1
|
Rincon I, Hidalgo T, Armani G, Rojas S, Horcajada P. Enzyme_Metal-Organic Framework Composites as Novel Approach for Microplastic Degradation. CHEMSUSCHEM 2024; 17:e202301350. [PMID: 38661054 DOI: 10.1002/cssc.202301350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
Plastic pollution is one of the main worldwide environmental concerns. Our lifestyle involves persistent plastic consumption, aggravating the low efficiency of wastewater treatment plants in its removal. Nano/microplastics are accumulated in living beings, pushing to identify new water remediation strategies to avoid their harmful effects. Enzymes (e. g., Candida rugosa-CrL) are known natural plastic degraders as catalysts in depolymerization reactions. However, their practical use is limited by their stability, recyclability, and economical concerns. Here, enzyme immobilization in metal-organic frameworks (CrL_MOFs) is originally presented as a new plastic degradation approach to achieve a boosted plastic decomposition in aqueous systems while allowing the catalyst cyclability. Bis-(hydroxyethyl)terephthalate (BHET) was selected as model substrate for decontamination experiments for being the main polyethylene terephthalate (PET) degradation product. Once in contaminated water, CrL_MOFs can eliminate BHET (37 %, 24 h), following two complementary mechanisms: enzymatic degradation (CrL action) and byproducts adsorption (MOF effect). As a proof-of-concept, the capacity of a selected CrL_MOF composite to eliminate the BHET degradation products and its reusability are also investigated. The potential of these systems is envisioned in terms of improving enzyme cyclability, reducing costs along with feasible co-adsorption of plastic byproducts and other harmful contaminants, to successfully remove them in a single step.
Collapse
Affiliation(s)
- Irene Rincon
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, Móstoles, 28935, Madrid, Spain
| | - Tania Hidalgo
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, Móstoles, 28935, Madrid, Spain
| | - Giacomo Armani
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, Móstoles, 28935, Madrid, Spain
| | - Sara Rojas
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, Móstoles, 28935, Madrid, Spain
- Department of Inorganic Chemistry, University of Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, Móstoles, 28935, Madrid, Spain
| |
Collapse
|
2
|
Li Y, Zhang Y, Zhang W, Wu H, Zhang S. Enhanced Hydrogen Peroxide Decomposition in a Continuous-Flow Reactor over Immobilized Catalase with PAES-C. Polymers (Basel) 2024; 16:1762. [PMID: 39000617 PMCID: PMC11243836 DOI: 10.3390/polym16131762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Due to the specificity, high efficiency, and gentleness of enzyme catalysis, the industrial utilization of enzymes has attracted more and more attention. Immobilized enzymes can be recovered/recycled easily compared to their free forms. The primary benefit of immobilization is protection of the enzymes from harsh environmental conditions (e.g., elevated temperatures, extreme pH values, etc.). In this paper, catalase was successfully immobilized in a poly(aryl ether sulfone) carrier (PAES-C) with tunable pore structure as well as carboxylic acid side chains. Moreover, immobilization factors like temperature, time, and free-enzyme dosage were optimized to maximize the value of the carrier and enzyme. Compared with free enzyme, the immobilized-enzyme exhibited higher enzymatic activity (188.75 U g-1, at 30 °C and pH 7) and better thermal stability (at 60 °C). The adsorption capacity of enzyme protein per unit mass carrier was 4.685 mg. Hydrogen peroxide decomposition carried out in a continuous-flow reactor was selected as a model reaction to investigate the performance of immobilized catalase. Immobilized-enzymes showed a higher conversion rate (90% at 8 mL/min, 1 h and 0.2 g) compared to intermittent operation. In addition, PAES-C has been synthesized using dichlorodiphenyl sulfone and the renewable resource bisphenolic acid, which meets the requirements of green chemistry. These results suggest that PAES-C as a carrier for immobilized catalase could improve the catalytic activity and stability of catalase, simplify the separation of enzymes, and exhibit good stability and reusability.
Collapse
Affiliation(s)
- Yunrui Li
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Zhang
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Wenyu Zhang
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Hao Wu
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shaoyin Zhang
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Kovalenko V, Kotok V, Murashevych B. Layered Double Hydroxides as the Unique Product of Target Ionic Construction for Energy, Chemical, Foods, Cosmetics, Medicine and Ecology Applications. CHEM REC 2024; 24:e202300260. [PMID: 37847884 DOI: 10.1002/tcr.202300260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/19/2023] [Indexed: 10/19/2023]
Abstract
Layered Double Hydroxide (LDH) is an α-modification of the M-host (M2+ ) hydroxide, in which some part of the M-host cations is replaced by M-guest cations (M3+ or M4+ ). The emerging excess positive charge is compensated by the intercalation of anions into the interlayer space, which also contains water molecules. LDHs exhibit anion exchange properties. Targeted ionic design of LDHs via combining three components (M-host, M-guest cations, intercalated anions) allows the creation of a very wide range of highly efficient electrochemical, electrocatalytic, electrochromic substances, catalysts, ion exchangers, sorbents, color pigments, pharmacological drugs, food, and cosmetic additives. In this review, the structure and areas of application of LDHs are considered from the perspective of the targeted ionic design of a substance for a specific application.
Collapse
Affiliation(s)
- Vadym Kovalenko
- Department of Analytical Chemistry and Chemical Technology of Food Additives and Cosmetics, Ukrainian State University of Chemical Technology, Gagarina ave., 8, 49015, Dnipro, Ukraine
| | - Valerii Kotok
- Department of Processes, Apparatus and General Chemical Technology, Ukrainian State University of Chemical Technologies, Gagarina ave., 8, 49015, Dnipro, Ukraine
| | - Bohdan Murashevych
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, Volodymyra Vernadskoho str., 9, 49044, Dnipro, Ukraine
| |
Collapse
|
4
|
Hooe SL, Smith AD, Dean SN, Breger JC, Ellis GA, Medintz IL. Multienzymatic Cascades and Nanomaterial Scaffolding-A Potential Way Forward for the Efficient Biosynthesis of Novel Chemical Products. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309963. [PMID: 37944537 DOI: 10.1002/adma.202309963] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Synthetic biology is touted as the next industrial revolution as it promises access to greener biocatalytic syntheses to replace many industrial organic chemistries. Here, it is shown to what synthetic biology can offer in the form of multienzyme cascades for the synthesis of the most basic of new materials-chemicals, including especially designer chemical products and their analogs. Since achieving this is predicated on dramatically expanding the chemical space that enzymes access, such chemistry will probably be undertaken in cell-free or minimalist formats to overcome the inherent toxicity of non-natural substrates to living cells. Laying out relevant aspects that need to be considered in the design of multi-enzymatic cascades for these purposes is begun. Representative multienzymatic cascades are critically reviewed, which have been specifically developed for the synthesis of compounds that have either been made only by traditional organic synthesis along with those cascades utilized for novel compound syntheses. Lastly, an overview of strategies that look toward exploiting bio/nanomaterials for accessing channeling and other nanoscale materials phenomena in vitro to direct novel enzymatic biosynthesis and improve catalytic efficiency is provided. Finally, a perspective on what is needed for this field to develop in the short and long term is presented.
