1
|
Anlar GG, Anwardeen N, Al Ashmar S, Pedersen S, Elrayess MA, Zeidan A. Metabolomics Profiling of Stages of Coronary Artery Disease Progression. Metabolites 2024; 14:292. [PMID: 38921428 PMCID: PMC11205943 DOI: 10.3390/metabo14060292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 06/27/2024] Open
Abstract
Coronary artery disease (CAD) and atherosclerosis pose significant global health challenges, with intricate molecular changes influencing disease progression. Hypercholesterolemia (HC), hypertension (HT), and diabetes are key contributors to CAD development. Metabolomics, with its comprehensive analysis of metabolites, offers a unique perspective on cardiovascular diseases. This study leveraged metabolomics profiling to investigate the progression of CAD, focusing on the interplay of hypercholesterolemia, hypertension, and diabetes. We performed a metabolomic analysis on 221 participants from four different groups: (I) healthy individuals, (II) individuals with hypercholesterolemia (HC), (III) individuals with both HC and hypertension (HT) or diabetes, and (IV) patients with self-reported coronary artery disease (CAD). Utilizing data from the Qatar Biobank, we combined clinical information, metabolomic profiling, and statistical analyses to identify key metabolites associated with CAD risk. Our data identified distinct metabolite profiles across the study groups, indicating changes in carbohydrate and lipid metabolism linked to CAD risk. Specifically, levels of mannitol/sorbitol, mannose, glucose, and ribitol increased, while pregnenediol sulfate, oleoylcarnitine, and quinolinate decreased with higher CAD risk. These findings suggest a significant role of sugar, steroid, and fatty acid metabolism in CAD progression and point to the need for further research on the correlation between quinolinate levels and CAD risk, potentially guiding targeted treatments for atherosclerosis. This study provides novel insights into the metabolomic changes associated with CAD progression, emphasizing the potential of metabolites as predictive biomarkers.
Collapse
Affiliation(s)
- Gulsen Guliz Anlar
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| | - Najeha Anwardeen
- Biomedical Research Center (BRC), QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.); (M.A.E.)
| | - Sarah Al Ashmar
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| | - Shona Pedersen
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| | - Mohamed A. Elrayess
- Biomedical Research Center (BRC), QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.); (M.A.E.)
| | - Asad Zeidan
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| |
Collapse
|
2
|
Ding M, Zhu Y, Xu X, He H, Jiang T, Mo X, Wang Z, Yu W, Ou H. Naringenin Inhibits Acid Sphingomyelinase-Mediated Membrane Raft Clustering to Reduce NADPH Oxidase Activation and Vascular Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7130-7139. [PMID: 38516841 DOI: 10.1021/acs.jafc.3c07874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Macrophage inflammation and oxidative stress promote atherosclerosis progression. Naringenin is a naturally occurring flavonoid with antiatherosclerotic properties. Here, we elucidated the effects of naringenin on monocyte/macrophage endothelial infiltration and vascular inflammation. We found naringenin inhibited oxidized low-density lipoprotein (oxLDL)-induced pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α toward an M2 macrophage phenotype and inhibited oxLDL-induced TLR4 (Toll-like receptor 4) membrane translocation and downstream NF-κB transcriptional activity. Results from flow cytometric analysis showed that naringenin reduced monocyte/macrophage infiltration in the aorta of high-fat-diet-treated ApoE-deficient mice. The aortic cytokine levels were also inhibited in naringenin-treated mice. Further, we found that naringenin reduced lipid raft clustering and acid sphingomyelinase (ASMase) membrane gathering and inhibited the TLR4 and NADPH oxidase subunit p47phox membrane recruitment, which reduced the inflammatory response. Recombinant ASMase treatment or overexpression of ASMase abolished the naringenin function and activated macrophage and vascular inflammation. We conclude that naringenin inhibits ASMase-mediated lipid raft redox signaling to attenuate macrophage activation and vascular inflammation.
