1
|
Xue Z, Wang B, Qu C, Tao M, Wang Z, Zhang G, Zhao M, Zhao S. Response of salt stress resistance in highland barley (Hordeum vulgare L. var. nudum) through phenylpropane metabolic pathway. PLoS One 2023; 18:e0286957. [PMID: 37788272 PMCID: PMC10547159 DOI: 10.1371/journal.pone.0286957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/26/2023] [Indexed: 10/05/2023] Open
Abstract
Highland barley (Hordeum vulgare L. var. nudum) is a grain crop that grows on the plateau under poor and high salt conditions. Therefore, to cultivate high-quality highland barley varieties, it is necessary to study the molecular mechanism of strong resistance in highland barley, which has not been clearly explained. In this study, a high concentration of NaCl (240 mmol/L), simulating the unfavorable environment, was used to spray the treated highland barley seeds. Transcriptomic analysis revealed that the expression of more than 8,000 genes in highland barley seed cells was significantly altered, suggesting that the metabolic landscape of the cells was deeply changed under salt stress. Through the KEGG analysis, the phenylpropane metabolic pathway was significantly up-regulated under salt stress, resulting in the accumulation of polyphenols, flavonoids, and lignin, the metabolites for improving the stress resistance of highland barley seed cells, being increased 2.71, 1.22, and 1.17 times, respectively. This study discovered that the phenylpropane metabolic pathway was a significant step forward in understanding the stress resistance of highland barley, and provided new insights into the roles of molecular mechanisms in plant defense.
Collapse
Affiliation(s)
- ZhengLian Xue
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - BingSheng Wang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - ChangYu Qu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - MengDie Tao
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Zhou Wang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - GuoQiang Zhang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Ming Zhao
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - ShiGuang Zhao
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| |
Collapse
|
2
|
Liu L, Zhang Y, Jiang X, Du B, Wang Q, Ma Y, Liu M, Mao Y, Yang J, Li F, Fu H. Uncovering nutritional metabolites and candidate genes involved in flavonoid metabolism in Houttuynia cordata through combined metabolomic and transcriptomic analyses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108059. [PMID: 37788539 DOI: 10.1016/j.plaphy.2023.108059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
The perennial herb Houttuynia cordata has long been cultivated and used as medicinal and edible plant in Asia. Nowadays, increasing attention is attracted due to its numerous health benefits. Flavonoids are the main chemical constituents exerting pharmacological activities. In the present study, we investigated both metabolome and transcriptome of two H. cordata accessions (6# and 7#) with distinct flavonoids contents. In total 397 metabolites, i.e., 220 flavonoids, 92 amino acids and derivatives, 20 vitamins, and 65 saccharides were abundant in aboveground part. Cyanidin-3-O-rutinoside and quercetin-3-O-galactoside were the most abundant flavonoids, which can be categorized into seven classes, namely anthocyanidins, chalcones, flavanols, flavanones, flavanonols, flavones, and flavonols. Flavonols was the most abundant group. Contents of 112 flavonoids differed significantly between the two accessions, with catechin-(7,8-bc)-4α-(3,4-dihydroxyphenyl)-dihydro-2-(3H)-one, cinchonain Id, and cinchonain Ic being the dominant flavonoid metabolites among them. Pinocembrin-7-O-neohesperidoside, pinocembrin-7-O-rutinoside, and kaempferol-3-O-galactoside-4'-O-glucoside were uniquely abundant in accession 7. Transcriptome data revealed a total of 110 different expressed genes related to flavonoid metabolism, with more highly expressed genes observed in 7#. We annotated a total of 19 differential flavonoid metabolites and 34 differentially expressed genes that are associated with the flavonoid metabolic network. Based on the transcriptome and qPCR data a total of 8 key candidate genes involved in flavonoid metabolism were identified. The ANS gene were found to play an important role in the synthesis of cyanidin-3-O-glucoside, while the CHI, F3'H and FLS genes were mainly responsible for controlling the levels of flavanones, flavones, and flavonols, respectively. Collectively, the present study provides important insights into the molecular mechanism underlying flavonoid metabolism in H. cordata.