Collapse
Affiliation(s)
- Shelby L Hooe
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
- National Research Council, Washington, DC, 20001, USA
| | - Aaron D Smith
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Scott N Dean
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Joyce C Breger
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Gregory A Ellis
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| |
Collapse
|
5
|
Ahmad M, Yousaf M, Han JC, Huang Y, Zhou Y, Tang Z. Development of biocatalytic microbial ecosystem (FPUS@RODMs@In-PAOREs) for rapid and sustainable degradation of various refractory organics. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131514. [PMID: 37150099 DOI: 10.1016/j.jhazmat.2023.131514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
The removal of diverse refractory organics from complex industrial wastewater continues to be a challenge. Although biological treatments are commonly employed, only partial degradation and increasing emergence of nitrogenous compounds, i.e., nitrate (NO3) and nitrite (NO2) would pose severe toxicity to the intact microbes. Herein, an efficient biocatalytic microbial ecosystem (BCME) was designed over a porous bio-carrier made of a functional polyurethane sponge (FPUS). The BCME comprised a unique set of organisms (RODMs) with novel metabolism, efficiently degrading highly-concentrated aromatics. Strategic enzyme immobilization was utilized to introduce in-situ production and aggregation of the oxidation and reduction enzymes (In-PAOREs) onto the FPUS, thereby ensuing sustained functions of the RODMs community. The developed FPUS@RODMs@In-PAOREs system was found to enhance the refractory organics removal rate to 4 kg/m3/day, and it would be attributed to the enzymatic catalysis of refractory organics (2000 mg/L) accompanied by the removal of COD (1200 mg/L) and nitrogenous compounds (200 mg/L). Besides, the fluctuating concentration of extra polymeric substances (EPS) played a dual role through enhancing adhesion, promoting the development of a functional microbial ecosystem, and creating an EPS gradient within the FPUS bio-carrier. This differential distribution of enzymes was established to significantly boost biocatalysis activity reaching 400 U/g VSS.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Maryam Yousaf
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jing-Cheng Han
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Yuefei Huang
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Yang Zhou
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Zhaozhao Tang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Zheng XT, Zhong Y, Chu HE, Yu Y, Zhang Y, Chin JS, Becker DL, Su X, Loh XJ. Carbon Dot-Doped Hydrogel Sensor Array for Multiplexed Colorimetric Detection of Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17675-17687. [PMID: 37001053 DOI: 10.1021/acsami.3c01185] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Effective wound care and treatment require a quick and comprehensive assessment of healing status. Here, we develop a carbon dot-doped hydrogel sensor array in polydimethylsiloxane (PDMS) for simultaneous colorimetric detections of five wound biomarkers and/or wound condition indicators (pH, glucose, urea, uric acid, and total protein), leading to the holistic assessment of inflammation and infection. A biogenic carbon dot synthesized using an amino acid and a polymer precursor is doped in an agarose hydrogel matrix for constructing enzymatic sensors (glucose, urea, and uric acid) and dye-based sensors (pH and total protein). The encapsulated enzymes in such a matrix exhibit improved enzyme kinetics and stability compared to those in pure hydrogels. Such a matrix also provides stable colorimetric responses for all five sensors. The sensor array exhibits high accuracy (recovery rates of 91.5-113.1%) and clinically relevant detection ranges for all five wound markers. The sensor array is established for simulated wound fluids and validated with rat wound fluids from perturbed wound models. Distinct color patterns are obtained that can clearly distinguish healing vs nonhealing wounds visually and quantitatively. This hydrogel sensor array shows great potential for on-site wound sensing due to its long-term stability, lightweight, and flexibility.
Collapse
Affiliation(s)
- Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yingying Zhong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Huan Enn Chu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Republic of Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Republic of Singapore
| | - Jiah Shin Chin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Republic of Singapore
| | - David Lawrence Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Republic of Singapore
| | - Xiaodi Su
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
7
|
Immobilization of Lipase in Cu-BTC MOF with Enhanced Catalytic Performance for Resolution of N-hydroxymethyl Vince Lactam. Appl Biochem Biotechnol 2023; 195:1216-1230. [PMID: 36342624 DOI: 10.1007/s12010-022-04212-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
Metal-organic frameworks (MOFs) can be used as the immobilization carriers to protect the physicochemical properties of enzymes and improve their catalytic performance. Herein, we report an in situ co-precipitation method to immobilize lipase from Candida sp. 99-125 in Cu-BTC MOF (BTC = 1, 3, 5-benzene tricarboxylic acid, H3BTC). Characterizations of the immobilized lipase (lipase@Cu-BTC) have confirmed the entrapment of lipase molecules in Cu-BTC MOF. The immobilized lipase has been successfully applied for resolving N-hydroxymethyl vince lactam (N-HMVL) and its catalytic activity is five times that of native enzyme. More importantly, we found that Cu-BTC MOF can afford powerful protection for enzyme in nearly dry organic solvent and endow the immobilized lipase with excellent reusability and storage stability. Our present study may widen the application of immobilized enzyme with MOF as the immobilized carrier.
Collapse
|
8
|
Rasouli H, Nguyen K, Iliuta MC. Recent advancements in carbonic anhydrase immobilization and its implementation in CO2 capture technologies: A review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Caparco AA, Dautel DR, Champion JA. Protein Mediated Enzyme Immobilization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106425. [PMID: 35182030 DOI: 10.1002/smll.202106425] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Enzyme immobilization is an essential technology for commercializing biocatalysis. It imparts stability, recoverability, and other valuable features that improve the effectiveness of biocatalysts. While many avenues to join an enzyme to solid phases exist, protein-mediated immobilization is rapidly developing and has many advantages. Protein-mediated immobilization allows for the binding interaction to be genetically coded, can be used to create artificial multienzyme cascades, and enables modular designs that expand the variety of enzymes immobilized. By designing around binding interactions between protein domains, they can be integrated into functional materials for protein immobilization. These materials are framed within the context of biocatalytic performance, immobilization efficiency, and stability of the materials. In this review, supports composed entirely of protein are discussed first, with systems such as cellulosomes and protein cages being discussed alongside newer technologies like spore-based biocatalysts and forizymes. Protein-composite materials such as polymersomes and protein-inorganic supraparticles are then discussed to demonstrate how protein-mediated strategies are applied to many classes of solid materials. Critical analysis and future directions of protein-based immobilization are then discussed, with a particular focus on both computational and design strategies to advance this area of research and make it more broadly applicable to many classes of enzymes.
