1
|
Park JS, Gazzaniga FS, Kasper DL, Sharpe AH. Microbiota-dependent regulation of costimulatory and coinhibitory pathways via innate immune sensors and implications for immunotherapy. Exp Mol Med 2023; 55:1913-1921. [PMID: 37696895 PMCID: PMC10545783 DOI: 10.1038/s12276-023-01075-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 09/13/2023] Open
Abstract
Our bodies are inhabited by trillions of microorganisms. The host immune system constantly interacts with the microbiota in barrier organs, including the intestines. Over decades, numerous studies have shown that our mucosal immune system is dynamically shaped by a variety of microbiota-derived signals. Elucidating the mediators of these interactions is an important step for understanding how the microbiota is linked to mucosal immune homeostasis and gut-associated diseases. Interestingly, the efficacy of cancer immunotherapies that manipulate costimulatory and coinhibitory pathways has been correlated with the gut microbiota. Moreover, adverse effects of these therapies in the gut are linked to dysregulation of the intestinal immune system. These findings suggest that costimulatory pathways in the immune system might serve as a bridge between the host immune system and the gut microbiota. Here, we review mechanisms by which commensal microorganisms signal immune cells and their potential impact on costimulation. We highlight how costimulatory pathways modulate the mucosal immune system through not only classical antigen-presenting cells but also innate lymphocytes, which are highly enriched in barrier organs. Finally, we discuss the adverse effects of immune checkpoint inhibitors in the gut and the possible relationship with the gut microbiota.
Collapse
Affiliation(s)
- Joon Seok Park
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Francesca S Gazzaniga
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Dennis L Kasper
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Hasanali ZS, Saroya BS, Stuart A, Shimko S, Evans J, Vinod Shah M, Sharma K, Leshchenko VV, Parekh S, Loughran TP, Epner EM. Epigenetic therapy overcomes treatment resistance in T cell prolymphocytic leukemia. Sci Transl Med 2016; 7:293ra102. [PMID: 26109102 DOI: 10.1126/scitranslmed.aaa5079] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
T cell prolymphocytic leukemia (T-PLL) is a rare, mature T cell neoplasm with distinct features and an aggressive clinical course. Early relapse and short overall survival are commonplace. Use of the monoclonal anti-CD52 antibody alemtuzumab has improved the rate of complete remission and duration of response to more than 50% and between 6 and 12 months, respectively. Despite this advance, without an allogeneic transplant, resistant relapse is inevitable. We report seven complete and one partial remission in eight patients receiving alemtuzumab and cladribine with or without a histone deacetylase inhibitor. These data show that administration of epigenetic agents can overcome alemtuzumab resistance. We also report epigenetically induced expression of the surface receptor protein CD30 in T-PLL. Subsequent treatment with the anti-CD30 antibody-drug conjugate brentuximab vedotin overcame organ-specific (skin) resistance to alemtuzumab. Our findings demonstrate activity of combination epigenetic and immunotherapy in the incurable illness T-PLL, particularly in the setting of previous alemtuzumab therapy.
Collapse
Affiliation(s)
- Zainul S Hasanali
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine and Penn State Hershey Cancer Institute, Hershey, PA 17033, USA
| | | | - August Stuart
- Department of Medicine/Hematology-Oncology, Pennsylvania State University College of Medicine and Penn State Hershey Cancer Institute, Hershey, PA 17033, USA
| | - Sara Shimko
- Department of Medicine/Hematology-Oncology, Pennsylvania State University College of Medicine and Penn State Hershey Cancer Institute, Hershey, PA 17033, USA
| | - Juanita Evans
- Department of Anatomic Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Mithun Vinod Shah
- Division of Hematology and Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kamal Sharma
- Shaner Cancer Center Mount Nittany Medical Center/Pennsylvania State University, State College, PA 6803, USA
| | - Violetta V Leshchenko
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Samir Parekh
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas P Loughran
- Department of Medicine/Hematology-Oncology, UVA Cancer Center, Charlottesville, VA 22903, USA.
| | - Elliot M Epner
- Department of Hematology/Oncology, New Mexico VA Health Care System, Albuquerque, NM 87108, USA.
