1
|
Chen GY, Liu C, Xia Y, Wang PX, Zhao ZY, Li AY, Zhou CQ, Xiang C, Zhang JL, Zeng Y, Gu P, Li H. Effects of walking on epigenetic age acceleration: a Mendelian randomization study. Clin Epigenetics 2024; 16:94. [PMID: 39026267 PMCID: PMC11256679 DOI: 10.1186/s13148-024-01707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
INTRODUCTION Walking stands as the most prevalent physical activity in the daily lives of individuals and is closely associated with physical functioning and the aging process. Nonetheless, the precise cause-and-effect connection between walking and aging remains unexplored. The epigenetic clock emerges as the most promising biological indicator of aging, capable of mirroring the biological age of the human body and facilitating an investigation into the association between walking and aging. Our primary objective is to investigate the causal impact of walking with epigenetic age acceleration (EAA). METHODS We conducted a two-sample two-way Mendelian randomization (MR) study to investigate the causal relationship between walking and EAA. Walking and Leisure sedentary behavior data were sourced from UK Biobank, while EAA data were gathered from a total of 28 cohorts. The MR analysis was carried out using several methods, including the inverse variance weighted (IVW), weighted median, MR-Egger, and robust adjusted profile score (RAPS). To ensure the robustness of our findings, we conducted sensitivity analyses, which involved the MR-Egger intercept test, Cochran's Q test, and MR-PRESSO, to account for and mitigate potential pleiotropy. RESULTS The IVW MR results indicate a significant impact of usual walking pace on GrimAge (BETA = - 1.84, 95% CI (- 2.94, - 0.75)), PhenoAge (BETA = - 1.57, 95% CI (- 3.05, - 0.08)), Horvath (BETA = - 1.09 (- 2.14, - 0.04)), and Hannum (BETA = - 1.63, 95% CI (- 2.70, - 0.56)). Usual walking pace is significantly associated with a delay in epigenetic aging acceleration (EAA) (P < 0.05). Moreover, the direction of effect predicted by the gene remained consistent across RAPS outcomes and sensitivity MR analyses. There is a lack of robust causal relationships between other walking conditions, such as walking duration and walking frequency, on EAA (P > 0.05). CONCLUSION Our evidence demonstrates that a higher usual walking pace is associated with a deceleration of the acceleration of all four classical epigenetic clocks acceleration.
Collapse
Affiliation(s)
- Guan-Yi Chen
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Engineering Laboratory for Orthopedic Biomaterials, Changsha, China
| | - Chao Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Engineering Laboratory for Orthopedic Biomaterials, Changsha, China
| | - Yu Xia
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Engineering Laboratory for Orthopedic Biomaterials, Changsha, China
| | - Ping-Xiao Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Engineering Laboratory for Orthopedic Biomaterials, Changsha, China
| | - Zi-Yue Zhao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Engineering Laboratory for Orthopedic Biomaterials, Changsha, China
| | - Ao-Yu Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Engineering Laboratory for Orthopedic Biomaterials, Changsha, China
| | - Chu-Qiao Zhou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Engineering Laboratory for Orthopedic Biomaterials, Changsha, China
| | - Cheng Xiang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Engineering Laboratory for Orthopedic Biomaterials, Changsha, China
| | - Jia-Lin Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Engineering Laboratory for Orthopedic Biomaterials, Changsha, China
| | - Yi Zeng
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Engineering Laboratory for Orthopedic Biomaterials, Changsha, China
| | - Peng Gu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Engineering Laboratory for Orthopedic Biomaterials, Changsha, China
| | - Hui Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China.