Collapse
Affiliation(s)
- Adam A Caparco
- Department of Nanoengineering, University of California, San Diego, MC 0448, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Dylan R Dautel
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, GA, 30332, USA
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, GA, 30332, USA
| |
Collapse
|
10
|
Pekgenc E, Yavuzturk Gul B, Vatanpour V, Koyuncu I. Biocatalytic membranes in anti-fouling and emerging pollutant degradation applications: Current state and perspectives. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
A Novel Superabsorbent Polymer from Crosslinked Carboxymethyl Tragacanth Gum with Glutaraldehyde: Synthesis, Characterization, and Swelling Properties. Int J Biomater 2021; 2021:5008833. [PMID: 34845410 PMCID: PMC8627358 DOI: 10.1155/2021/5008833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Nowadays, current global environmental problems include measures to eliminate or reduce the negative impact of chemicals from petroleum sources and, therefore, the use of materials from natural resources is increasingly recommended. In this context, natural-based superabsorbent polymers derived from polypeptides and polysaccharides have undergone chemical and biochemical modifications to improve their ability to absorb and retain large amounts of liquids. In the present paper, a new process has been used to overcome the side effects of radical polymerization in the manufacture of conventional polyacrylate superabsorbents (SAPs). Tragacanth gum (TG) was selected to prepare a new superabsorbent material (CMTG-GA) based on carboxymethyl tragacanth (CMTG) crosslinked with glutaraldehyde (GA). The characterization of the polymer was carried out by FTIR, TGA, XRD, and SEM. The effect of the amount of crosslinking agent and the pH on the water absorption capacity was also examined. Subsequently, swelling studies were performed using free swelling capacity (FSC) and centrifuge retention capacity (CRC) techniques in distilled water, tap water, and saline solution. The results showed that the CRC of the new material is not less than 42.1 g/g, which was observed for a ratio of 20% by weight of GA to CMTG. Likewise, the maximum absorption results were 43.9 and 32.14 g/g, respectively, for FSC and CRC at pH 8.0. In addition, a comparison of the swelling capacities of the synthesized product with a commercial SAP extracted from a baby diaper, well known in the Moroccan market, showed that the performances were very similar.
Collapse
|
12
|
Ifra, Singh A, Saha S. High Adsorption of α-Glucosidase on Polymer Brush-Modified Anisotropic Particles Acquired by Electrospraying-A Combined Experimental and Simulation Study. ACS APPLIED BIO MATERIALS 2021; 4:7431-7444. [PMID: 35006717 DOI: 10.1021/acsabm.1c00682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this particular contribution, we aim to immobilize a model enzyme such as α-glucosidase onto poly(DMAEMA) [poly(2-dimethyl amino ethyl methacrylate)] brush-modified anisotropic (cup- and disc-shaped) biocompatible polymeric particles. The anisotropic particles comprising a blend of PLA [poly(lactide)] and poly(MMA-co-BEMA) [poly((methyl methacrylate)-co-(2-(2-bromopropionyloxy) ethyl methacrylate)] were acquired by electrospraying, a scalable and convenient technique. We have also demonstrated the role of a swollen polymer brush grafted on the surface of cup-/disc-shaped particles via surface-initiated atom transfer radical polymerization in immobilizing an unprecedentedly high loading of enzyme [441 mg/g (cup)-589 mg/g (disc) of particles, 15-20 times higher than that of the literature-reported system] as compared to non-brush-modified particles. Circular dichroism spectroscopy was used to predict the structural changes of the enzyme upon immobilization onto the carrier particles. An enormously high amount of enzymes with preserved activity (∼85 ± 13% for cups and ∼78 ± 15% for discs) was found to adhere onto brush-modified particles at pH 7 via electrostatic adsorption. These findings were further explored at the atomistic level using a coarse-grained dissipative particle dynamics simulation approach, which exhibited excellent correlation with experimental results. In addition, accelerated particle separation was also achieved via magnetic force-induced aggregation within 20 min (without a centrifuge) by incorporating magnetic nanoparticles into disc-shaped particles while electrojetting. This further strengthens the technical feasibility of the process, which holds immense potential to be applied for various enzymes intended for several applications.
Collapse
Affiliation(s)
- Ifra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Awaneesh Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
13
|
Bhatti SA, Memon FH, Rehman F, Bhatti Z, Naqvi T, Thebo KH. Recent progress in decontamination system against chemical and biological materials: challenges and future perspectives. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
Environmental contamination is one of the key issues of developing countries in recent days, and several types of methods and technologies have been developed to overcome these issues. This paper highlights the importance of decontamination in a contaminated environment that normally precedes protection, detection and identification followed by medical support. Further, this paper especially focuses on individual and collective NBC decontamination required on navy ships and correspondingly presents solutions (viable and economical) through the use of indigenously developed decontamination equipment. The paper also highlights the integration of various decontamination technologies with pre-existing ship decontamination systems, indicating the need for various decontaminants. Finally, we will also focus on new decontamination systems based on nanomaterials and enzymes and their utilization.
Collapse
Affiliation(s)
- Saeed Akhtar Bhatti
- Department of Defence & Strategic Studies , Quaid-i-Azam University , Islamabad , 45320 , Pakistan
| | - Fida Hussain Memon
- Department of Electrical Engineering , Sukkur IBA University , Sukkur , Sindh , Pakistan
| | - Faisal Rehman
- Department of Mechatronics Engineering , College of EME, National University of Sciences and Technology (NUST) , Peshawar Road , Rawalpindi , Pakistan
| | - Zubeda Bhatti
- Department of Physics and Electronics , Shah Abdul Latif University , Khairpur Mirs , 66020 , Pakistan
| | - Tehsin Naqvi
- Department of Defence & Strategic Studies , Quaid-i-Azam University , Islamabad , 45320 , Pakistan
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences (UCAS) , Shenyang , China
| |
Collapse
|
14
|
Li X, Li J, Hao S, Han A, Yang Y, Fang G, Liu J, Wang S. Enzyme mimics based membrane reactor for di(2-ethylhexyl) phthalate degradation. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123873. [PMID: 33264945 DOI: 10.1016/j.jhazmat.2020.123873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 06/12/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), the most abundantly used plasticizer, was considered to be a hazardous chemical that was difficult to be degraded naturally. In this study, inspired by the "catalytic triad'' in serine proteases, an enzyme mimic material was developed by combining the proteases's active sites of serine, histidine and aspartate (S-H-D) with the self-assembling sequence of LKLKLKL and the aromatic group of fluorenylmethyloxycarbonyl (Fmoc). By mixing the monomer of peptides containing separate S, H and D residues with a ratio of 2:1:1, the enzyme mimics were found to co- assemble into nanofibers (Co-HSD) and showed the highest activity towards DEHP degradation because of the synergistic effects of active sites, orderly secondary structure and stable molecular conformation. To further improve ability and applicability, the high active mimetic enzyme was immobilized onto regenerated cellulose (RC) membranes for DEHP degradation in a continuous recycling mode. The RC membranes were first functionalized by the NaIO4 oxidation method to form aldehyde groups and then conjugated with the enzyme mimics via Schiff-base reaction. As a biocatalytic membrane, this membrane could not only effectively degrade DEHP, but also showed good stability, thus establishing a promising biomaterial for large scale biodegradation of DEHP in water decontamination and liquid food depollution.
Collapse
Affiliation(s)
- Xia Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jianpeng Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Sijia Hao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Ailing Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Yayu Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China; Research Center of Food Science and Human Health, School of Medicine, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
15
|
Evaluation of Designed Immobilized Catalytic Systems: Activity Enhancement of Lipase B from Candida antarctica. Catalysts 2020. [DOI: 10.3390/catal10080876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Immobilized enzymatic catalysts are widely used in the chemical and pharmaceutical industries. As Candida antarctica lipase B (CALB) is one of the more commonly used biocatalysts, we attempted to design an optimal lipase-catalytic system. In order to do that, we investigated the enantioselectivity and lipolytic activity of CALB immobilized on 12 different supports. Immobilization of lipase on IB-D152 allowed us to achieve hyperactivation (178%) in lipolytic activity tests. Moreover, the conversion in enantioselective esterification increased 43-fold, when proceeding with lipase-immobilized on IB-S861. The immobilized form exhibited a constant high catalytic activity in the temperature range of 25 to 55 °C. Additionally, the lipase immobilized on IB-D152 exhibited a higher lipolytic activity in the pH range of 6 to 9 compared with the native form. Interestingly, our investigations showed that IB-S500 and IB-S60S offered a possibility of application in catalysis in both organic and aqueous solvents. A significant link between the reaction media, the substrates, the supports and the lipase was confirmed. In our enzymatic investigations, high-performance liquid chromatography (HPLC) and the titrimetric method, as well as the Bradford method were employed.