| |
Collapse
|
3
|
Godefroy E, Gallois A, Idoyaga J, Merad M, Tung N, Monu N, Saenger Y, Fu Y, Ravindran R, Pulendran B, Jotereau F, Trombetta S, Bhardwaj N. Activation of toll-like receptor-2 by endogenous matrix metalloproteinase-2 modulates dendritic-cell-mediated inflammatory responses. Cell Rep 2014; 9:1856-1870. [PMID: 25466255 PMCID: PMC4336179 DOI: 10.1016/j.celrep.2014.10.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 09/22/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022] Open
Abstract
Matrix metalloproteinase-2 (MMP-2) is involved in several physiological mechanisms, including wound healing and tumor progression. We show that MMP-2 directly stimulates dendritic cells (DCs) to both upregulate OX40L on the cell surface and secrete inflammatory cytokines. The mechanism underlying DC activation includes physical association with Toll-like receptor-2 (TLR2), leading to NF-κB activation, OX40L upregulation on DCs, and ensuing TH2 differentiation. Significantly, MMP-2 polarizes T cells toward type 2 responses in vivo, in a TLR2-dependent manner. MMP-2-dependent type 2 polarization may represent a key immune regulatory mechanism for protection against a broad array of disorders, such as inflammatory, infectious, and autoimmune diseases, which can be hijacked by tumors to evade immunity.
Collapse
Affiliation(s)
- Emmanuelle Godefroy
- Mount Sinai School of Medicine, Tisch Cancer Institute, New York, NY 10029, USA
| | - Anne Gallois
- Mount Sinai School of Medicine, Tisch Cancer Institute, New York, NY 10029, USA
| | - Juliana Idoyaga
- Mount Sinai School of Medicine, Tisch Cancer Institute, New York, NY 10029, USA; Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY 10065, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Miriam Merad
- Mount Sinai School of Medicine, Tisch Cancer Institute, New York, NY 10029, USA
| | - Navpreet Tung
- Mount Sinai School of Medicine, Tisch Cancer Institute, New York, NY 10029, USA
| | - Ngozi Monu
- New York University Langone Medical Center, Cancer Institute, New York, NY 10016, USA
| | - Yvonne Saenger
- Mount Sinai School of Medicine, Tisch Cancer Institute, New York, NY 10029, USA
| | - Yichun Fu
- Mount Sinai School of Medicine, Tisch Cancer Institute, New York, NY 10029, USA
| | - Rajesh Ravindran
- Emory Vaccine Center, Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | - Bali Pulendran
- Emory Vaccine Center, Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | | | - Sergio Trombetta
- New York University Langone Medical Center, Cancer Institute, New York, NY 10016, USA
| | - Nina Bhardwaj
- Mount Sinai School of Medicine, Tisch Cancer Institute, New York, NY 10029, USA.
| |
Collapse
|
4
|
Aghaloo TL, Cheong S, Bezouglaia O, Kostenuik P, Atti E, Dry SM, Pirih FQ, Tetradis S. RANKL inhibitors induce osteonecrosis of the jaw in mice with periapical disease. J Bone Miner Res 2014; 29:843-54. [PMID: 24115073 PMCID: PMC4476544 DOI: 10.1002/jbmr.2097] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/24/2013] [Accepted: 09/05/2013] [Indexed: 12/20/2022]
Abstract
Antiresorptive medications are essential in treating diseases of pathologic osteoclastic bone resorption, including bone cancer and osteoporosis. Bisphosphonates (BPs) are the most commonly used antiresorptives in clinical practice. Although inhibition of bone resorption is important in regulating unwanted malignant and metabolic osteolysis, BP treatment is associated with potential side effects, including osteonecrosis of the jaws (ONJ). Recently, non-BP antiresorptive medications targeting osteoclastic function and differentiation, such as denosumab, have entered the clinical arena. Denosumab treatment results in a similar rate of ONJ as BPs. Animal models of ONJ, using high-dose BP treatment in combination with tooth extraction or dental disease, provide valuable tools and insight in exploring ONJ pathophysiology. However, the ability of other antiresorptives to induce ONJ-like lesions in animal models has not been explored. Such studies would be beneficial in providing support for the role of osteoclast inhibition in ONJ pathogenesis versus a direct BP effect on oral tissues. Here, we tested the ability of the receptor activator of NF-κB ligand (RANKL) inhibitors RANK-Fc (composed of the extracellular domain of RANK fused to the fragment crystallizable [Fc] portion of immunoglobulin G [IgG]) and OPG-Fc (composed of the RANKL-binding domains of osteoprotegerin [OPG] linked to the Fc portion of IgG) to induce ONJ in mice in the presence of periapical disease, but in the absence of dental extractions. We demonstrate radiographic evidence of ONJ in RANK-Fc-treated and OPG-Fc-treated mice, including inhibition of bone loss, increased bone density, lamina dura thickening, and periosteal bone deposition. These findings closely resembled the radiographic appearance of an ONJ patient on denosumab treatment. Histologic examination revealed that RANK-Fc treatment and OPG-Fc treatment resulted in absence of osteoclasts, periosteal bone formation, empty osteocytic lacunae, osteonecrosis, and bone exposure. In conclusion, we have successfully induced ONJ in mice with periapical disease, using potent osteoclast inhibitors other than BPs. Our findings, coupled with ONJ animal models using high-dose BPs, suggest that osteoclast inhibition is pivotal to the pathogenesis of ONJ.