- Hunan Engineering Laboratory for Orthopedic Biomaterials, Changsha, China.
| |
Collapse
|
2
|
Dormann D, Lemke EA. Adding intrinsically disordered proteins to biological ageing clocks. Nat Cell Biol 2024; 26:851-858. [PMID: 38783141 DOI: 10.1038/s41556-024-01423-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024]
Abstract
Research into how the young and old differ, and which biomarkers reflect the diverse biological processes underlying ageing, is a current and fast-growing field. Biological clocks provide a means to evaluate whether a molecule, cell, tissue or even an entire organism is old or young. Here we summarize established and emerging molecular clocks as timepieces. We emphasize that intrinsically disordered proteins (IDPs) tend to transform into a β-sheet-rich aggregated state and accumulate in non-dividing or slowly dividing cells as they age. We hypothesize that understanding these protein-based molecular ageing mechanisms might provide a conceptual pathway to determining a cell's health age by probing the aggregation state of IDPs, which we term the IDP clock.
Collapse
Affiliation(s)
- Dorothee Dormann
- Biocenter, Johannes Gutenberg University, Mainz, Germany.
- Institute for Molecular Biology, Mainz, Germany.
| | - Edward Anton Lemke
- Biocenter, Johannes Gutenberg University, Mainz, Germany.
- Institute for Molecular Biology, Mainz, Germany.
- Institute for Quantitative and Computational Biosciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
3
|
Ambroa-Conde A, Casares de Cal MA, Gómez-Tato A, Robinson O, Mosquera-Miguel A, de la Puente M, Ruiz-Ramírez J, Phillips C, Lareu MV, Freire-Aradas A. Inference of tobacco and alcohol consumption habits from DNA methylation analysis of blood. Forensic Sci Int Genet 2024; 70:103022. [PMID: 38309257 DOI: 10.1016/j.fsigen.2024.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
DNA methylation has become a biomarker of great interest in the forensic and clinical fields. In criminal investigations, the study of this epigenetic marker has allowed the development of DNA intelligence tools providing information that can be useful for investigators, such as age prediction. Following a similar trend, when the origin of a sample in a criminal scenario is unknown, the inference of an individual's lifestyle such as tobacco use and alcohol consumption could provide relevant information to help in the identification of DNA donors at the crime scene. At the same time, in the clinical domain, prediction of these trends of consumption could allow the identification of people at risk or better identification of the causes of different pathologies. In the present study, DNA methylation data from the UK AIRWAVE study was used to build two binomial logistic models for the inference of smoking and drinking status. A total of 348 individuals (116 non-smokers, 116 former smokers and 116 smokers) plus a total of 237 individuals (79 non-drinkers, 79 moderate drinkers and 79 drinkers) were used for development of tobacco and alcohol consumption prediction models, respectively. The tobacco prediction model was composed of two CpGs (cg05575921 in AHRR and cg01940273) and the alcohol prediction model three CpGs (cg06690548 in SLC7A11, cg0886875 and cg21294714 in MIR4435-2HG), providing correct classifications of 86.49% and 74.26%, respectively. Validation of the models was performed using leave-one-out cross-validation. Additionally, two independent testing sets were also assessed for tobacco and alcohol consumption. Considering that the consumption of these substances could underlie accelerated epigenetic ageing patterns, the effect of these lifestyles on the prediction of age was evaluated. To do that, a quantile regression model based on previous studies was generated, and the potential effect of tobacco and alcohol consumption with the epigenetic age was assessed. The Wilcoxon test was used to evaluate the residuals generated by the model and no significant differences were observed between the categories analyzed.
Collapse
Affiliation(s)
- A Ambroa-Conde
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - M A Casares de Cal
- CITMAga (Center for Mathematical Research and Technology of Galicia), University of Santiago de Compostela, Spain
| | - A Gómez-Tato
- CITMAga (Center for Mathematical Research and Technology of Galicia), University of Santiago de Compostela, Spain
| | - O Robinson
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - A Mosquera-Miguel
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - M de la Puente
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - J Ruiz-Ramírez
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - C Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - M V Lareu
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - A Freire-Aradas
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Prosz A, Pipek O, Börcsök J, Palla G, Szallasi Z, Spisak S, Csabai I. Biologically informed deep learning for explainable epigenetic clocks. Sci Rep 2024; 14:1306. [PMID: 38225268 PMCID: PMC10789766 DOI: 10.1038/s41598-023-50495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024] Open
Abstract
Ageing is often characterised by progressive accumulation of damage, and it is one of the most important risk factors for chronic disease development. Epigenetic mechanisms including DNA methylation could functionally contribute to organismal aging, however the key functions and biological processes may govern ageing are still not understood. Although age predictors called epigenetic clocks can accurately estimate the biological age of an individual based on cellular DNA methylation, their models have limited ability to explain the prediction algorithm behind and underlying key biological processes controlling ageing. Here we present XAI-AGE, a biologically informed, explainable deep neural network model for accurate biological age prediction across multiple tissue types. We show that XAI-AGE outperforms the first-generation age predictors and achieves similar results to deep learning-based models, while opening up the possibility to infer biologically meaningful insights of the activity of pathways and other abstract biological processes directly from the model.