Collapse
|
16
|
Kaushik S, Thungon PD, Goswami P. Silk Fibroin: An Emerging Biocompatible Material for Application of Enzymes and Whole Cells in Bioelectronics and Bioanalytical Sciences. ACS Biomater Sci Eng 2020; 6:4337-4355. [PMID: 33455178 DOI: 10.1021/acsbiomaterials.9b01971] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Enzymes and whole cells serve as the active biological entities in a myriad of applications including bioprocesses, bioanalytics, and bioelectronics. Conserving the natural activity of these functional biological entities during their prolonged use is one of the major goals for validating their practical applications. Silk fibroin (SF) has emerged as a biocompatible material to interface with enzymes as well as whole cells. These biomaterials can be tailored both physically and chemically to create excellent scaffolds of different forms such as fibers, films, and powder for immobilization and stabilization of enzymes. The secondary structures of the SF-protein can be attuned to generate hydrophobic/hydrophilic pockets suitable to create the biocompatible microenvironments. The fibrous nature of the SF protein with a dominant hydrophobic property may also serve as an excellent support for promoting cellular adhesion and growth. This review compiles and discusses the recent literature on the application of SF as a biocompatible material at the interface of enzymes and cells in various fields, including the emerging area of bioelectronics and bioanalytical sciences.
Collapse
Affiliation(s)
- Sharbani Kaushik
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43201, United States
| | - Phurpa Dema Thungon
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
17
|
Ureta MM, Martins GN, Figueira O, Pires PF, Castilho PC, Gomez-Zavaglia A. Recent advances in β-galactosidase and fructosyltransferase immobilization technology. Crit Rev Food Sci Nutr 2020; 61:2659-2690. [PMID: 32590905 DOI: 10.1080/10408398.2020.1783639] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The highly demanding conditions of industrial processes may lower the stability and affect the activity of enzymes used as biocatalysts. Enzyme immobilization emerged as an approach to promote stabilization and easy removal of enzymes for their reusability. The aim of this review is to go through the principal immobilization strategies addressed to achieve optimal industrial processes with special care on those reported for two types of enzymes: β-galactosidases and fructosyltransferases. The main methods used to immobilize these two enzymes are adsorption, entrapment, covalent coupling and cross-linking or aggregation (no support is used), all of them having pros and cons. Regarding the support, it should be cost-effective, assure the reusability and an easy recovery of the enzyme, increasing its stability and durability. The discussion provided showed that the type of enzyme, its origin, its purity, together with the type of immobilization method and the support will affect the performance during the enzymatic synthesis. Enzymes' immobilization involves interdisciplinary knowledge including enzymology, nanotechnology, molecular dynamics, cellular physiology and process design. The increasing availability of facilities has opened a variety of possibilities to define strategies to optimize the activity and re-usability of β-galactosidases and fructosyltransferases, but there is still great place for innovative developments.
Collapse
Affiliation(s)
- Maria Micaela Ureta
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| | | | - Onofre Figueira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Pedro Filipe Pires
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | | | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| |
Collapse
|
18
|
Recent Trends in Biomaterials for Immobilization of Lipases for Application in Non-Conventional Media. Catalysts 2020. [DOI: 10.3390/catal10060697] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The utilization of biomaterials as novel carrier materials for lipase immobilization has been investigated by many research groups over recent years. Biomaterials such as agarose, starch, chitin, chitosan, cellulose, and their derivatives have been extensively studied since they are non-toxic materials, can be obtained from a wide range of sources and are easy to modify, due to the high variety of functional groups on their surfaces. However, although many lipases have been immobilized on biomaterials and have shown potential for application in biocatalysis, special features are required when the biocatalyst is used in non-conventional media, for example, in organic solvents, which are required for most reactions in organic synthesis. In this article, we discuss the use of biomaterials for lipase immobilization, highlighting recent developments in the synthesis and functionalization of biomaterials using different methods. Examples of effective strategies designed to result in improved activity and stability and drawbacks of the different immobilization protocols are discussed. Furthermore, the versatility of different biocatalysts for the production of compounds of interest in organic synthesis is also described.
Collapse
|
19
|
Buruaga-Ramiro C, Valenzuela SV, Valls C, Roncero MB, Pastor FIJ, Díaz P, Martinez J. Development of an antimicrobial bioactive paper made from bacterial cellulose. Int J Biol Macromol 2020; 158:S0141-8130(20)33100-7. [PMID: 32360968 DOI: 10.1016/j.ijbiomac.2020.04.234] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022]
Abstract
Bacterial cellulose (BC) has emerged as an attractive adsorptive material for antimicrobial agents due to its fine network structure, its large surface area, and its high porosity. In the present study, BC paper was first produced and then lysozyme was immobilized onto it by physical adsorption, obtaining a composite of lysozyme-BC paper. The morphology and the crystalline structure of the composite were similar to that of BC paper as examined by scanning electron microscopy and X-ray diffraction, respectively. Regarding operational properties, specific activities of immobilized and free lysozyme were similar. Moreover, immobilized enzyme showed a broader working temperature and higher thermal stability. The composites maintained its activity for at least 80 days without any special storage. Lysozyme-BC paper displayed antimicrobial activity against Gram-positive and Gram-negative bacteria, inhibiting their growth by 82% and 68%, respectively. Additionally, the presence of lysozyme increased the antioxidant activity of BC paper by 30%. The results indicated that BC is a suitable material to produce bioactive paper as it provides a biocompatible environment without compromising the activity of the immobilized protein. BC paper with antimicrobial and antioxidant properties may have application in the field of active packaging.
Collapse
Affiliation(s)
- Carolina Buruaga-Ramiro
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | - Susana V Valenzuela
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | - Cristina Valls
- CELBIOTECH_Paper Engineering Research Group, EGE Department, Universitat Politècnica de Catalunya, Barcelona Tech, 08222 Terrassa, Spain.
| | - M Blanca Roncero
- CELBIOTECH_Paper Engineering Research Group, EGE Department, Universitat Politècnica de Catalunya, Barcelona Tech, 08222 Terrassa, Spain.
