1
|
Wang Z, Sun X, Lin Y, Fu Y, Yi Z. Stealth in non-tuberculous mycobacteria: clever challengers to the immune system. Microbiol Res 2025; 292:128039. [PMID: 39752805 DOI: 10.1016/j.micres.2024.128039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
Non-tuberculous Mycobacteria (NTM) are found extensively in various environments, yet most are non-pathogenic. Only a limited number of these organisms can cause various infections, including those affecting the lungs, skin, and central nervous system, particularly when the host's autoimmune function is compromised. Among these, Non-tuberculous Mycobacteria Pulmonary Diseases (NTM-PD) are the most prevalent. Currently, there is a lack of effective treatments and preventive measures for NTM infections. This article aims to deepen the comprehension of the pathogenic mechanisms linked to NTM and to formulate new intervention strategies by synthesizing current research and detailing the different tactics used by NTM to avoid elimination by the host's immune response. These intricate mechanisms not only affect the innate immune response but also successfully oppose the adaptive immune response, establishing persistent infections within the host. This includes effects on the functions of macrophages, neutrophils, dendritic cells, and T lymphocytes, as well as modulation of cytokine production. The article particularly emphasizes the survival strategies of NTM within macrophages, such as inhibiting phagosome maturation and acidification, resisting intracellular killing mechanisms, and interfering with autophagy and cell death pathways. This review aims to deepen the understanding of NTM's immune evasion mechanisms, thereby facilitating efforts to inhibit its proliferation and spread within the host, ultimately providing new methods and strategies for NTM-related treatments.
Collapse
Affiliation(s)
- Zhenghao Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Xiurong Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Yuli Lin
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, China
| | - Yurong Fu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Zhengjun Yi
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
2
|
Shandilya UK, Sharma A, Mallikarjunappa S, Guo J, Mao Y, Meade KG, Karrow NA. CRISPR-Cas9-mediated knockout of TLR4 modulates Mycobacterium avium ssp. paratuberculosis cell lysate-induced inflammation in bovine mammary epithelial cells. J Dairy Sci 2021; 104:11135-11146. [PMID: 34253365 DOI: 10.3168/jds.2021-20305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/25/2021] [Indexed: 11/19/2022]
Abstract
Toll-like receptor 4 (TLR4) is a pattern-recognition receptor involved in the recognition of microbial pathogens and host alarmins. Ligation to TLR4 initiates a signaling cascade that leads to inflammation. Polymorphisms in bovine TLR4 have been associated with Mycobacterium avium ssp. paratuberculosis (MAP) susceptibility and resistance, the cause of Johne's disease, and milk somatic cell score, a biomarker of mastitis. Although the contribution of TLR4 to recognition of bacterial lipopolysaccharide (LPS) has been well characterized, its role in MAP recognition is less certain. Clustered regularly interspaced short palindromic repeats-Cas9 mediated gene editing was performed to generate TLR4 knockout (KO) mammary epithelial cells to determine if TLR4 expression is involved in the initiation of the host inflammatory response to MAP cell lysate (5 and 10 µg/mL) and Escherichia coli LPS (5 µg/mL). The absence of TLR4 in KO cells resulted in enhanced expression of key inflammatory genes (TNFA and IL6), anti-inflammatory genes (IL10 and SOCS3), and supernatant cytokine and chemokine levels (TNF-α, IL-6, IL-10, CCL3) in response to the MAP cell lysate (10 µg/mL). However, in response to LPS, the KO cells showed reduced expression of key inflammatory genes (TNFA, IL1A, IL1B, and IL6) and supernatant cytokine levels (TNF-α, IL-6, CCL2, IL-8) as compared with unedited cells. Overall, these results confirm that TLR4 is essential for eliciting inflammation in response to LPS; however, exacerbated gene and protein expression in TLR4 KO cells in response to MAP cell lysate suggests a different mechanism of infection and host response for MAP, at least in terms of how it interacts with TLR4. These novel findings show potential divergent roles for TLR4 in mycobacterial infections, and this may have important consequences for the therapeutic control of inflammation in cattle.