Collapse
Affiliation(s)
- Aurel Prosz
- Danish Cancer Institute, Copenhagen, Denmark
| | - Orsolya Pipek
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Judit Börcsök
- Danish Cancer Institute, Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Gergely Palla
- Department of Biological Physics, ELTE Eötvös Loránd University, Budapest, Hungary
- Health Services Management Training Centre, Semmelweis University, Budapest, Hungary
| | | | - Sandor Spisak
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| | - István Csabai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
5
|
Morselli M, Bennett R, Shaidani NI, Horb M, Peshkin L, Pellegrini M. Age-associated DNA methylation changes in Xenopus frogs. Epigenetics 2023; 18:2201517. [PMID: 37092296 PMCID: PMC10128463 DOI: 10.1080/15592294.2023.2201517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
Age-associated changes in DNA methylation have been characterized across various animals, but not yet in amphibians, which are of particular interest because they include widely studied model organisms. In this study, we present clear evidence that the aquatic vertebrate species Xenopus tropicalis displays patterns of age-associated changes in DNA methylation. We have generated whole-genome bisulfite sequencing (WGBS) profiles from skin samples of nine frogs representing young, mature, and old adults and characterized the gene- and chromosome-scale DNA methylation changes with age. Many of the methylation features and changes we observe are consistent with what is known in mammalian species, suggesting that the mechanism of age-related changes is conserved. Moreover, we selected a few thousand age-associated CpG sites to build an assay based on targeted DNA methylation analysis (TBSseq) to expand our findings in future studies involving larger cohorts of individuals. Preliminary results of a pilot TBSeq experiment recapitulate the findings obtained with WGBS setting the basis for the development of an epigenetic clock assay. The results of this study will allow us to leverage the unique resources available for Xenopus to study how DNA methylation relates to other hallmarks of ageing.
Collapse
Affiliation(s)
- Marco Morselli
- Molecular, Cell & Developmental Biology, UCLA, Los Angeles, CA, USA
| | - Ronan Bennett
- Molecular, Cell & Developmental Biology, UCLA, Los Angeles, CA, USA
| | - Nikko-Ideen Shaidani
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Marko Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Leonid Peshkin
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA, USA
- Systems Biology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
6
|
Kayser M, Branicki W, Parson W, Phillips C. Recent advances in Forensic DNA Phenotyping of appearance, ancestry and age. Forensic Sci Int Genet 2023; 65:102870. [PMID: 37084623 DOI: 10.1016/j.fsigen.2023.102870] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Forensic DNA Phenotyping (FDP) comprises the prediction of a person's externally visible characteristics regarding appearance, biogeographic ancestry and age from DNA of crime scene samples, to provide investigative leads to help find unknown perpetrators that cannot be identified with forensic STR-profiling. In recent years, FDP has advanced considerably in all of its three components, which we summarize in this review article. Appearance prediction from DNA has broadened beyond eye, hair and skin color to additionally comprise other traits such as eyebrow color, freckles, hair structure, hair loss in men, and tall stature. Biogeographic ancestry inference from DNA has progressed from continental ancestry to sub-continental ancestry detection and the resolving of co-ancestry patterns in genetically admixed individuals. Age estimation from DNA has widened beyond blood to more somatic tissues such as saliva and bones as well as new markers and tools for semen. Technological progress has allowed forensically suitable DNA technology with largely increased multiplex capacity for the simultaneous analysis of hundreds of DNA predictors with targeted massively parallel sequencing (MPS). Forensically validated MPS-based FDP tools for predicting from crime scene DNA i) several appearance traits, ii) multi-regional ancestry, iii) several appearance traits together with multi-regional ancestry, and iv) age from different tissue types, are already available. Despite recent advances that will likely increase the impact of FDP in criminal casework in the near future, moving reliable appearance, ancestry and age prediction from crime scene DNA to the level of detail and accuracy police investigators may desire, requires further intensified scientific research together with technical developments and forensic validations as well as the necessary funding.