Collapse
Affiliation(s)
- Meng Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang 561113, Guizhou, China
| | - Yuan Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang 561113, Guizhou, China
| | - Xiaoting Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang 561113, Guizhou, China
| | - Hui He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang 561113, Guizhou, China
| | - Tianyu Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang 561113, Guizhou, China
| | - Xiaochuan Mo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang 561113, Guizhou, China
| | - Zhuting Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang 561113, Guizhou, China
| | - Wenfeng Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang 561113, Guizhou, China
| | - Hailong Ou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang 561113, Guizhou, China
| |
Collapse
|
3
|
Cortés A, Marqués J, Pejenaute Á, Ainzúa E, Ansorena E, Abizanda G, Prósper F, de Miguel C, Zalba G. Endothelial NOX5 overexpression induces changes in the cardiac gene profile: potential impact in myocardial infarction? J Physiol Biochem 2023; 79:787-797. [PMID: 37566320 PMCID: PMC10635946 DOI: 10.1007/s13105-023-00975-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 07/06/2023] [Indexed: 08/12/2023]
Abstract
Cardiovascular diseases and the ischemic heart disease specifically constitute the main cause of death worldwide. The ischemic heart disease may lead to myocardial infarction, which in turn triggers numerous mechanisms and pathways involved in cardiac repair and remodeling. Our goal in the present study was to characterize the effect of the NADPH oxidase 5 (NOX5) endothelial expression in healthy and infarcted knock-in mice on diverse signaling pathways. The mechanisms studied in the heart of mice were the redox pathway, metalloproteinases and collagen pathway, signaling factors such as NFκB, AKT or Bcl-2, and adhesion molecules among others. Recent studies support that NOX5 expression in animal models can modify the environment and predisposes organ response to harmful stimuli prior to pathological processes. We found many alterations in the mRNA expression of components involved in cardiac fibrosis as collagen type I or TGF-β and in key players of cardiac apoptosis such as AKT, Bcl-2, or p53. In the heart of NOX5-expressing mice after chronic myocardial infarction, gene alterations were predominant in the redox pathway (NOX2, NOX4, p22phox, or SOD1), but we also found alterations in VCAM-1 and β-MHC expression. Our results suggest that NOX5 endothelial expression in mice preconditions the heart, and we propose that NOX5 has a cardioprotective role. The correlation studies performed between echocardiographic parameters and cardiac mRNA expression supported NOX5 protective action.
Collapse
Affiliation(s)
- Adriana Cortés
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Javier Marqués
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Álvaro Pejenaute
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Elena Ainzúa
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Eduardo Ansorena
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Gloria Abizanda
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Hematology Service, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Felipe Prósper
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Hematology Service, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
- CIBERONC, Madrid, Spain
| | - Carlos de Miguel
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Guillermo Zalba
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
| |
Collapse
|
4
|
Świątkiewicz I, Wróblewski M, Nuszkiewicz J, Sutkowy P, Wróblewska J, Woźniak A. The Role of Oxidative Stress Enhanced by Adiposity in Cardiometabolic Diseases. Int J Mol Sci 2023; 24:ijms24076382. [PMID: 37047352 PMCID: PMC10094567 DOI: 10.3390/ijms24076382] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Cardiometabolic diseases (CMDs), including cardiovascular disease (CVD), metabolic syndrome (MetS), and type 2 diabetes (T2D), are associated with increased morbidity and mortality. The growing prevalence of CVD is mostly attributed to the aging population and common occurrence of risk factors, such as high systolic blood pressure, elevated plasma glucose, and increased body mass index, which led to a global epidemic of obesity, MetS, and T2D. Oxidant–antioxidant balance disorders largely contribute to the pathogenesis and outcomes of CMDs, such as systemic essential hypertension, coronary artery disease, stroke, and MetS. Enhanced and disturbed generation of reactive oxygen species in excess adipose tissue during obesity may lead to increased oxidative stress. Understanding the interplay between adiposity, oxidative stress, and cardiometabolic risks can have translational impacts, leading to the identification of novel effective strategies for reducing the CMDs burden. The present review article is based on extant results from basic and clinical studies and specifically addresses the various aspects associated with oxidant–antioxidant balance disorders in the course of CMDs in subjects with excess adipose tissue accumulation. We aim at giving a comprehensive overview of existing knowledge, knowledge gaps, and future perspectives for further basic and clinical research. We provide insights into both the mechanisms and clinical implications of effects related to the interplay between adiposity and oxidative stress for treating and preventing CMDs. Future basic research and clinical trials are needed to further examine the mechanisms of adiposity-enhanced oxidative stress in CMDs and the efficacy of antioxidant therapies for reducing risk and improving outcome of patients with CMDs.
Collapse
|
5
|
Mohammed Majid ALQ, Wefak Jbori ALB, Hepa A. AA. The effect of Hyperhomocysteinemia on the Osteoclasts activity in Male New Zealand White Rabbits. RESEARCH JOURNAL OF PHARMACY AND TECHNOLOGY 2022:5443-5448. [DOI: 10.52711/0974-360x.2022.00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Methionine is a specific amino acid which contains sulfur, and can be used to make proteins, found in fish, meat, and dairy products, the excess intake of L-methionine lead to elevated homocysteine (Hcy) level that known as Hyperhomocysteinemia (HHcy). Increased Hcy plasma may represent an independent risk factor for osteoporotic fractures, and therefore may also negatively affect bone metabolism. This study was designed to examine the impact of Hcy on osteoclast activity in Male Rabbits, following methionine overload. To achieve this study's aims, we recruiting (20) males of New Zealand white rabbits that were divided into (10/group) control group and a group treated with methionine. Then after the intubation of methionine overload, we measured the "Receptor Activator of Nuclear factor Kappa-b" (RANK) and "Receptor Activator of Nuclear factor Kappa-b ligand" (RANK-L) levels in the blood, in addition to histological examination of the trabecular structure of femur bone. The results show a significant (p≤0.001) increase in serum RANK and RANK-L levels of methionine treated group in comparison with the control group. The histological examination of the trabecular structure of femur bone shows an increase in osteoclasts percentage, activity, and large resorption pits in the methionine treated group. The HHcy that was induced by methionine overload, caused an increase in osteoclast activity and numbers in male rabbits suggested a mechanistic role for bone resorption by Hcy. Future research clarifying the mechanistic function of elevated concentrations of Hcy in osteoporosis may have important therapeutic implications.