Collapse
Affiliation(s)
- Umesh K Shandilya
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, Ontario, Canada
| | - A Sharma
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, Ontario, Canada
| | - S Mallikarjunappa
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, Ontario, Canada
| | - J Guo
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P R China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Y Mao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P R China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - K G Meade
- Animal and Bioscience Research Department, Teagasc, Grange, Co. Meath, Ireland, C15 PW93; School of Agriculture and Food Science, University College Dublin, Ireland, D04 V1W8
| | - N A Karrow
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, Ontario, Canada.
| |
Collapse
|
3
|
Park HS, Back YW, Son YJ, Kim HJ. Mycobacterium avium subsp . paratuberculosis MAP1889c Protein Induces Maturation of Dendritic Cells and Drives Th2-biased Immune Responses. Cells 2020; 9:cells9040944. [PMID: 32290379 PMCID: PMC7226993 DOI: 10.3390/cells9040944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 01/30/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is a causative agent of chronic granulomatous bowel disease in animals and is associated with various autoimmune diseases in humans including Crohn’s disease. A good understanding of the host-protective immune response and antibacterial immunity controlled by MAP and its components may contribute to the development of effective control strategies. MAP1889c was identified as a seroreactive antigen in Crohn’s disease patients. In this study, we investigated the immunological function of MAP1889c in dendritic cells (DCs). MAP1889c stimulated DCs to increase expression of co-stimulatory molecules (CD80 and CD86) and major histocompatibility complex (MHC) class molecules and to secret higher interleukin (IL)-10 and moderate IL-6, tumor necrosis factor (TNF)-α, and IL-12p70 levels through the Toll-like receptor (TLR) 4 pathway. MAP1889c-induced DC activation was mediated by mitogen-activated protein kinases (MAPKs), cAMPp-response element binding protein (CREB), and nuclear factor kappa B (NF-κB). In particular, the CREB signal was essential for MAP1889c-mediated IL-10 production but not TNF-α and IL-12p70. In addition, MAP1889c-matured DCs induced T cell proliferation and drove the Th2 response. Production of lipopolysaccharide (LPS)-mediated pro-inflammatory cytokines and anti-inflammatory cytokines was suppressed and enhanced respectively by MAP1889c pretreatment in DCs and T cells. Furthermore, treatment of MAP1889c in M. avium-infected macrophages promoted intracellular bacterial growth and IL-10 production. These findings suggest that MAP1889c modulates the host antimycobacterial response and may be a potential virulence factor during MAP infection.
Collapse
|
4
|
Synthetic cathelicidin LL-37 reduces Mycobacterium avium subsp. paratuberculosis internalization and pro-inflammatory cytokines in macrophages. Cell Tissue Res 2019; 379:207-217. [PMID: 31478135 PMCID: PMC7224033 DOI: 10.1007/s00441-019-03098-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) causes chronic diarrheic intestinal infections in domestic and wild ruminants (paratuberculosis or Johne’s disease) for which there is no effective treatment. Critical in the pathogenesis of MAP infection is the invasion and survival into macrophages, immune cells with ability to carry on phagocytosis of microbes. In a search for effective therapeutics, our objective was to determine whether human cathelicidin LL-37, a small peptide secreted by leuckocytes and epithelial cells, enhances the macrophage ability to clear MAP infection. In murine (J774A.1) macrophages, MAP was quickly internalized, as determined by confocal microscopy using green fluorescence protein expressing MAPs. Macrophages infected with MAP had increased transcriptional gene expression of pro-inflammatory TNF-α, IFN-γ, and IL-1β cytokines and the leukocyte chemoattractant IL-8. Pretreatment of macrophages with synthetic LL-37 reduced MAP load and diminished the transcriptional expression of TNF-α and IFN-γ whereas increased IL-8. Synthetic LL-37 also reduced the gene expression of Toll-like receptor (TLR)-2, key for mycobacterial invasion into macrophages. We concluded that cathelicidin LL-37 enhances MAP clearance into macrophages and suppressed production of tissue-damaging inflammatory cytokines. This cathelicidin peptide could represent a foundational molecule to develop therapeutics for controlling MAP infection.