Collapse
Affiliation(s)
- Manfred Kayser
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Wojciech Branicki
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland,; Institute of Forensic Research, Kraków, Poland
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, PA, USA
| | - Christopher Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| |
Collapse
|
7
|
Epigenetic clock: A promising biomarker and practical tool in aging. Ageing Res Rev 2022; 81:101743. [PMID: 36206857 DOI: 10.1016/j.arr.2022.101743] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 01/31/2023]
Abstract
As a complicated process, aging is characterized by various changes at the cellular, subcellular and nuclear levels, one of which is epigenetic aging. With increasing awareness of the critical role that epigenetic alternations play in aging, DNA methylation patterns have been employed as a measure of biological age, currently referred to as the epigenetic clock. This review provides a comprehensive overview of the epigenetic clock as a biomarker of aging and a useful tool to manage healthy aging. In this burgeoning scientific field, various kinds of epigenetic clocks continue to emerge, including Horvath's clock, Hannum's clock, DNA PhenoAge, and DNA GrimAge. We hereby present the most classic epigenetic clocks, as well as their differences. Correlations of epigenetic age with morbidity, mortality and other factors suggest the potential of epigenetic clocks for risk prediction and identification in the context of aging. In particular, we summarize studies on promising age-reversing interventions, with epigenetic clocks employed as a practical tool in the efficacy evaluation. We also discuss how the lack of higher-quality information poses a major challenge, and offer some suggestions to address existing obstacles. Hopefully, our review will help provide an appropriate understanding of the epigenetic clocks, thereby enabling novel insights into the aging process and how it can be manipulated to promote healthy aging.
Collapse
|
8
|
Li M, Bao L, Zhu P, Wang S. Effect of metformin on the epigenetic age of peripheral blood in patients with diabetes mellitus. Front Genet 2022; 13:955835. [PMID: 36226195 PMCID: PMC9548538 DOI: 10.3389/fgene.2022.955835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Metformin has been proven to have an antiaging effect. However, studies on how metformin affects global epigenetic regulation and its effect on the epigenetic clock in diabetes mellitus (DM) patients are limited. This study aims to investigate the impact of metformin on the epigenetic age in subjects with type 2 DM. Results: We collected the peripheral blood of the metformin group and the no-metformin group of the 32 DM patients. Three previously established epigenetic clocks (Hannum, Horvath, and DNAmPhenoAge) were used to estimate the epigenetic age acceleration of the two groups. We defined biological age acceleration for each group by comparing the estimated biological age with the chronological age. Results were presented as follows: 1) all three epigenetic clocks were strongly correlated with chronological age. 2) We found a strong association between metformin intake and slower epigenetic aging by Horvath’s clock and Hannum’s clock. Conclusions: Here, we found an association between metformin intake and slower epigenetic aging.