Collapse
Affiliation(s)
| | - AL-Bazi Wefak Jbori
- Department of Physiology, College of Veterinary Medicine, University of Kerbala, Iraq
| | | |
Collapse
|
6
|
Atherosclerosis in HIV Patients: What Do We Know so Far? Int J Mol Sci 2022; 23:ijms23052504. [PMID: 35269645 PMCID: PMC8910073 DOI: 10.3390/ijms23052504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
For the past several decades, humanity has been dealing with HIV. This disease is one of the biggest global health problems. Fortunately, modern antiretroviral therapy allows patients to manage the disease, improving their quality of life and their life expectancy. In addition, the use of these drugs makes it possible to reduce the risk of transmission of the virus to almost zero. Atherosclerosis is another serious pathology that leads to severe health problems, including disability and, often, the death of the patient. An effective treatment for atherosclerosis has not yet been developed. Both types of immune response, innate and adaptive, are important components of the pathogenesis of this disease. In this regard, the peculiarities of the development of atherosclerosis in HIV carriers are of particular scientific interest. In this review, we have tried to summarize the data on atherosclerosis and its development in HIV carriers. We also looked at the classic therapeutic methods and their features concerning the concomitant diagnosis.
Collapse
|
7
|
Marcińczyk N, Gromotowicz-Popławska A, Tomczyk M, Chabielska E. Tannins as Hemostasis Modulators. Front Pharmacol 2022; 12:806891. [PMID: 35095516 PMCID: PMC8793672 DOI: 10.3389/fphar.2021.806891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022] Open
Abstract
The hemostasis system is often affected by complications associated with cardiovascular diseases, which results in thromboembolic events. Compounds of plant origin and plant extracts are considered as a promising source of substances that could modulate the functioning of the hemostasis system and thus reduce the risk of thromboembolism. Among them, tannins, which are plant-origin compounds with potential effects in hemostasis, deserve a special mention. This paper describes the hemostasis-modifying ability of three groups of tannins, namely ellagitannins, gallotannins, and procyanidins. The review highlights the desirable as well as undesirable influence of tannins on specific components of hemostasis, namely platelets, coagulation system, fibrinolysis system, and endothelium, and the multidirectional effect of these compounds on the thrombotic process. Studies performed under normal and pathological conditions such as diabetes or hypercoagulation are described, and the pathophysiology-dependent action of tannins is also highlighted. Most of the studies presented in the paper were performed in vitro, and due to the low bioavailability of tannins more studies should be conducted in the future to understand their actual activity in vivo.
Collapse
Affiliation(s)
- Natalia Marcińczyk
- Department of Biopharmacy, Medical University of Białystok, Białystok, Poland
| | | | - Michał Tomczyk
- Department of Pharmacognosy, Medical University of Białystok, Białystok, Poland
| | - Ewa Chabielska
- Department of Biopharmacy, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
8
|
Ramos CSCB, Silva VAPD, Corrêa LBNS, Abboud RDS, Boaventura GT, Chagas MA. Long-Term Alpha-Lipoic Acid (ALA) Antioxidant Therapy Reduces Damage in the Cardiovascular System of Streptozotocin-Induced Diabetic Rats. J Diet Suppl 2021; 20:444-458. [PMID: 34806528 DOI: 10.1080/19390211.2021.2004290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cellular damage, lipid oxidation and the action of inflammatory cytokines are implicated in the evolution of vascular complications associated with diabetes mellitus (DM) hyperglycemia. In contrast, alpha-lipoic acid (ALA) is a supplement with antioxidant and anti-inflammatory effects. This study aims to evaluate the overall effects of ALA supplementation by assessing its long-term systemic action on the vascular morphology of rats with induced diabetes. A total of 28 male rats were divided into 4 groups with seven animals each. For diabetes induction, two groups received streptozotocin. The animals in the lipoic and diabetic lipoic groups received ALA supplement. After 8 weeks the animals were anesthetized and blood collected was for hematological, biochemical and serological analyses. The thoracic aorta was removed, processed for paraffin and histological sections were stained for morphometric analysis. In diabetic groups, an improvement in hematological profile was observed, with platelet reduction in the diabetic lipoic group. ALA addition to the diet attenuated the negative effects in lipid profile; moreover, renal, hepatic and inflammatory parameters reduced or displayed values close to the values of the normal control. The anti-inflammatory effect of ALA was observed in diabetic animals, with a reduction of inflammatory citokines, accompanied by the improvement of morphological parameters in the aorta. In conclusion, long-term supplementation with ALA promoted systemic improvement, thus reducing the risk of vascular diseases. The changes in the renal and hepatic parameters without any negative impact in the hematological profile also show that ALA can be indicated as a low-risk prophylaxis or complementary therapy.