Collapse
|
5
|
Eraghi V, Derakhshandeh A, Hosseini A, Haghkhah M, Sechi LA, Motamedi Boroojeni A. Recombinant fusion protein of Heparin-Binding Hemagglutinin Adhesin and Fibronectin Attachment Protein (rHBHA-FAP) of Mycobacterium avium subsp. paratuberculosis elicits a strong gamma interferon response in peripheral blood mononuclear cell culture. Gut Pathog 2019; 11:36. [PMID: 31320935 PMCID: PMC6615227 DOI: 10.1186/s13099-019-0317-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/04/2019] [Indexed: 11/20/2022] Open
Abstract
Background Mycobacterium avium subsp. paratuberculosis (MAP) is a causative agent of Johne’s disease in all ruminants worldwide. Economic problems in dairy cattle and sheep industries, public health concern, persistence of MAP in the environment and lack of effective vaccines mentioned necessity of research about various antigens to introduce as vaccine candidates. Based on MAP pathogenesis, it seems that research about the production of new recombinant proteins to stimulate cell-mediated immunity is helpful. This study describes successful expression and purification of a chimeric fusion protein which consists of Heparin-Binding Hemagglutinin Adhesin (HBHA) and high antigenic region of Fibronectin Attachment Protein (FAP-P). Triggered antigen-specific IFN-γ response of isolated PBMCs from immunized goats to rHBHA-FAP and all crude proteins of MAP (PPD), was measured by ELISA. Results Significant increases were observed in the IFN-γ production level of peripheral blood mononuclear cells (PBMCs) stimulated by constructed chimeric protein from rHBHA-FAP and PPD vaccinated goats. Antigen-specific gamma interferon (IFN-γ) secretion in positive group (immunized by PPD) against rHBHA-FAP and test group (immunized by rHBHA-FAP) against PPD, also statistically insignificant rises between stimulation with rHBHA-FAP and PPD, suggested the potential and specificity of our chimeric protein to stimulate cell mediated immunity against MAP. Conclusions Collectively, these results demonstrate that rHBHA-FAP elicits a strong IFN-γ production in PBMC culture. Therefore, further studies of the present product as a candidate vaccine in naturally infected animals should be conducted, to analyze its potential.
Collapse
Affiliation(s)
- Vida Eraghi
- 1Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731 Iran
| | - Abdollah Derakhshandeh
- 1Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731 Iran
| | - Arsalan Hosseini
- 1Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731 Iran
| | - Masoud Haghkhah
- 1Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731 Iran
| | - Leonardo A Sechi
- 2Sezione di Microbiologia e Virologia, Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100 Sassari, Italy
| | - Azar Motamedi Boroojeni
- 1Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731 Iran
| |
Collapse
|
6
|
Kim WS, Shin MK, Shin SJ. MAP1981c, a Putative Nucleic Acid-Binding Protein, Produced by Mycobacterium avium subsp. paratuberculosis, Induces Maturation of Dendritic Cells and Th1-Polarization. Front Cell Infect Microbiol 2018; 8:206. [PMID: 29977867 PMCID: PMC6021526 DOI: 10.3389/fcimb.2018.00206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/05/2018] [Indexed: 12/23/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative pathogen of chronic granulomatous enteropathy (Johne's disease) in animals, and has been focused on its association with various autoimmune diseases in humans, including Crohn's disease. The discovery of novel mycobacterial antigens and exploring their role in host immunity can contribute to the advancement of effective defense strategies including vaccines and diagnostic tools. In a preliminary study, we identified cellular extract proteins of MAP that strongly react with the blood of patients with Crohn's disease. In particular, MAP1981c, a putative nucleic acid-binding protein, showed high expression levels and strong reactivity to IgG and IgM in the sera of patients. Here, we investigated the immunological features of MAP1981c and focused on its interaction with dendritic cells (DCs), confirming its immunomodulatory ability. MAP1981c was shown to recognize Toll-like receptor (TLR) 4, and induce DC maturation and activation by increasing the expression of co-stimulatory (CD80 and CD86) and MHC class I/II molecules and the secretion of pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) in DCs. This DC activation by MAP1981c was mediated by downstream signaling of TLR4 via MyD88- and TRIF-, MAP kinase-, and NF-κB-dependent signaling pathways. In addition, MAP1981c-treated DCs activated naïve T cells and induced the differentiation of CD4+ and CD8+ T cells to express T-bet, IFN-γ, and/or IL-2, but not GATA-3 and IL-4, thus indicating that MAP1981c contributes to Th1-type immune responses both in vitro and in vivo. Taken together, these results suggest that MAP1981c is a novel immunocompetent antigen that induces DC maturation and a Th1-biased response upon DC activation, suggesting that MAP1981c can be an effective vaccine and diagnostic target.