Collapse
Affiliation(s)
- Lei Liu
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, 621000, China; Engineering Research Center for Forest and Grassland Disaster Prevention and Reduction, Mianyang Normal University, Mianyang, 621000, China
| | - Yuanyuan Zhang
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, 621000, China
| | - Xue Jiang
- Engineering Research Center for Forest and Grassland Disaster Prevention and Reduction, Mianyang Normal University, Mianyang, 621000, China
| | - Baoguo Du
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, 621000, China
| | - Qian Wang
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, 621000, China
| | - Yunlong Ma
- Engineering Research Center for Forest and Grassland Disaster Prevention and Reduction, Mianyang Normal University, Mianyang, 621000, China
| | - Mei Liu
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan, 621000, China
| | - Yanping Mao
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, 621000, China
| | - Jingtian Yang
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan, 621000, China
| | - Furong Li
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, 621000, China
| | - Hongbo Fu
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, China.
| |
Collapse
|
3
|
A Cinnamate 4-HYDROXYLASE1 from Safflower Promotes Flavonoids Accumulation and Stimulates Antioxidant Defense System in Arabidopsis. Int J Mol Sci 2023; 24:ijms24065393. [PMID: 36982470 PMCID: PMC10049626 DOI: 10.3390/ijms24065393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
C4H (cinnamate 4-hydroxylase) is a pivotal gene in the phenylpropanoid pathway, which is involved in the regulation of flavonoids and lignin biosynthesis of plants. However, the molecular mechanism of C4H-induced antioxidant activity in safflower still remains to be elucidated. In this study, a CtC4H1 gene was identified from safflower with combined analysis of transcriptome and functional characterization, regulating flavonoid biosynthesis and antioxidant defense system under drought stress in Arabidopsis. The expression level of CtC4H1 was shown to be differentially regulated in response to abiotic stresses; however, a significant increase was observed under drought exposure. The interaction between CtC4H1 and CtPAL1 was detected using a yeast two-hybrid assay and then verified using a bimolecular fluorescence complementation (BiFC) analysis. Phenotypic and statistical analysis of CtC4H1 overexpressed Arabidopsis demonstrated slightly wider leaves, long and early stem development as well as an increased level of total metabolite and anthocyanin contents. These findings imply that CtC4H1 may regulate plant development and defense systems in transgenic plants via specialized metabolism. Furthermore, transgenic Arabidopsis lines overexpressing CtC4H1 exhibited increased antioxidant activity as confirmed using a visible phenotype and different physiological indicators. In addition, the low accumulation of reactive oxygen species (ROS) in transgenic Arabidopsis exposed to drought conditions has confirmed the reduction of oxidative damage by stimulating the antioxidant defensive system, resulting in osmotic balance. Together, these findings have provided crucial insights into the functional role of CtC4H1 in regulating flavonoid biosynthesis and antioxidant defense system in safflower.
Collapse
|
4
|
In vitro production and distribution of flavonoids in Glycyrrhiza uralensis Fisch. Journal of Food Science and Technology 2020; 57:1553-1564. [PMID: 32180652 DOI: 10.1007/s13197-019-04191-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
Glycyrrhiza uralensis Fisch. is known as a common Chinese medicinal herb used to harmonize the effects of other ingredients in most Chinese herbal prescriptions. The rapid production of flavonoids in vitro remains unknown in G. uralensis Fisch. To investigate the in vitro adventitious root regeneration and flavonoid accumulation characteristics in G. uralensis for restrictions on collecting wild plants, suspension cultural and freezing microtomy with histochemical assays were carried out. We reported that multiple adventitious roots were initiated from hypocotyls and stems of G. uralensis. Indole-3-butyric acid (IBA) was more conducive than NAA (1-naphthaleneacetic acid) in inducing G. uralensis adventitious roots, but the addition of 6-BA (6-benzylaminopurine) and KT (kinetin) suppressed the formation of adventitious roots. While the concentration of IBA was 1.0 mg L-1, the flavonoid content and yield were the highest at 19.96 mg g-1 and 1.23 mg g-1, respectively. The optimum medium for adventitious root induction was 1/4-strength Murashige and Skoog's medium containing 0.1 mg L-1 IBA. The content of flavonoids in adventitious roots and apicals cultured in vitro was higher than that in suspension callus, reaching 3.87 times the callus flavonoid content. The histochemical localization of flavonoids showed that G. uralensis flavonoids mainly distributed in the epidermal parenchyma cells of the callus outer layers and gradually accumulated in cell wall and cell gaps of the epidermis and endodermis of adventitious roots along with the primary growth of adventitious roots, indicating that there were no flavonoids in the roots at the early stage of adventitious roots formation. The results showed that calli inducing adventitious roots and apicals for 30 days obtained the highest yield of flavonoid, indicating effective production for flavonoids instead of wild culture. AlCl3 ethanol solution was better than NaOH aqueous solution in terms of chromogenic and localization effects. We concluded that the highest yield of flavonoid and effective production for flavonoid instead of wild culture could be obtained from calli inducing adventitious roots and apicals.