Collapse
Affiliation(s)
- Cristiane Simões Coelho Britto Ramos
- Department of Morphology, Laboratory of Cellular and Extracellular Biomorphology. Biomedical Institute, Federal Fluminense University, Niteroi, Brazil
| | - Vivian Alves Pereira da Silva
- Department of Morphology, Laboratory of Cellular and Extracellular Biomorphology. Biomedical Institute, Federal Fluminense University, Niteroi, Brazil
| | - Lanna Beatriz Neves Silva Corrêa
- Department of Morphology, Laboratory of Cellular and Extracellular Biomorphology. Biomedical Institute, Federal Fluminense University, Niteroi, Brazil
| | - Renato de Souza Abboud
- Department of Morphology, Laboratory of Cellular and Extracellular Biomorphology. Biomedical Institute, Federal Fluminense University, Niteroi, Brazil
| | - Gilson Teles Boaventura
- Laboratory of Experimental Nutrition. Department of Nutrition and Dietetics, Federal Fluminense University, Rio de Janeiro, Brazil
| | - Mauricio Alves Chagas
- Department of Morphology, Laboratory of Cellular and Extracellular Biomorphology. Biomedical Institute, Federal Fluminense University, Niteroi, Brazil
| |
Collapse
|
9
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
10
|
C-Peptide as a Therapy for Type 1 Diabetes Mellitus. Biomedicines 2021; 9:biomedicines9030270. [PMID: 33800470 PMCID: PMC8000702 DOI: 10.3390/biomedicines9030270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disease affecting one-third of the United States population. It is characterized by hyperglycemia, where the hormone insulin is either not produced sufficiently or where there is a resistance to insulin. Patients with Type 1 DM (T1DM), in which the insulin-producing beta cells are destroyed by autoimmune mechanisms, have a significantly increased risk of developing life-threatening cardiovascular complications, even when exogenous insulin is administered. In fact, due to various factors such as limited blood glucose measurements and timing of insulin administration, only 37% of T1DM adults achieve normoglycemia. Furthermore, T1DM patients do not produce C-peptide, a cleavage product from insulin processing. C-peptide has potential therapeutic effects in vitro and in vivo on many complications of T1DM, such as peripheral neuropathy, atherosclerosis, and inflammation. Thus, delivery of C-peptide in conjunction with insulin through a pump, pancreatic islet transplantation, or genetically engineered Sertoli cells (an immune privileged cell type) may ameliorate many of the cardiovascular and vascular complications afflicting T1DM patients.
Collapse
|
11
|
Chen GP, Yang J, Qian GF, Xu WW, Zhang XQ. Geranylgeranyl Transferase-I Knockout Inhibits Oxidative Injury of Vascular Smooth Muscle Cells and Attenuates Diabetes-Accelerated Atherosclerosis. J Diabetes Res 2020; 2020:7574245. [PMID: 32851097 PMCID: PMC7439171 DOI: 10.1155/2020/7574245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
The proliferation of vascular smooth muscle cells (VSMCs) induced by oxidative injury is one of the main features in diabetes-accelerated atherosclerosis. Geranylgeranyl transferase-I (GGTase-I) is an essential enzyme mediating posttranslational modification, especially the geranylgeranylation of small GTPase, Rac1. Our previous studies found that GGTase-I played an important role in diabetes-accelerated atherosclerosis. However, its exact role is largely unclear. In this study, mouse conditional knockout of VSMC GGTase-I (Pggt1b Δ/Δ mice) was generated using the CRISPR/Cas9 system. The mouse model of diabetes-accelerated atherosclerosis was induced by streptozotocin injections and an atherogenic diet. We found that GGTase-I knockout attenuated diabetes-accelerated atherosclerosis in vivo and suppressed high-glucose-induced VSMC proliferation in vitro. Moreover, after a 16-week duration of diabetes, Pggt1b Δ/Δ mice exhibited lower α-smooth muscle actin (α-SMA) and nitrotyrosine level, Rac1 activity, p47phox and NOXO1 expression, and phospho-ERK1/2 and phosphor-JNK content than wild-type mice. Meanwhile, the same changes were found in Pggt1b Δ/Δ VSMCs cultured with high glucose (22.2 mM) in vitro. In conclusion, GGTase-I knockout efficiently blocked diabetes-accelerated atherosclerosis, and this protective effect must be related to the inhibition of VSMC proliferation. The potential mechanisms probably involved interfering Rac1 geranylgeranylation, inhibiting the assembly of NADPH oxidase cytosolic regulatory subunits, reducing oxidative injury, and decreasing ERK1/2 and JNK phosphorylation.