| | - F I Javier Pastor
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | - Pilar Díaz
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | - Josefina Martinez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| |
Collapse
|
20
|
Cacciotti I, Pallotto F, Scognamiglio V, Moscone D, Arduini F. Reusable optical multi-plate sensing system for pesticide detection by using electrospun membranes as smart support for acetylcholinesterase immobilisation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110744. [PMID: 32279763 DOI: 10.1016/j.msec.2020.110744] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 01/03/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Herein we report a multiplated and biopolymeric-based optical bioassay for organophosphate detection based on the use of acetylcholinesterase (AChE) as biocomponent and biopolymeric electrospun fibrous mats as eco-designed supports for AChE immobilisation. The principle of the detection relays on the decrease of enzymatic activity due to the capability of the organophosphorus pesticides to irreversibly inhibit AChE, which is optically detected using Ellman colorimetric method. The proposed bioassay consists in a novel, cost-effective, and multiplex-based 96-well system, in combination with customised biopolymeric membranes modified with AChE, with the aim to deliver a sustainable analytical tool. Indeed, the designed set-up should provide and guarantee several advantages, including: i) the re-use of plastic multi-plate with the only replacement of polymer dishes in the case of inhibition absence; ii) the exploiting of the properties of the immobilised enzyme, i.e. multiple analysis using the same amount of enzyme, reducing the AChE amount for analysis. In detail, three different biopolymers (i.e. polylactic acid (PLA), polycaprolactone (PCL), and poly-hydroxybutyrate-co-hydroxyvalerate (PHBV)) were investigated and morphologically characterised, as supports for enzyme immobilisation, to identify the optimal one. Among them, PHBV was selected as the best support to immobilise AChE by cross-linking method. The analytical features of the bioassay were then assessed by measuring standard solutions of paraoxon in a range of concentrations between 10 and 100 ppb, achieving a linear range up to 60 ppb and a detection limit of 10 ppb. Thus, the suitability of this sustainable bioassay to detect organophosphate at ppb level was demonstrated.
Collapse
Affiliation(s)
- Ilaria Cacciotti
- University of Rome "Niccolò Cusano", Department of Engineering, Via Don Carlo Gnocchi 3, 00166 Roma, Italy.
| | - Francesca Pallotto
- Università di Roma Tor Vergata, Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Viviana Scognamiglio
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technologies, Via Salaria Km 29.3, 00015, Monterotondo Scalo, Rome, Italy
| | - Danila Moscone
- Università di Roma Tor Vergata, Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Fabiana Arduini
- Università di Roma Tor Vergata, Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133 Rome, Italy; SENSE4MED, s.r.l. via Renato Rascel 30, 00128 Rome, Italy
| |
Collapse
|
21
|
One-Pot Aqueous and Template-Free Synthesis of Mesoporous Polymeric Resins. Catalysts 2019. [DOI: 10.3390/catal9090782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work explores the novel one-pot aqueous phase synthesis of mesoporous phenolic-hyperbranched polyethyleneimine resins without the use of a template, and their utility as heterogeneous catalysts in batch reactors and continuous microreactors. Catalyst surface areas of up to 432 m2/g were achieved with a uniform Pd distribution and an interconnected, highly porous, network structure, confirmed through Brunauer–Emmett–Teller (BET) surface area measurements, scanning electron microscopes (SEM), X-Ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), and Energy-dispersive X-ray spectroscopy (EDS). The heterogeneous catalysts achieved a maximum 98.98 ± 1% conversion in batch Suzuki couplings, with conversions being dependent upon reaction conditions, reactant chemistries, Pd loading and catalyst surface area. The catalysts were shown to be recyclable with only a marginal loss in conversion achieved after five runs. Up to 62 ± 5% and 46.5 ± 8% conversions at 0.2 mL/s and 0.4 mL/s flow rates, respectively, were achieved in a continuous microreactor. Understanding the mechanism of action of this mesoporous resin is a future research area, which could help expand the application vistas for this catalyst platform.
Collapse
|
22
|
Simón-Herrero C, Naghdi M, Taheran M, Kaur Brar S, Romero A, Valverde JL, Avalos Ramirez A, Sánchez-Silva L. Immobilized laccase on polyimide aerogels for removal of carbamazepine. JOURNAL OF HAZARDOUS MATERIALS 2019; 376:83-90. [PMID: 31125942 DOI: 10.1016/j.jhazmat.2019.05.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/23/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Since it is known that conventional wastewater treatment plants cannot completely remove pharmaceutical compounds, such as carbamazepine, the need for their removal has intensified. The use of biocatalysts, such as enzyme is an environmentally friendly method for carbamazepine biodegradation. Nevertheless, enzyme immobilization is required to facilitate the recovery and reusability and avoid the loss of enzyme. In this work, laccase was immobilized on modified polyimide aerogels by means of covalent bonding. Results showed that the immobilized laccase on polyimide aerogels possesses significantly improved activity under acidic or basic pH range in comparison with the free enzyme. Furthermore, for all the temperature range the activity of the immobilized enzyme was higher compared to the free enzyme form. The storage stability improved by the immobilization on this support material. The reusability tests towards oxidation of 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) showed that the immobilized laccase maintained 22% of the initial activity after 7 cycles. Immobilized laccase on polyimide aerogels for carbamazepine (CBZ) degradation exhibited 76% and 74% removal in spiked water and secondary effluent, respectively. Furthermore, after 7 cycles the CBZ removal efficiency remained higher (50% and 65% for spiked water and secondary effluent, respectively).
Collapse
Affiliation(s)
- Carolina Simón-Herrero
- Department of Chemical Engineering, University of Castilla La Mancha, Av. Camilo José Cela 12, 13071, Ciudad Real, Spain.
| | - Mitra Naghdi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Mehrdad Taheran
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Satinder Kaur Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Amaya Romero
- Department of Chemical Engineering, University of Castilla La Mancha, Av. Camilo José Cela 12, 13071, Ciudad Real, Spain
| | - José L Valverde
- Department of Chemical Engineering, University of Castilla La Mancha, Av. Camilo José Cela 12, 13071, Ciudad Real, Spain
| | - Antonio Avalos Ramirez
- CNETE (Centre National en Électrochimie et en Technologies Environnementales), Shawinigan, QC, G9N 4R6, Canada
| | - Luz Sánchez-Silva
- Department of Chemical Engineering, University of Castilla La Mancha, Av. Camilo José Cela 12, 13071, Ciudad Real, Spain.