Collapse
|
5
|
Bu C, Zhang Q, Zeng J, Cao X, Hao Z, Qiao D, Cao Y, Xu H. Identification of a novel anthocyanin synthesis pathway in the fungus Aspergillus sydowii H-1. BMC Genomics 2020; 21:29. [PMID: 31914922 PMCID: PMC6950803 DOI: 10.1186/s12864-019-6442-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/29/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Anthocyanins are common substances with many agro-food industrial applications. However, anthocyanins are generally considered to be found only in natural plants. Our previous study isolated and purified the fungus Aspergillus sydowii H-1, which can produce purple pigments during fermentation. To understand the characteristics of this strain, a transcriptomic and metabolomic comparative analysis was performed with A. sydowii H-1 from the second and eighth days of fermentation, which confer different pigment production. RESULTS We found five anthocyanins with remarkably different production in A. sydowii H-1 on the eighth day of fermentation compared to the second day of fermentation. LC-MS/MS combined with other characteristics of anthocyanins suggested that the purple pigment contained anthocyanins. A total of 28 transcripts related to the anthocyanin biosynthesis pathway was identified in A. sydowii H-1, and almost all of the identified genes displayed high correlations with the metabolome. Among them, the chalcone synthase gene (CHS) and cinnamate-4-hydroxylase gene (C4H) were only found using the de novo assembly method. Interestingly, the best hits of these two genes belonged to plant species. Finally, we also identified 530 lncRNAs in our datasets, and among them, three lncRNAs targeted the genes related to anthocyanin biosynthesis via cis-regulation, which provided clues for understanding the underlying mechanism of anthocyanin production in fungi. CONCLUSION We first reported that anthocyanin can be produced in fungus, A. sydowii H-1. Totally, 31 candidate transcripts were identified involved in anthocyanin biosynthesis, in which CHS and C4H, known as the key genes in anthocyanin biosynthesis, were only found in strain H1, which indicated that these two genes may contribute to anthocyanins producing in H-1. This discovery expanded our knowledges of the biosynthesis of anthocyanins and provided a direction for the production of anthocyanin.
Collapse
Affiliation(s)
- Congfan Bu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Qian Zhang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Jie Zeng
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Xiyue Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Zhaonan Hao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| |
Collapse
|
6
|
Ren J, Liu Z, Chen W, Xu H, Feng H. Anthocyanin Degrading and Chlorophyll Accumulation Lead to the Formation of Bicolor Leaf in Ornamental Kale. Int J Mol Sci 2019; 20:E603. [PMID: 30704122 PMCID: PMC6387137 DOI: 10.3390/ijms20030603] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Ornamental kale is a popular decorative plant. We identified a peculiar bicolor leaf double haploid line, with green margins and red centers. The development of bicolor leaves can be divided into three stages: S1, S2, and S3. To probe the reason for bicolor formation, we analyzed the anthocyanin and chlorophyll contents, detected the changes in indole-3-acetic acid (IAA), abscisic acid (ABA), gibberellin 3 (GA3), sugar, and starch contents, and identified the differentially expressed genes (DEGs) using RNA-seq. Results showed that the bicolor leaf phenotype is gradually formed with anthocyanin degrading and chlorophyll accumulation. Anthocyanin content is lower in the green margin (S3_S) than in the red center (S3_C) part at S3. IAA content was positively correlated with anthocyanin content during the bicolor leaf development. During anthocyanin degrading from S1 to S2, cinnamate-4-hydroxylase (C4H) and transport inhibitor response 1 (TIR1) were downregulated, while lateral organ boundaries domain 39 (LBD39) was upregulated. Two peroxidases, two β-glucosidases (BGLU), LBD39, LBD37, detoxifying efflux carrier 35 (DTX35), three no apical meristem (NAC) transcription factors (TFs), and 15 WRKY DNA-binding protein (WRKY) TFs were downregulated in S3_S vs. S3_C. The bicolor phenotype was mainly linked to anthocyanin degrading and chlorophyll accumulation, and that anthocyanin degrading resulted from reduced anthocyanin biosynthesis and increased anthocyanin degradation.
Collapse
Affiliation(s)
- Jie Ren
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang 110866, China.
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang 110866, China.
| | - Weishu Chen
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang 110866, China.
| | - Hezi Xu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang 110866, China.