Collapse
MESH Headings
- Alkyl and Aryl Transferases/genetics
- Alkyl and Aryl Transferases/metabolism
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Oxidative Stress/genetics
- Phosphorylation
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Guo-Ping Chen
- Department of Endocrinology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Jian Yang
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Guo-Feng Qian
- Department of Endocrinology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Wei-Wei Xu
- Department of Endocrinology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiao-Qin Zhang
- Department of Respirology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
12
|
Stănescu I, Bulboacă AE, Micu IC, Bolboacă SD, Feștilă DG, Bulboacă AC, Bodizs G, Dogaru G, Boarescu PM, Popa-Wagner A, Roman A. Gender Differences in the Levels of Periodontal Destruction, Behavioral Risk Factors and Systemic Oxidative Stress in Ischemic Stroke Patients: A Cohort Pilot Study. J Clin Med 2020; 9:jcm9061744. [PMID: 32512870 PMCID: PMC7356570 DOI: 10.3390/jcm9061744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Due to the higher frequency of ischemic stroke in men compared to women, we aimed to determine if gender differences exist regarding periodontal status and several plasma biomarkers in patients with a recent large artery atherosclerosis ischemic stroke (IS). Material and methods: Patients with their first IS within less than six weeks who were able to undergo periodontal examinations were evaluated. Demographic data, periodontal status, oxidative stress parameters/plasma antioxidant capacity, and C-reactive protein in patients who suffered a recent large artery atherosclerosis ischemic stroke were reccorded. Results: 93 patients were included in the study. More men were smokers (12/57 vs. 3/36) and consumed alcohol (17/57 vs. 3/36), and more women had higher glycemic values (p = 0.023), total cholesterol (p < 0.001), LDL (low-density lipoprotein)-cholesterol (p = 0.010), and HDL (high-density lipoprotein)-cholesterol (p = 0.005) levels. Significantly more men than women had moderate plus severe periodontal disease (p = 0.018), significantly higher levels of nitric oxide (p = 0.034), and significantly lower levels of total antioxidant capacity (p = 0.028). Conclusions: In this pilot study, men seem to be more prone to oxidative stress and to develop more severe forms of periodontitis among patients with stroke, but the results need validation on a larger sample.
Collapse
Affiliation(s)
- Ioana Stănescu
- Department of Neurology, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Str., no. 6, 400349 Cluj-Napoca, Romania; (I.S.); (A.C.B.)
| | - Adriana Elena Bulboacă
- Department of Pathophysiology, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Str., no. 6, 400349 Cluj-Napoca, Romania;
- Correspondence: (A.E.B.); (S.D.B.); (A.P.-W.); Tel.: +40-264-408-008 (A.E.B.); +40-374-834-506 (S.D.B.); +40-765-660-569 (A.P.-W.)
| | - Iulia Cristina Micu
- Department of Periodontology, Faculty of Dental Medicine, IuliuHaţieganu University of Medicine and Pharmacy, Victor Babeş Str., no. 15, 400012 Cluj-Napoca, Romania; (I.C.M.); (A.R.)
| | - Sorana D. Bolboacă
- Department of Medical Informatics and Biostatistics, IuliuHațieganu University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Str., no. 6, 400349 Cluj-Napoca, Romania
- Correspondence: (A.E.B.); (S.D.B.); (A.P.-W.); Tel.: +40-264-408-008 (A.E.B.); +40-374-834-506 (S.D.B.); +40-765-660-569 (A.P.-W.)
| | - Dana Gabriela Feștilă
- Department of Orthodontics, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Str., no. 6, 400349 Cluj-Napoca, Romania;
| | - Angelo C. Bulboacă
- Department of Neurology, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Str., no. 6, 400349 Cluj-Napoca, Romania; (I.S.); (A.C.B.)