Collapse
Affiliation(s)
- Woo Sik Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Sung Jae Shin
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Kim WS, Kim JS, Shin MK, Shin SJ. A novel Th1-type T-cell immunity-biasing effect of malate dehydrogenase derived from Mycobacterium avium subspecies paratuberculosis via the activation of dendritic cells. Cytokine 2018; 104:14-22. [PMID: 29414321 DOI: 10.1016/j.cyto.2018.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/30/2017] [Accepted: 01/25/2018] [Indexed: 01/13/2023]
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the causative pathogen of Johne's disease in ruminants, characterized by chronic granulomatous enteritis; it also has zoonotic potential and is associated with Crohn's disease in humans. A better understanding of the mycobacterial antigens and their roles in the host immune response may facilitate the rational design of control strategies, including the development of effective vaccines and diagnostic tools. However, the functional roles of a large proportion of MAP antigens involved in modulating the host immune response remain unknown. In this study, an immunological role of MAP malate dehydrogenase (MDH, MAP2541c), an antigen that is upregulated in stress culture conditions, such as nutrient starvation and hypoxia, in polarizing naïve CD4+/CD8+ T cells toward Th1-biased T-cell immunity via the activation of dendritic cells (DCs) was identified. DCs treated with MAP MDH displayed characteristics of the activated and mature immune status, with augmented expression of cell surface molecules and pro-inflammatory cytokines, including TNF-α, IL-1β, IL-6, and IL-12p70, but not IL-10, along with a dose-dependent decrease in the antigen uptake capacity. A mechanistic investigation revealed that the observed DC maturation is mediated by the activation of JNK, ERK, and p38 MAP kinases, and the NF-κB signaling pathway. Notably, DCs activated by MAP MDH treatment promoted naïve CD4+/CD8+ T cell proliferation; in particular, they effectively polarized naïve CD4+ T cells to secrete IFN-γ and IL-2 and activate T-bet, but, unlike the LPS control, did not influence IL-5 and GATA-3. These results indicated that MAP MDH has the potential to induce the Th1 cell response via DC activation. Collectively, our data demonstrated that MAP MDH is a novel immunostimulatory antigen that drives Th1-biased T cell polarization via interactions with DCs, suggesting that MDP MDH has the potential to be an effective MAP vaccine antigen target and diagnostic marker.
Collapse
Affiliation(s)
- Woo Sik Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Jong-Seok Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Min-Kyoung Shin
- Department of Microbiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea.
| | - Sung Jae Shin
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
8
|
Lee SJ, Jang JH, Yoon GY, Kang DR, Park HJ, Shin SJ, Han HD, Kang TH, Park WS, Yoon YK, Soh BY, Jung ID, Park YM. Mycobacterium abscessus D-alanyl-D-alanine dipeptidase induces the maturation of dendritic cells and promotes Th1-biased immunity. BMB Rep 2017; 49:554-559. [PMID: 27439605 PMCID: PMC5227297 DOI: 10.5483/bmbrep.2016.49.10.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 12/29/2022] Open
Abstract
Mycobacterium abscessus, a member of the group of non-tuberculous mycobacteria, has been identified as an emerging pulmonary pathogen in humans. However, little is known about the protective immune response of antigen-presenting cells, such as dendritic cells (DCs), which guard against M. abscessus infection. The M. abscessus gene MAB1843 encodes ᴅ-alanyl-ᴅ-alanine dipeptidase, which catalyzes the hydrolysis of ᴅ-alanyl-ᴅ-alanine dipeptide. We investigated whether MAB1843 is able to interact with DCs to enhance the effectiveness of the host’s immune response. MAB1843 was found to induce DC maturation via toll-like receptor 4 and its downstream signaling pathways, such as the mitogen-activated protein kinase and nuclear factor kappa B pathways. In addition, MAB1843-treated DCs stimulated the proliferation of T cells and promoted Th1 polarization. Our results indicate that MAB1843 could potentially regulate the immune response to M. abscessus, making it important in the development of an effective vaccine against this mycobacterium. [BMB Reports 2016; 49(10): 554-559]
Collapse
Affiliation(s)
- Seung Jun Lee
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Jong-Hwa Jang
- Department of Dental Hygiene, Hanseo University, Seosan 31962, Korea
| | - Gun Young Yoon
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Da Rae Kang
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Hee Jo Park
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hee Dong Han
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Tae Heung Kang