Collapse
Affiliation(s)
- Man Li
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Litao Bao
- Institute of Gerontology, Second Medical Center, PLA General Hospital, Beijing, China
| | - Ping Zhu
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Shuxia Wang
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Shuxia Wang,
| |
Collapse
|
9
|
Ogata A, Kondo M, Yoshikawa M, Okano M, Tsutsumi T, Aboshi H. Dental age estimation based on DNA methylation using real-time methylation-specific PCR. Forensic Sci Int 2022; 340:111445. [DOI: 10.1016/j.forsciint.2022.111445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/17/2022] [Accepted: 08/28/2022] [Indexed: 11/28/2022]
|
10
|
Common Ground between Biological Rhythms and Forensics. BIOLOGY 2022; 11:biology11071071. [PMID: 36101448 PMCID: PMC9312156 DOI: 10.3390/biology11071071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Biological clocks regulate the timing of numerous body functions in adaption to daily repeating cycles in the environment, such as the sleep–wake phases that are trained by the cycling changes of night and day light. The identification of a deceased victim is a critical component in a forensic investigation, but it can be significantly hampered by the condition of the dead body and the lack of personal records and documents. This review links current knowledge on the molecular mechanisms of biological rhythms to forensically relevant aspects, including the time period since death, cause of death, the use of insects for forensics, sex and age of a person, ethnic background and development. Putting these findings in context demonstrates how the analysis of molecular clock analysis could be used as tool for future personal identification in forensic investigations. Abstract Biological clocks set the timing for a large number of essential processes in the living human organism. After death, scientific evidence is required in forensic investigations in order to collect as much information as possible on the death circumstances and personal identifiers of the deceased victim. We summarize the associations between the molecular mechanisms of biological rhythms and forensically relevant aspects, including post-mortem interval and cause of death, entomological findings, sex, age, ethnicity and development. Given their importance during lifetime, biological rhythms could be potential tools to draw conclusions on the death circumstances and the identity of a deceased person by mechanistic investigations of the different biological clocks in a forensic context. This review puts the known effects of biological rhythms on the functions of the human organism in context with potential applications in forensic fields of interest, such as personal identification, entomology as well as the determination of the post-mortem interval and cause of death.
Collapse
|
11
|
Adaptive feature selection framework for DNA methylation-based age prediction. Soft comput 2022. [DOI: 10.1007/s00500-022-06844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Pośpiech E, Teisseyre P, Mielniczuk J, Branicki W. Predicting Physical Appearance from DNA Data-Towards Genomic Solutions. Genes (Basel) 2022; 13:genes13010121. [PMID: 35052461 PMCID: PMC8774670 DOI: 10.3390/genes13010121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
The idea of forensic DNA intelligence is to extract from genomic data any information that can help guide the investigation. The clues to the externally visible phenotype are of particular practical importance. The high heritability of the physical phenotype suggests that genetic data can be easily predicted, but this has only become possible with less polygenic traits. The forensic community has developed DNA-based predictive tools by employing a limited number of the most important markers analysed with targeted massive parallel sequencing. The complexity of the genetics of many other appearance phenotypes requires big data coupled with sophisticated machine learning methods to develop accurate genomic predictors. A significant challenge in developing universal genomic predictive methods will be the collection of sufficiently large data sets. These should be created using whole-genome sequencing technology to enable the identification of rare DNA variants implicated in phenotype determination. It is worth noting that the correctness of the forensic sketch generated from the DNA data depends on the inclusion of an age factor. This, however, can be predicted by analysing epigenetic data. An important limitation preventing whole-genome approaches from being commonly used in forensics is the slow progress in the development and implementation of high-throughput, low DNA input sequencing technologies. The example of palaeoanthropology suggests that such methods may possibly be developed in forensics.
Collapse
Affiliation(s)
- Ewelina Pośpiech
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
| | - Paweł Teisseyre
- Institute of Computer Science, Polish Academy of Sciences, 01-248 Warsaw, Poland; (P.T.); (J.M.)
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Jan Mielniczuk
- Institute of Computer Science, Polish Academy of Sciences, 01-248 Warsaw, Poland; (P.T.); (J.M.)