| | - Gyorgy Bodizs
- Clinical Rehabilitation Hospital, Viilor Str., no. 46-50, 400347 Cluj-Napoca, Romania;
| | - Gabriela Dogaru
- Department of Physical Medicine and Rehabilitation, Iuliu Hațieganu University of Medicine and Pharmacy, Louis Pasteur Str., no. 6, 400349 Cluj-Napoca, Romania;
| | - Paul Mihai Boarescu
- Department of Pathophysiology, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Str., no. 6, 400349 Cluj-Napoca, Romania;
| | - Aurel Popa-Wagner
- Department of Patho-Biochemistry, University of Medicine and Pharmacy Craiova, Petru Rareș Str., No. 2-4, 200349 Craiova, Romania
- Vascular Neurology and Dementia, University of Medicine, Essen, HufelandStr., no. 55, 45122 Essen, Germany
- Correspondence: (A.E.B.); (S.D.B.); (A.P.-W.); Tel.: +40-264-408-008 (A.E.B.); +40-374-834-506 (S.D.B.); +40-765-660-569 (A.P.-W.)
| | - Alexandra Roman
- Department of Periodontology, Faculty of Dental Medicine, IuliuHaţieganu University of Medicine and Pharmacy, Victor Babeş Str., no. 15, 400012 Cluj-Napoca, Romania; (I.C.M.); (A.R.)
| |
Collapse
|
13
|
Signorelli SS, Vanella L, Abraham NG, Scuto S, Marino E, Rocic P. Pathophysiology of chronic peripheral ischemia: new perspectives. Ther Adv Chronic Dis 2020; 11:2040622319894466. [PMID: 32076496 PMCID: PMC7003198 DOI: 10.1177/2040622319894466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Peripheral arterial disease (PAD) affects individuals particularly over 65 years old in the more advanced countries. Hemodynamic, inflammatory, and oxidative mechanisms interact in the pathophysiological scenario of this chronic arterial disease. We discuss the hemodynamic, muscle tissue, and oxidative stress (OxS) conditions related to chronic ischemia of the peripheral arteries. This review summarizes the results of evaluating both metabolic and oxidative markers, and also therapy to counteract OxS. In conclusion, we believe different pathways should be highlighted to discover new drugs to treat patients suffering from PAD.
Collapse
Affiliation(s)
- Salvatore Santo Signorelli
- Department of Clinical and Experimental Medicine, University of Catania, University Hospital ‘G. Rodolico’, Catania, 95124, Italy
| | - Luca Vanella
- Department of Drug Science, University of Catania, Catania, Italy
| | - Nader G. Abraham
- Departments of Medicine, Pharmacology and Gastroenterology, New York Medical College, Valhalla, NY, USA
| | - Salvatore Scuto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Elisa Marino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Petra Rocic
- Departments of Medicine, Pharmacology and Gastroenterology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
14
|
Francisqueti-Ferron FV, Ferron AJT, Garcia JL, Silva CCVDA, Costa MR, Gregolin CS, Moreto F, Ferreira ALA, Minatel IO, Correa CR. Basic Concepts on the Role of Nuclear Factor Erythroid-Derived 2-Like 2 (Nrf2) in Age-Related Diseases. Int J Mol Sci 2019; 20:E3208. [PMID: 31261912 PMCID: PMC6651020 DOI: 10.3390/ijms20133208] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 12/26/2022] Open
Abstract
The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is one of the most important oxidative stress regulator in the human body. Once Nrf2 regulates the expression of a large number of cytoprotective genes, it plays a crucial role in the prevention of several diseases, including age-related disorders. However, the involvement of Nrf2 on these conditions is complex and needs to be clarified. Here, a brief compilation of the Nrf2 enrollment in the pathophysiology of the most common age-related diseases and bring insights for future research on the Nrf2 pathway is described. This review shows a controversial response of this transcriptional factor on the presented diseases. This reinforces the necessity of more studies to investigate modulation strategies for Nrf2, making it a possible therapeutic target in the treatment of age-related disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fernando Moreto
- Medical School, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | | | - Igor Otávio Minatel
- Institute of Biosciences, São Paulo State University, Botucatu 18618-689, SP, Brazil
| | | |
Collapse
|
15
|
Li J, Wu N, Chen X, Chen H, Yang X, Liu C. Curcumin protects islet cells from glucolipotoxicity by inhibiting oxidative stress and NADPH oxidase activity both in vitro and in vivo. Islets 2019; 11:152-164. [PMID: 31750757 PMCID: PMC6930025 DOI: 10.1080/19382014.2019.1690944] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Curcumin possesses medicinal properties that are beneficial in various diseases, such as heart disease, cancer, and type 2 diabetes mellitus (T2 DM). It has been proposed that pancreatic beta cell dysfunction in T2 DM is promoted by oxidative stress caused by NADPH oxidase over-activity. The aim of the present study was to evaluate the efficacy of curcumin as a protective agent against high glucose/palmitate (HP)-induced islet cell damage and in streptozotocin (STZ)-induced DM rats. INS-1 cells were exposed to HP with or without curcumin. Cell proliferation, islet cell morphological changes, reactive oxygen species production, superoxide dismutase and catalase activity, insulin levels, NADPH oxidase subunit expression, and the expression of apoptotic factors by INS-1 cells were observed. Our results show that curcumin can effectively inhibit the impairment of cell proliferation and activated oxidative stress, increase insulin levels, and reduce the high expression of NADPH oxidase subunits and apoptotic factors induced by HP in INS-1 cells. The STZ-induced DM rat model was also used to determine whether curcumin can protect islets in vivo. Our results show that curcumin significantly reduced pathological damage and increased insulin levels of islets in STZ-induced DM rats. Curcumin also successfully inhibited the high expression of NADPH oxidase subunits and apoptotic factors in STZ-induced DM rats. These results suggest that curcumin is able to attenuate HP-induced oxidative stress in islet cells and protect these cells from apoptosis by modulating the NADPH pathway. In view of its efficiency, curcumin has potential for translation applications in protecting islets from glucolipotoxicity.