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang 110866, China.
| |
Collapse
|
7
|
Expression profile of phenylpropanoid pathway genes in Decalepis hamiltonii tuberous roots during flavour development. 3 Biotech 2018; 8:365. [PMID: 30105190 DOI: 10.1007/s13205-018-1388-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/03/2018] [Indexed: 10/28/2022] Open
Abstract
To explore the transcriptional control of phenylpropanoid pathway (PPP) involved in vanillin flavour metabolites production in tuberous roots of Decalepis hamiltonii, four PPP key genes expressed during the tuber development were identified and their mRNA expression profiles were evaluated using quantitative real-time PCR. Flavour metabolite quantification by HPLC analysis confirmed 10, 170 and 500 µg/g 2-hydroxy-4-methoxy benzaldehyde and 4, 20 and 40 µg/g vanillin in first- (3-month-old plant), second- (18-month-old plant) and third-stage tubers (60-month-old matured plant), respectively. The expression of all four genes phenylalanine ammonia lyase (DhPAL), cinnamate-4-hydroxylase (DhC4H), caffeic acid-O-methyltransferase (DhCOMT) and vanillin synthase (DhVAN) increased with flavour development from first stage to second stage. A decrease in expression from 1.9-folds to 0.1-folds and 19.2-folds to 5.2-folds for DhCOMT and DhVAN was recorded for second stage to third stage, respectively. However, a gradual increase in expression of DhPAL (up to 26.4-folds) and a constant expression pattern for DhC4H (up to 7.1-folds) was evident from second stage to third stage of flavour development. The decrease in the expression levels of DhCOMT and DhVAN in third stage shows that the second-stage tubers are more transcriptionally active towards flavour biosynthesis.
Collapse
|
8
|
Molecular cloning and yeast expression of cinnamate 4-hydroxylase from Ornithogalum saundersiae baker. Molecules 2014; 19:1608-21. [PMID: 24476601 PMCID: PMC6270737 DOI: 10.3390/molecules19021608] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 01/01/2023] Open
Abstract
OSW-1, isolated from the bulbs of Ornithogalum saundersiae Baker, is a steroidal saponin endowed with considerable antitumor properties. Biosynthesis of the 4-methoxybenzoyl group on the disaccharide moiety of OSW-1 is known to take place biochemically via the phenylpropanoid biosynthetic pathway, but molecular biological characterization of the related genes has been insufficient. Cinnamic acid 4-hydroxylase (C4H, EC 1.14.13.11), catalyzing the hydroxylation of trans-cinnamic acid to p-coumaric acid, plays a key role in the ability of phenylpropanoid metabolism to channel carbon to produce the 4-methoxybenzoyl group on the disaccharide moiety of OSW-1. Molecular isolation and functional characterization of the C4H genes, therefore, is an important step for pathway characterization of 4-methoxybenzoyl group biosynthesis. In this study, a gene coding for C4H, designated as OsaC4H, was isolated according to the transcriptome sequencing results of Ornithogalum saundersiae. The full-length OsaC4H cDNA is 1,608-bp long, with a 1,518-bp open reading frame encoding a protein of 505 amino acids, a 55-bp 5′ non-coding region and a 35-bp 3'-untranslated region. OsaC4H was functionally characterized by expression in Saccharomyces cerevisiae and shown to catalyze the oxidation of trans-cinnamic acid to p-coumaric acid, which was identified by high performance liquid chromatography with diode array detection (HPLC-DAD), HPLC-MS and nuclear magnetic resonance (NMR) analysis. The identification of the OsaC4H gene was expected to open the way to clarification of the biosynthetic pathway of OSW-1.
Collapse
|
9
|
Carbone F, Mourgues F, Perrotta G, Rosati C. Advances in functional research of antioxidants and organoleptic traits in berry crops. Biofactors 2008; 34:23-36. [PMID: 19706969 DOI: 10.1002/biof.5520340104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Berry species are economically-important crops worldwide and represent an invaluable source of vitamins and other health-related compounds. Species belonging to the families Rosaceae, Ericaceae and Grossulariaceae provide the most popular fruits, showing a strong diversity in natural and breeding populations as to berry traits (fruit type, size, color, flavor, antioxidant capacity), resistance to a/biotic stress, adaptation to different environment/culture conditions. The small genome size of most diploid berry genera is a remarkable feature for last-generation genomics technologies, molecular genetics and functional studies. This review will cover the literature dealing with molecular research in berry crops, focusing on antioxidant- and flavor-related compounds.
Collapse
Affiliation(s)
- Fabrizio Carbone
- ENEA, Trisaia Research Centre, Department of Genetics and Genomics, Rotondella (MT), Italy
| | | | | | | |
Collapse
|