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Young Kyung Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Anam Hospital, College of Medicine, Korea University, Seoul 02841, Korea
| | - Byoung Yul Soh
- Department of Biochemistry, College of Medicine, Seonam University, Namwon 55724, Korea
| | - In Duk Jung
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Yeong-Min Park
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju 27478, Korea
| |
Collapse
|
9
|
Noh KT, Cha GS, Kang TH, Cho J, Jung ID, Kim KY, Ahn SC, You JC, Park YM. Enhancement of paclitaxel-induced breast cancer cell death via the glycogen synthase kinase-3β-mediated B-cell lymphoma 2 regulation. BMB Rep 2016; 49:51-6. [PMID: 26246283 PMCID: PMC4914213 DOI: 10.5483/bmbrep.2016.49.1.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 01/01/2023] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine protein kinase that is known to mediate cancer cell death. Here, we show that B-cell lymphoma 2 (Bcl-2), an anti-apoptotic protein, is regulated by GSK-3β and that GSK-3β-mediated regulation of Bcl-2 is crucial for mitochondrial-dependent cell death in paclitaxel-stimulated cells. We demonstrate that MCF7 GSK-3β siRNA cells are more sensitive to cell death than MCF7 GFP control cells and that in the absence of GSK-3β, Bcl-2 levels are reduced, a result enhanced by paclitaxel. Paclitaxel-induced JNK (c-Jun N-terminal kinase) activation is critical for Bcl-2 modulation. In the absence of GSK-3β, Bcl-2 was unstable in an ubiquitination-dependent manner in both basal- and paclitaxeltreated cells. Furthermore, we demonstrate that GSK-3β-mediated regulation of Bcl-2 influences cytochrome C release and mitochondrial membrane potential. Taken together, our data suggest that GSK-3β-dependent regulation of Bcl-2 is crucial for mitochondria-dependent cell death in paclitaxel-mediated breast cancer therapy.
Collapse
Affiliation(s)
- Kyung Tae Noh
- Department of Infectious Diseases, Armed Forces Medical Research Institute, Daejeon 34059, Korea
| | - Gil Sun Cha
- Department of Immunology, KU Open Innovation Center, College of Medicine, Konkuk University, Chungju 27478, Korea
| | - Tae Heung Kang
- Department of Immunology, KU Open Innovation Center, College of Medicine, Konkuk University, Chungju 27478, Korea
| | - Joon Cho
- Department of Neurosurgery, Konkuk University Hospital, Seoul 05030, Korea
| | - In Duk Jung
- Department of Immunology, KU Open Innovation Center, College of Medicine, Konkuk University, Chungju 27478, Korea
| | - Kwang-Youn Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Soon-Cheol Ahn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Ji Chang You
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 03083, Korea
| | - Yeong-Min Park
- Department of Immunology, KU Open Innovation Center, College of Medicine, Konkuk University, Chungju 27478, Korea
| |
Collapse
|
10
|
Noh KT, Cho J, Chun SH, Jang JH, Cha GS, Jung ID, Jang DD, Park YM. Resveratrol regulates naïve CD 8+ T-cell proliferation by upregulating IFN-γ-induced tryptophanyl-tRNA synthetase expression. BMB Rep 2016; 48:283-8. [PMID: 25248565 PMCID: PMC4578568 DOI: 10.5483/bmbrep.2015.48.5.190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Indexed: 12/29/2022] Open
Abstract
We found that resveratrol enhances interferon (IFN)-γ-induced tryptophanyl-tRNA-synthetase (TTS) expression in bone marrow-derived dendritic cells (BMDCs). Resveratrol-induced TTS expression is associated with glycogen synthase kinase-3β (GSK-3β) activity. In addition, we found that resveratrol regulates naïve CD8+ T-cell polarization by modulating GSK-3β activity in IFN-γ-stimulated BMDCs, and that resveratol induces upregulation of TTS in CD8+ T-cells in the in vivo tumor environment. Taken together, resveratrol upregulates IFN-γ-induced TTS expression in a GSK-3β-dependent manner, and this TTS modulation is crucial for DC-mediated T-cell modulation. [BMB Reports 2015; 48(5): 283-288]
Collapse
Affiliation(s)
- Kyung Tae Noh
- Department of Infectious Diseases, Armed Forces Medical Research Institute, Daejeon 305-878, Korea
| | - Joon Cho
- Department of Neurosurgery, College of Medicine, Konkuk University, Seoul 143-701, Korea
| | - Sung Hak Chun
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, KU Open Innovation Center and School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Jong-Hwa Jang
- Department of Dental Hygiene, Hanseo University, Seosan 356-706, Korea
| | - Gil Sun Cha
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, KU Open Innovation Center and School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - In Duk Jung
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, KU Open Innovation Center and School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Dong Deuk Jang
- Department of Infectious Diseases, Armed Forces Medical Research Institute, Daejeon 305-878, Korea