Collapse
Affiliation(s)
- Jing Li
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei, P. R. China
| | - Ninghua Wu
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei, P. R. China
| | - Xiao Chen
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei, P. R. China
| | - Hongguang Chen
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei, P. R. China
| | - Xiaosong Yang
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei, P. R. China
- Xiaosong Yang Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Chao Liu
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei, P. R. China
- CONTACT Chao Liu
| |
Collapse
|
16
|
Han H, Qiu F, Zhao H, Tang H, Li X, Shi D. Dietary flaxseed oil improved western-type diet-induced atherosclerosis in apolipoprotein-E knockout mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
17
|
Haddad Y, Couture R. Localization and Interaction between Kinin B1 Receptor and NADPH Oxidase in the Vascular System of Diabetic Rats. Front Physiol 2017; 8:861. [PMID: 29163205 PMCID: PMC5671568 DOI: 10.3389/fphys.2017.00861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/16/2017] [Indexed: 01/17/2023] Open
Abstract
Kinin B1 receptor (B1R) enhanced superoxide anion (O2•-) production in the vasculature of diabetic rats. This study investigates the induction and distribution of B1R in diabetic blood vessels and addresses the hypothesis that B1R is co-localized with NADPH oxidase (NOX1 and NOX2) and produces its activation via protein kinase C (PKC). Diabetes was induced in rats with streptozotocin (STZ 65 mg.kg−1, i.p.). Two weeks later, the production of O2•- was measured in aorta rings in response to the B1R agonist (Sar[D-Phe8]-des-Arg9-BK, 20 μM) by the method of lucigenin-enhanced chemiluminescence. Various inhibitors were added (10 μM) to block PKCtotal (Ro-31-8220), PKCβ1/2 (LY333531), or NADPH oxidase (Diphenyleneiodonium). The cellular localization of B1R was studied in the aorta, popliteal artery, and renal glomerulus/arteries by immunofluorescence and confocal microscopy with markers of endothelial cells (anti-RECA-1), macrophages (anti-CD11), vascular smooth muscle cells (anti-SMA), and NADPH oxidase (anti-NOX1 and NOX2). Although B1R was largely distributed in resistant vessels, it was sparsely expressed in the aorta's endothelium. The greater basal production of O2•- in STZ-diabetic aorta was significantly enhanced by the B1R agonist (15–45 min). The peak response to the agonist (30 min) was inhibited by all inhibitors. Immunofluorescent staining for B1R, NOX1, and NOX2 was significantly increased in endothelial cells, vascular smooth muscle cells, and macrophages of STZ-diabetic aorta on which they were found co-localized. Data showed that B1R enhanced O2•- by activating vascular NADPH oxidase through PKCβ1/2. This was substantiated by the cellular co-localization of B1R with NOX1 and NOX2 and opens the possibility that B1R-enhanced oxidative stress is derived from vascular and infiltrating immune cells in diabetes.