| |
Collapse
|
23
|
Sarathi M, Doraiswamy N, Pennathur G. Enhanced stability of immobilized keratinolytic protease on electrospun nanofibers. Prep Biochem Biotechnol 2019; 49:695-703. [DOI: 10.1080/10826068.2019.1605524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Sun J, Wang C, Wang Y, Ji S, Liu W. Immobilization of carbonic anhydrase on polyethylenimine/dopamine codeposited membranes. J Appl Polym Sci 2019. [DOI: 10.1002/app.47784] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jing Sun
- Department of Chemical EngineeringSchool of Chemistry and Chemical Engineering, Beijing Institute of Technology Liangxiang Higher Education Park, Fangshan District, Beijing 102488 People's Republic of China
| | - Caihong Wang
- Department of Chemical EngineeringSchool of Chemistry and Chemical Engineering, Beijing Institute of Technology Liangxiang Higher Education Park, Fangshan District, Beijing 102488 People's Republic of China
| | - Yanzi Wang
- Department of Chemical EngineeringSchool of Chemistry and Chemical Engineering, Beijing Institute of Technology Liangxiang Higher Education Park, Fangshan District, Beijing 102488 People's Republic of China
| | - Shuxin Ji
- Department of Chemical EngineeringSchool of Chemistry and Chemical Engineering, Beijing Institute of Technology Liangxiang Higher Education Park, Fangshan District, Beijing 102488 People's Republic of China
| | - Wenfang Liu
- Department of Chemical EngineeringSchool of Chemistry and Chemical Engineering, Beijing Institute of Technology Liangxiang Higher Education Park, Fangshan District, Beijing 102488 People's Republic of China
| |
Collapse
|
25
|
Vitola G, Mazzei R, Poerio T, Porzio E, Manco G, Perrotta I, Militano F, Giorno L. Biocatalytic membrane reactor development for organophosphates degradation. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:789-795. [PMID: 30476802 DOI: 10.1016/j.jhazmat.2018.11.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Organophosphates (OPs) are highly toxic compounds used as pesticides and nerve agents. The devastating effects, reported in different studies, on the environment and human health indicate a serious scenario for both instantaneous and long terms effects. Bio-based strategies for OPs degradation seem the most promising solutions, particularly when extremophiles enzymes are used. These systems permit OPs degradation with high efficiency and specificity under mild conditions. However, as frequently observed, enzymes can easily lose activity in batch systems, so that a strategy to improve biocatalyst stability is highly needed, in order to develop continuous systems. In this work, for the first time, a continuous biocatalytic system for organophosphates (OPs) detoxification has been proposed by using a triple mutant of the thermostable phosphotriesterase (named SsoPox) isolated from the hyperthermophilic archaeon Sulfolobus solfataricus. The enzyme was covalently immobilized on polymeric membranes to develop a biocatalytic membrane reactor (BMR) able to hydrolyse a pesticide (paraoxon) contained in water. High paraoxon degradation (about 90%) and long term stability (1 year) were obtained when the enzyme was covalently immobilized on hydrophilic membranes. On the contrary, the enzyme in batch system completely loses its activity within few months after its solubilisation in buffer.
Collapse
Affiliation(s)
- G Vitola
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, 87036 Rende, Cosenza, Italy
| | - R Mazzei
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, 87036 Rende, Cosenza, Italy.
| | - T Poerio
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, 87036 Rende, Cosenza, Italy
| | - E Porzio
- Institute of Protein Biochemistry, National Research Council, IBP-CNR, via P. Castellino 111, 80131 Naples, Italy
| | - G Manco
- Institute of Protein Biochemistry, National Research Council, IBP-CNR, via P. Castellino 111, 80131 Naples, Italy
| | - I Perrotta
- Centre for Microscopy and Microanalysis (CM2), Dept. of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Cosenza, Italy
| | - F Militano
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, 87036 Rende, Cosenza, Italy
| | - L Giorno
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, 87036 Rende, Cosenza, Italy
| |
Collapse
|
26
|
Nazarzadeh Zare E, Makvandi P, Tay FR. Recent progress in the industrial and biomedical applications of tragacanth gum: A review. Carbohydr Polym 2019; 212:450-467. [PMID: 30832879 DOI: 10.1016/j.carbpol.2019.02.076] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 02/08/2023]
Abstract
Natural polymers have distinct advantages over synthetic polymers because of their abundance, biocompatibility, and biodegradability. Tragacanth gum, an anionic polysaccharide, is a natural polymer which is derived from renewable sources. As a biomaterial, tragacanth gum has been used in industrial settings such as food packaging and water treatment, as well as in the biomedical field as drug carriers and for wound healing purposes. The present review provides an overview on the state-of-the-art in the field of tragacanth gum applications. The structure, properties, cytotoxicity, and degradability as well as the recent advances in industrial and biomedical applications of tragacanth gum are reviewed to offer a backdrop for future research.
Collapse
Affiliation(s)
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples, Italy; Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Franklin R Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
27
|
Liu S, Xu Y, Zhao Y, Zou L, Lu W. Hydrothermal modification of lignocellulosic waste as microbial immobilization carriers for ethanol production. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Sun J, Wei L, Wang Y, Zhao Z, Liu W. Immobilization of carbonic anhydrase on polyvinylidene fluoride membranes. Biotechnol Appl Biochem 2018; 65:362-371. [PMID: 29222863 DOI: 10.1002/bab.1629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022]
Abstract
In recent years, the application of carbonic anhydrase (CA) in CO2 removal has attracted great interest. However, obtaining high enzyme recovery activity is difficult in existing immobilization techniques. In this work, water plasma-treated poly(vinylidene fluoride) (PVDF) membranes were modified via 3-aminopropyl triethoxy silane (KH550) or γ-(2, 3-epoxypropoxy) propyl trimethoxy silane (KH560), and then CA was attached. The immobilization process was optimized, and the catalytic properties of PVDF-attached CA were characterized. The maximum activity recovery of PVDF-KH550-CA was 60%, whereas that of PVDF-KH560-CA was 33%. The Km values of PVDF-KH550-CA, PVDF-KH560-CA, and free enzyme were 9.97 ± 0.37, 12.5 ± 0.2, and 6.18 ± 0.23 mM, respectively, and their Kcat /Km values were 206 ± 2, 117 ± 5, and 488 ± 4 M-1 ·Sec-1 . PVDF-attached CA shows excellent storage stability and reusability, and their half-life values were 82 and 78 days at 4 °C. At 25 °C, they were 50 and 37 days, respectively. PVDF-KH550-CA and PVDF-KH560-CA retained approximately 85% and 72% of the initial activity after undergoing 10 cycles. In the presence of them, the generation rates of CaCO3 were 76% and 65% of the free CA system, which were 1.6 and 1.3 times that of the blank system, respectively. Its role in accelerating CO2 sequestration holds great promise for its practical application.
Collapse
Affiliation(s)
- Jing Sun
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Lina Wei
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Yanzi Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Zhiping Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Wenfang Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|
29
|
Mohammadzadeh R, Agheshlouie M, Mahdavinia GR. Expression of chitinase gene in BL21 pET system and investigating the biocatalystic performance of chitinase-loaded AlgSep nanocomposite beads. Int J Biol Macromol 2017; 104:1664-1671. [DOI: 10.1016/j.ijbiomac.2017.03.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/10/2017] [Accepted: 03/21/2017] [Indexed: 01/30/2023]
|
30
|
Gilani SL, Najafpour GD, Moghadamnia A, Kamaruddin AH. Stability of immobilized porcine pancreas lipase on mesoporous chitosan beads: A comparative study. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Facial preparation of magnetic lipase as efficient biocatalyst to resolute esters enantioselectively. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-5209-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Fabricating polystyrene fiber-dehydrogenase assemble as a functional biocatalyst. Enzyme Microb Technol 2015; 68:15-22. [DOI: 10.1016/j.enzmictec.2014.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/20/2014] [Accepted: 09/25/2014] [Indexed: 12/22/2022]
|
33
|
Bukhari A, Idris A, Atta M, Loong TC. Covalent immobilization of Candida antarctica lipase B on nanopolystyrene and its application to microwave-assisted esterification. CHINESE JOURNAL OF CATALYSIS 2014. [DOI: 10.1016/s1872-2067(14)60111-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Yang CH, Yen CC, Jheng JJ, Wang CY, Chen SS, Huang PY, Huang KS, Shaw JF. Immobilization of Brassica oleracea chlorophyllase 1 (BoCLH1) and Candida rugosa lipase (CRL) in magnetic alginate beads: an enzymatic evaluation in the corresponding proteins. Molecules 2014; 19:11800-15. [PMID: 25105918 PMCID: PMC6271720 DOI: 10.3390/molecules190811800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/11/2014] [Accepted: 07/22/2014] [Indexed: 11/25/2022] Open
Abstract
Enzymes have a wide variety of applications in diverse biotechnological fields, and the immobilization of enzymes plays a key role in academic research or industrialization due to the stabilization and recyclability it confers. In this study, we immobilized the Brassica oleracea chlorophyllase 1 (BoCLH1) or Candida rugosa lipase (CRL) in magnetic iron oxide nanoparticles-loaded alginate composite beads. The catalytic activity and specific activity of the BoCLH1 and CRL entrapped in magnetic alginate composite beads were evaluated. Results show that the activity of immobilized BoCLH1 in magnetic alginate composite beads (3.36±0.469 U/g gel) was higher than that of immobilized BoCLH1 in alginate beads (2.96±0.264 U/g gel). In addition, the specific activity of BoCLH1 beads (10.90±1.521 U/mg protein) was higher than that immobilized BoCLH1 in alginate beads (8.52±0.758 U/mg protein). In contrast, the immobilized CRL in magnetic alginate composite beads exhibited a lower enzyme activity (11.81±0.618) than CRL immobilized in alginate beads (94.83±7.929), and the specific activity of immobilized CRL entrapped in magnetic alginate composite beads (1.99±0.104) was lower than immobilized lipase in alginate beads (15.01±1.255). A study of the degradation of magnetic alginate composite beads immersed in acidic solution (pH 3) shows that the magnetic alginate composite beads remain intact in acidic solution for at least 6 h, indicating the maintenance of the enzyme catalytic effect in low-pH environment. Finally, the enzyme immobilized magnetic alginate composite beads could be collected by an external magnet and reused for at least six cycles.