Collapse
Affiliation(s)
- Tara L Aghaloo
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Ma H, Hong M, Duan J, Liu P, Fan X, Shang E, Su S, Guo J, Qian D, Tang Y. Altered cytokine gene expression in peripheral blood monocytes across the menstrual cycle in primary dysmenorrhea: a case-control study. PLoS One 2013; 8:e55200. [PMID: 23390521 PMCID: PMC3563666 DOI: 10.1371/journal.pone.0055200] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 12/19/2012] [Indexed: 02/01/2023] Open
Abstract
Primary dysmenorrhea is one of the most common gynecological complaints in young women, but potential peripheral immunologic features underlying this condition remain undefined. In this paper, we compared 84 common cytokine gene expression profiles of peripheral blood mononuclear cells (PBMCs) from six primary dysmenorrheic young women and three unaffected controls on the seventh day before (secretory phase), and the first (menstrual phase) and the fifth (regenerative phase) days of menstruation, using a real-time PCR array assay combined with pattern recognition and gene function annotation methods. Comparisons between dysmenorrhea and normal control groups identified 11 (nine increased and two decreased), 14 (five increased and nine decreased), and 15 (seven increased and eight decreased) genes with ≥2-fold difference in expression (P<0.05) in the three phases of menstruation, respectively. In the menstrual phase, genes encoding pro-inflammatory cytokines (IL1B, TNF, IL6, and IL8) were up-regulated, and genes encoding TGF-β superfamily members (BMP4, BMP6, GDF5, GDF11, LEFTY2, NODAL, and MSTN) were down-regulated. Functional annotation revealed an excessive inflammatory response and insufficient TGF-β superfamily member signals with anti-inflammatory consequences, which may directly contribute to menstrual pain. In the secretory and regenerative phases, increased expression of pro-inflammatory cytokines and decreased expression of growth factors were also observed. These factors may be involved in the regulation of decidualization, endometrium breakdown and repair, and indirectly exacerbate primary dysmenorrhea. This first study of cytokine gene expression profiles in PBMCs from young primary dysmenorrheic women demonstrates a shift in the balance between expression patterns of pro-inflammatory cytokines and TGF-β superfamily members across the whole menstrual cycle, underlying the peripheral immunologic features of primary dysmenorrhea.
Collapse
Affiliation(s)
- Hongyue Ma
- Jiangsu Key Laboratory for TCM Formulae Research, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Hong
- Jiangsu Key Laboratory for TCM Formulae Research, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinao Duan
- Jiangsu Key Laboratory for TCM Formulae Research, Nanjing University of Chinese Medicine, Nanjing, China
- * E-mail:
| | - Pei Liu
- Jiangsu Key Laboratory for TCM Formulae Research, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinsheng Fan
- Jiangsu Key Laboratory for TCM Formulae Research, Nanjing University of Chinese Medicine, Nanjing, China
| | - Erxin Shang
- Jiangsu Key Laboratory for TCM Formulae Research, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shulan Su
- Jiangsu Key Laboratory for TCM Formulae Research, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianming Guo
- Jiangsu Key Laboratory for TCM Formulae Research, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dawei Qian
- Jiangsu Key Laboratory for TCM Formulae Research, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuping Tang
- Jiangsu Key Laboratory for TCM Formulae Research, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Aparicio-Domingo P, Cupedo T. Rorγt+ innate lymphoid cells in intestinal homeostasis and immunity. J Innate Immun 2011; 3:577-84. [PMID: 21893962 DOI: 10.1159/000330668] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/27/2011] [Indexed: 12/27/2022] Open
Abstract
Innate lymphoid cells (ILC) combine innate and adaptive immune functions and are part of the first line of defense against mucosal infections. ILC are set apart from adaptive lymphocytes by their independence on RAG genes and the resulting absence of specific antigen receptors. In this review, we will discuss the biology and function of intestinal ILC that express the nuclear hormone receptor Rorγt (encoded by the Rorc gene) and highlight their role in intestinal homeostasis and immunity.
Collapse
|