang Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, Qingdao, China
| | - Benzhi Gong
- Academy of Agricultural Sciences, Shandong, Jining, China
| | - Yan Li
- Animal Disease Prevention and Control Center, Shandong, Junan, China
| | - Rongfeng Cao
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, Qingdao, China
| |
Collapse
|