Collapse
Affiliation(s)
- Chih-Hui Yang
- Department of Biological Science & Technology, I-Shou University, Kaohsiung 840, Taiwan
| | - Chih-Chung Yen
- Department of Biological Science & Technology, I-Shou University, Kaohsiung 840, Taiwan
| | - Jen-Jyun Jheng
- Department of Biological Science & Technology, I-Shou University, Kaohsiung 840, Taiwan
| | - Chih-Yu Wang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung 840, Taiwan
| | - Sheau-Shyang Chen
- Department of Biological Science & Technology, I-Shou University, Kaohsiung 840, Taiwan
| | - Pei-Yu Huang
- Department of Biological Science & Technology, I-Shou University, Kaohsiung 840, Taiwan
| | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, No.8, Yida Road, Jiaosu Village Yanchao District, Kaohsiung 82445, Taiwan.
| | - Jei-Fu Shaw
- Department of Biological Science & Technology, I-Shou University, Kaohsiung 840, Taiwan.
| |
Collapse
|
35
|
Yin Z, Zhao W, Tian M, Zhang Q, Guo L, Yang L. A capillary electrophoresis-based immobilized enzyme reactor using graphene oxide as a support via layer by layer electrostatic assembly. Analyst 2014; 139:1973-9. [DOI: 10.1039/c3an02241b] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Using graphene oxide as an enzyme support, we developed a novel CE-based microreactor via layer-by-layer electrostatic assembly, which can be used for accurate on-line analysis and characterization of peptides and proteins.
Collapse
Affiliation(s)
- Zhengri Yin
- Faculty of Chemistry
- Northeast Normal University
- Changchun, P. R. China
| | - Wenwen Zhao
- Faculty of Chemistry
- Northeast Normal University
- Changchun, P. R. China
| | - Miaomiao Tian
- Faculty of Chemistry
- Northeast Normal University
- Changchun, P. R. China
| | - Qian Zhang
- Faculty of Chemistry
- Northeast Normal University
- Changchun, P. R. China
| | - Liping Guo
- Faculty of Chemistry
- Northeast Normal University
- Changchun, P. R. China
| | - Li Yang
- Faculty of Chemistry
- Northeast Normal University
- Changchun, P. R. China
| |
Collapse
|
36
|
Chao C, Liu J, Wang J, Zhang Y, Zhang B, Zhang Y, Xiang X, Chen R. Surface modification of halloysite nanotubes with dopamine for enzyme immobilization. ACS APPLIED MATERIALS & INTERFACES 2013; 5:10559-64. [PMID: 24095033 DOI: 10.1021/am4022973] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Halloysite nanotubes (HNTs) have been proposed as a potential support to immobilize enzymes. Improving enzyme loading on HNTs is critical to their practical applications. Herein, we reported a simple method on the preparation of high-enzyme-loading support by modification with dopamine on the surface of HNTs. The modified HNTs were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses. The results showed that dopamine could self-polymerize to adhere to the surface of HNTs and form a thin active coating. While the prepared hybrid nanotubes were used to immobilize enzyme of laccase, they exhibited high loading ability of 168.8 mg/g support, which was greatly higher than that on the pristine HNTs (11.6 mg/g support). The immobilized laccase could retain more than 90% initial activity after 30 days of storage and the free laccase only 32%. The immobilized laccase could also maintain more than 90% initial activity after five repeated uses. In addition, the immobilized laccase exhibited a rapid degradation rate and high degradation efficiency for removal of phenol compounds. These advantages indicated that the new hybrid material can be used as a low-cost and effective support to immobilize enzymes.
Collapse
Affiliation(s)
- Cong Chao
- School of Chemical Engineering, Zhengzhou University , Zhengzhou 450001, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Castano M, Seo KS, Kim EH, Becker ML, Puskas JE. Green polymer chemistry VIII: synthesis of halo-ester-functionalized poly(ethylene glycol)s via enzymatic catalysis. Macromol Rapid Commun 2013; 34:1375-80. [PMID: 23877930 DOI: 10.1002/marc.201300430] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/27/2013] [Indexed: 11/11/2022]
Abstract
Halo-ester-functionalized poly(ethylene glycol)s (PEGs) are successfully prepared by the transesterification of alkyl halo-esters with PEGs using Candida antarctica lipase B (CALB) as a biocatalyst under the solventless conditions. Transesterifications of chlorine, bromine, and iodine esters with tetraethylene glycol monobenzyl ether (BzTEG) are quantitative in less than 2.5 h. The transesterification of halo-esters with PEGs are complete in 4 h. (1) H and (13) C NMR spectroscopy with MALDI-ToF and ESI mass spectrometry confirm the structure and purity of the products. This method provides a convenient and "green" process to effectively produce halo-ester PEGs.
Collapse
Affiliation(s)
- Marcela Castano
- Department of Polymer Science, The University of Akron, Akron, OH 44325, USA
| | | | | | | | | |
Collapse
|
38
|
Przybysz A, Volmer AA, Westphal AH, van Berkel WJH. Bifunctional immobilization of a hyperthermostable endo-β-1,3-glucanase. Appl Microbiol Biotechnol 2013; 98:1155-63. [PMID: 23666443 DOI: 10.1007/s00253-013-4953-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 01/25/2023]
Abstract
Laminarinase A (LamA) from Pyrococcus furiosus is a hyperthermostable endo-β-1,3-glucanase (EC 3.2.1.39) belonging to the glycosyl hydrolase family GH16. Here, we report the two-step immobilization of LamA on macroporous acrylic epoxy beads, extra-functionalized with disulfide groups. To facilitate initial immobilization via thiol-disulfide exchange, we introduced, by site-directed mutagenesis, a superficial cysteine residue near the protein C-terminal end. The thus-obtained S296C variant showed similar catalytic properties as native LamA. The activity of immobilized S296C displayed an inverse relationship with particle size. Use of conventional beads (150-300 μm in diameter) obstructed the catalytic efficiency due to pore diffusion limitation of the polysaccharide substrate. Bifunctional attachment to milled beads (20-40 μm) resulted in high enzyme load and outstanding catalytic features. Bifunctional immobilized S296C showed extreme pH stability and could be repeatedly used at 60 °C without significant activity loss.