| | - Yeong-Min Park
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, KU Open Innovation Center and School of Medicine, Konkuk University, Chungju 380-701, Korea
| |
Collapse
|
11
|
Zhao R, Zhang T, Zhao H, Cai Y. Effects of Portulaca oleracea L. Polysaccharides on Phenotypic and Functional Maturation of Murine Bone Marrow Derived Dendritic Cells. Nutr Cancer 2015. [PMID: 26219397 DOI: 10.1080/01635581.2015.1060352] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Portulaca oleracea L. is an annual plant widely distributed from the temperate to the tropical zones. POL-P3b, a polysaccharide fraction purified from Portulaca oleracea L., is able to enhance immunity and inhibit tumor formation. Induction of antitumor immunity by dendritic-tumor fusion cells can be modulated by their activation status. Mature dendritic cells are significantly better than immature dendritic cells at cytotoxic T-lymphocyte induction. In this study, we analyzed the effects of POL-P3b on the maturation and function of murine bone-marrow-derived dendritic cells (DCs) and relevant mechanisms. The phenotypic maturation of DCs was confirmed by flow cytometry. We found that POL-P3b upregulated the expression of CD80, CD86, CD83, and major histocompatibility complex class II molecules on DCs, stimulated production of more interleukin (IL)-12, tumor necrosis factor-α, and less IL-10. Also, DCs pulsed POL-P3b and freeze-thaw antigen increased DCs-driven T cells' proliferation and promoted U14 cells' apoptosis. Furthermore, the expression of TLR-4 was significantly increased on DCs treated by POL-P3b. These results suggested that POL-P3b may induce DCs maturation through TLR-4. Taken together, our results may have important implications for the molecular mechanisms of immunopotentiation of POL-P3b, and provide direct evidence to suggest that POL-P3b should be considered as a potent adjuvant nutrient supplement for DC-based vaccines.
Collapse
Affiliation(s)
- Rui Zhao
- a Department of Pharmaceutical Engineering , College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University , Daqing , China
| | | | | | | |
Collapse
|
12
|
Perricone C, Borgiani P. Crohn's disease, the mycobacterium paratuberculosis and the genetic bond: An unexpected trio. Clin Res Hepatol Gastroenterol 2015; 39:275-7. [PMID: 25771330 DOI: 10.1016/j.clinre.2015.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/05/2015] [Indexed: 02/04/2023]
Affiliation(s)
- Carlo Perricone
- Rheumatology, Department of Medicine, Sapienza University of Rome, Rome, Italy.
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Section of Genetic, School of Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
13
|
Lee SJ, Shin SJ, Lee SJ, Lee MH, Kang TH, Noh KT, Shin YK, Kim HW, Yun CH, Jung ID, Park YM. Mycobacterium abscessus MAB2560 induces maturation of dendritic cells via Toll-like receptor 4 and drives Th1 immune response. BMB Rep 2015; 47:512-7. [PMID: 24667171 PMCID: PMC4206727 DOI: 10.5483/bmbrep.2014.47.9.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Indexed: 01/12/2023] Open
Abstract
In this study, we showed that Mycobacterium abscessus MAB2560 induces the maturation of dendritic cells (DCs), which are representative antigen-presenting cells (APCs). M. abscessus MAB2560 stimulate the production of pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β, and IL-12p70] and reduce the endocytic capacity and maturation of DCs. Using TLR4-/- DCs, we found that MAB2560 mediated DC maturation via Toll-like receptor 4 (TLR4). MAB2560 also activated the MAPK signaling pathway, which was essential for DC maturation. Furthermore, MAB2560- treated DCs induced the transformation of naïve T cells to polarized CD4+ and CD8+ T cells, which would be crucial for Th1 polarization of the immune response. Taken together, our results indicate that MAB2560 could potentially regulate the host immune response to M. abscessus and may have critical implications for the manipulation of DC functions for developing DC-based immunotherapy.
Collapse
Affiliation(s)
- Su Jung Lee
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Seung Jun Lee
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Moon Hee Lee
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Tae Heung Kang
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Kyung Tae Noh
- Department of Infectious Diseases Research, Armed Forces Medical Research Institute, Daejeon 305-878, Korea
| | - Yong Kyoo Shin
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 156-756, Korea
| | - Han Wool Kim
- Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - In Duk Jung
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Yeong-Min Park
- Department of Microbiology and Immunology, School of Medicine, Pusan National University, Yangsan 626-770, Korea
| |
Collapse
|