Collapse
Affiliation(s)
- Youssef Haddad
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Réjean Couture
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
18
|
Yao Y, Wang Y, Zhang Y, Liu C. Klotho ameliorates oxidized low density lipoprotein (ox-LDL)-induced oxidative stress via regulating LOX-1 and PI3K/Akt/eNOS pathways. Lipids Health Dis 2017; 16:77. [PMID: 28407763 PMCID: PMC5390438 DOI: 10.1186/s12944-017-0447-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/09/2017] [Indexed: 12/27/2022] Open
Abstract
Background Atherosclerosis is a common cardiovascular disease that causes myocardial infarction, heart failure, and stroke. Increased oxidized low density lipoprotein (ox-LDL) in the sub-endothelium is the characteristic origin of atherogenesis. Klotho, an anti-aging protein, has been reported to protect against atherosclerosis and ameliorate endothelial dysfunction in vivo. The aim of this study is to investigatethe anti-oxidative activity of Klothoin ox-LDL-treated human umbilical vein endothelial cells (HUVECs). Methods After pre-treatment with 200 pMKlotho for 1 h, HUVECs were stimulated with 50 μg/ml ox-LDL for 24 h. Reactive oxygen species (ROS) and superoxide dismutase (SOD) levels were analyzed in the cells. Nitric oxide (NO) concertation was measured in the medium supernatant. Related proteins or genes were detected with Western blot or real time PCR, respectively, in the cell lysates. Results Initially, oxidative damage in HUVECs was established by adding 50 μg/mL ox-LDL, which resulted in decreased cellular viability, SOD/Cu/Zn-SOD and endothelial NO synthase (eNOS) expression and NO production, as well as increased malondialdehyde (MDA) levels, ROS production, inducible NO synthase (iNOS), phosphatidyl inositol-3 kinase (PI3K), protein kinase B (Akt), gp91 phox, and lectin-like ox-LDL receptor (LOX-1) expression in HUVECs. Pre-incubation with recombinant Klotho (200 pM) significantly prevented all of these alterations. These results suggest that Klotho can attenuate ox-LDL-induced oxidative stress in HUVECs through upregulating oxidative scavengers (SOD and NO) viaactivating the PI3K/Akt/eNOS pathway and depressing LOX-1expression. Conclusions These results suggest that Klotho has a potential therapeutic effect on attenuating endothelial dysfunction and ameliorating atherosclerosis. Electronic supplementary material The online version of this article (doi:10.1186/s12944-017-0447-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yansheng Yao
- Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yanbing Wang
- Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yibo Zhang
- Department of Pathogenic Biology, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chang Liu
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
19
|
Ding L, Su XX, Zhang WH, Xu YX, Pan XF. Gene Expressions Underlying Mishandled Calcium Clearance and Elevated Generation of Reactive Oxygen Species in the Coronary Artery Smooth Muscle Cells of Chronic Heart Failure Rats. Chin Med J (Engl) 2017; 130:460-469. [PMID: 28218221 PMCID: PMC5324384 DOI: 10.4103/0366-6999.199825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The calcium clearance and reactive oxygen species (ROS) generations in the coronary artery smooth muscle cells in chronic heart failure (HF) have not been fully investigated. Therefore, we attempted to understand the gene expressions underlying the mishandling of calcium clearance and the accumulations of ROS. METHODS We initially established an animal model of chronic HF by making the left anterior descending coronary artery ligation (CAL) in rats, and then isolated the coronary artery vascular smooth muscle cells from the ischemic and the nonischemic parts of the coronary artery vessels in 12 weeks after CAL operation. The intracellular calcium concentration and ROS level were measured using flow cytometry, and the gene expressions of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a), encoding sarcoplasmic reticulum Ca2+-ATPase 2a, encoding sodium-calcium exchanger (NCX), and p47phox encoding a subunit of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase were examined using real-time quantitative reverse transcription polymerase chain reaction and Western blotting, respectively. RESULTS We found that the calcium accumulation and ROS generation in the coronary artery smooth muscle cells isolated from either the ischemic or the nonischemic part of the CAL coronary artery vessel were significantly increased irrespective of blood supply (all P < 0.01). Moreover, these were accompanied by the increased expressions of NCX and p47phox, the decreased expression of SERCA2a, and the increased amount of phosphorylated forms of p47phox in NADPH oxidase (all P < 0.05). CONCLUSIONS Our results demonstrated that the disordered calcium clearance and the increased ROS generation occurred in the coronary artery smooth muscle cells in rats with chronic HF produced by ligation of the left anterior descending coronary artery (CAL), and which was found to be disassociated from blood supply, and the increased generation of ROS in the cells was found to make concomitancy to the increased activity of NADPH oxidase in cytoplasm.
Collapse
Affiliation(s)
- Liang Ding
- Department of Pharmacology, School of Medicine, Hebei University, Baoding, Hebei 071000, China
| | - Xian-Xiu Su
- Department of Basic Medicine, School of Basic Medicine, Hebei University, Baoding, Hebei 071000, China
| | - Wen-Hui Zhang
- Department of Pharmacology, School of Medicine, Hebei University, Baoding, Hebei 071000, China
| | - Yu-Xiang Xu
- Department of Pharmacology, School of Medicine, Hebei University, Baoding, Hebei 071000, China
| | - Xue-Feng Pan
- Department of Pharmacology, School of Medicine, Hebei University, Baoding, Hebei 071000, China
- Department of Basic Medicine, School of Basic Medicine, Hebei University, Baoding, Hebei 071000, China
- Department of Biological Science, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|