Collapse
Affiliation(s)
- Agata Przybysz
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
39
|
Yao W, Wu X, Zhu J, Sun B, Miller C. In vitro enzymatic conversion of γ-aminobutyric acid immobilization of glutamate decarboxylase with bacterial cellulose membrane (BCM) and non-linear model establishment. Enzyme Microb Technol 2013; 52:258-64. [PMID: 23540928 DOI: 10.1016/j.enzmictec.2013.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 11/16/2022]
Abstract
The work investigated the properties and feasibility of using bacterial cellulose membrane (BCM) as a new and environmental friendly support carrier to immobilize glutamate decarboxylase (GAD) (a unique enzyme in the conversion of γ-aminobutyric acid (GABA) production). During cultivation, the porosities of BCM decreased successively with more extended fibrils piling above one another in a criss-crossing manner thus forming condensed and spatial structure. The BCM with this ultrafine network structure was found to immobilize GAD best via covalent binding because of the highest efficiency of immobilization (87.56% of the enzyme was bonded) and a good operational stability. And the covalent binding efficiency (amount of enzyme immobilized versus lost) was closely related to the porosity or the inner network of the BCM, not to the surface area. The capacity per surface area (mg/cm(2)) increased from 1.267mg/cm(2) to 3.683mg/cm(2) when the porosity of BCM ranged from 49% to 73.80%, while a declining trend of the loss of GAD specific activity (from 29.30%/cm(2) to 7.38%/cm(2)) was observed when the porosity increased from 49.9% to 72.30%. Two non-linear regression relationships, between the porosity and loading capacity and between porosity and enzyme activity loss, were empirically modeled with the determination of coefficient R(2) of 0.980 and 0.977, respectively. Finally, the established in vitro enzymatic conversion process demonstrated 6.03g/L of GABA at 0.10mol/L Glu, 60min of retention time and 160mL of suspension volume after the 1st run and a loss of 4.15% after the 4th run. The productivity of GABA was 6.03gL(-1)h(-1), higher than that from other reported processes.
Collapse
Affiliation(s)
- Wanying Yao
- Biosystem and Agricultural Engineering Department, University of Kentucky, 115 C.E. Barnhart Building, Lexington, KY 40546, USA.
| | | | | | | | | |
Collapse
|
40
|
Figueira JA, Sato HH, Fernandes P. Establishing the feasibility of using β-glucosidase entrapped in Lentikats and in sol-gel supports for cellobiose hydrolysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:626-34. [PMID: 23294439 DOI: 10.1021/jf304594s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
β-Glucosidases represent an important group of enzymes due to their pivotal role in various biotechnological processes. One of the most prominent is biomass degradation for the production of fuel ethanol from cellulosic agricultural residues and wastes, where the use of immobilized biocatalysts may prove advantageous. Within such scope, the present work aimed to evaluate the feasibility of entrapping β-glucosidase in either sol-gel or in Lentikats supports for application in cellobiose hydrolysis, and to perform the characterization of the resulting bioconversion systems. The activity and stability of the immobilized biocatalyst over given ranges of temperature and pH values were assessed, as well as kinetic data, and compared to the free form, and the operational stability was evaluated. Immobilization increased the thermal stability of the enzyme, with a 10 °C shift to an optimal temperature in the case of sol-gel support. Mass transfer hindrances as a result of immobilization were not significant, for sol-gel support. Lentikats-entrapped glucosidase was used in 19 consecutive batch runs for cellobiose hydrolysis, without noticeable decrease in product yield. Moreover, encouraging results were obtained for continuous operation. In the overall, the feasibility of using immobilized biocatalysts for cellobiose hydrolysis was established.
Collapse
Affiliation(s)
- Joelise A Figueira
- Department of Food Science, School of Food Engineering, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | | | | |
Collapse
|
41
|
Kroll S, Brandes C, Wehling J, Treccani L, Grathwohl G, Rezwan K. Highly efficient enzyme-functionalized porous zirconia microtubes for bacteria filtration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:8739-47. [PMID: 22827536 DOI: 10.1021/es3006496] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In contrast to polymer membranes, ceramic membranes offer considerable advantages for safe drinking water provision due to their excellent chemical, thermal, and mechanical endurance. In this study, porous ceramic microtubes made of yttria stabilized zirconia (YSZ) are presented, which are conditioned for bacteria filtration by immobilizing lysozyme as an antibacterial enzyme. In accordance with determined membrane pore sizes of the nonfunctionalized microtube of ≤200 nm, log reduction values (LRV) of nearly 3 (i.e., bacterial retention of 99.9%) were obtained for bacterial retention studies using gram-positive model bacterium Micrococcus luteus. Immobilization studies of lysozyme on the membrane surface reveal an up to six times higher lysozyme loading for the covalent immobilization route as compared to unspecific immobilization. Antibacterial activity of lysozyme-functionalized microtubes was assessed by qualitative agar plate test using Micrococcus luteus as substrate showing that both the unspecific and the covalent lysozyme immobilization enhance the microtubes' antibacterial properties. Quantification of the enzyme activity at flow conditions by photometric assays reveals that the enzyme activities of lysozyme-functionalized microtubes depend strongly on applied flow rates. Intracapillary feeding of bacteria solution and higher flow rates lead to reduced enzyme activities. In consideration of different applied flow rates in the range of 0.2-0.5 mL/min, the total lysozyme activity increases by a factor of 2 for the covalent immobilization route as compared to the unspecific binding. Lysozyme leaching experiments at flow conditions for 1 h show a significant higher amount of washed-out lysozyme (factor 1.7-3.4) for the unspecific immobilization route when compared to the covalent route where the initial level of antibacterial effectiveness could be achieved by reimmobilization with lysozyme. The presented platform is highly promising for sustainable bacteria filtration.
Collapse
Affiliation(s)
- Stephen Kroll
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Bellusci M, Francolini I, Martinelli A, D’Ilario L, Piozzi A. Lipase Immobilization on Differently Functionalized Vinyl-Based Amphiphilic Polymers: Influence of Phase Segregation on the Enzyme Hydrolytic Activity. Biomacromolecules 2012; 13:805-13. [DOI: 10.1021/bm2017228] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mariangela Bellusci
- Department of Chemistry
and Material Technology, ENEA CR Casaccia, Via Anguillarese 301, 00123, Rome, Italy
| | - Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, P.le Aldo
Moro 5, 00185 Rome, Italy
| | - Andrea Martinelli
- Department of Chemistry, Sapienza University of Rome, P.le Aldo
Moro 5, 00185 Rome, Italy
| | - Lucio D’Ilario
- Department of Chemistry, Sapienza University of Rome, P.le Aldo
Moro 5, 00185 Rome, Italy
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, P.le Aldo
Moro 5, 00185 Rome, Italy
| |
Collapse
|