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
- Central Forensic Laboratory of the Police, 00-583 Warsaw, Poland
- Correspondence: ; Tel.: +48-126-645-024
| |
Collapse
|
13
|
Caulton A, Dodds KG, McRae KM, Couldrey C, Horvath S, Clarke SM. Development of Epigenetic Clocks for Key Ruminant Species. Genes (Basel) 2021; 13:96. [PMID: 35052436 PMCID: PMC8775075 DOI: 10.3390/genes13010096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/08/2023] Open
Abstract
Robust biomarkers of chronological age have been developed in humans and model mammalian species such as rats and mice using DNA methylation data. The concept of these so-called "epigenetic clocks" has emerged from a large body of literature describing the relationship between genome-wide methylation levels and age. Epigenetic clocks exploit this phenomenon and use small panels of differentially methylated cytosine (CpG) sites to make robust predictions of chronological age, independent of tissue type. Here, we present highly accurate livestock epigenetic clocks for which we have used the custom mammalian methylation array "HorvathMammalMethyl40" to construct the first epigenetic clock for domesticated goat (Capra hircus), cattle (Bos taurus), Red (Cervus elaphus) and Wapiti deer (Cervus canadensis) and composite-breed sheep (Ovis aries). Additionally, we have constructed a 'farm animal clock' for all species included in the study, which will allow for robust predictions to be extended to various breeds/strains. The farm animal clock shows similarly high accuracy to the individual species' clocks (r > 0.97), utilizing only 217 CpG sites to estimate age (relative to the maximum lifespan of the species) with a single mathematical model. We hypothesise that the applications of this livestock clock could extend well beyond the scope of chronological age estimates. Many independent studies have demonstrated that a deviation between true age and clock derived molecular age is indicative of past and/or present health (including stress) status. There is, therefore, untapped potential to utilize livestock clocks in breeding programs as a predictor for age-related production traits.
Collapse
Affiliation(s)
- Alex Caulton
- AgResearch Limited, Invermay Agricultural Centre, Puddle Alley, Mosgiel 9092, New Zealand; (K.G.D.); (K.M.M.); (S.M.C.)
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Ken G. Dodds
- AgResearch Limited, Invermay Agricultural Centre, Puddle Alley, Mosgiel 9092, New Zealand; (K.G.D.); (K.M.M.); (S.M.C.)
| | - Kathryn M. McRae
- AgResearch Limited, Invermay Agricultural Centre, Puddle Alley, Mosgiel 9092, New Zealand; (K.G.D.); (K.M.M.); (S.M.C.)
| | | | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Shannon M. Clarke
- AgResearch Limited, Invermay Agricultural Centre, Puddle Alley, Mosgiel 9092, New Zealand; (K.G.D.); (K.M.M.); (S.M.C.)
| |
Collapse
|
14
|
Palla G, Pollner P, Börcsök J, Major A, Molnár B, Csabai I. Hierarchy and control of ageing-related methylation networks. PLoS Comput Biol 2021; 17:e1009327. [PMID: 34534207 PMCID: PMC8480875 DOI: 10.1371/journal.pcbi.1009327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/29/2021] [Accepted: 08/05/2021] [Indexed: 11/28/2022] Open
Abstract
DNA methylation provides one of the most widely studied biomarkers of ageing. Since the methylation of CpG dinucleotides function as switches in cellular mechanisms, it is plausible to assume that by proper adjustment of these switches age may be tuned. Though, adjusting hundreds of CpG methylation levels coherently may never be feasible and changing just a few positions may lead to biologically unstable state. A prominent example of methylation-based age estimators is provided by Horvath's clock, based on 353 CpG dinucleotides, showing a high correlation (not necessarily causation) with chronological age across multiple tissue types. On this small subset of CpG dinucleotides we demonstrate how the adjustment of one methylation level leads to a cascade of changes at other sites. Among the studied subset, we locate the most important CpGs (and related genes) that may have a large influence on the rest of the sub-system. According to our analysis, the structure of this network is way more hierarchical compared to what one would expect based on ensembles of uncorrelated connections. Therefore, only a handful of CpGs is enough to modify the system towards a desired state. When propagation of the change over the network is taken into account, the resulting modification in the predicted age can be significantly larger compared to the effect of isolated CpG perturbations. By adjusting the most influential single CpG site and following the propagation of methylation level changes we can reach up to 5.74 years in virtual age reduction, significantly larger than without taking into account of the network control. Extending our approach to the whole methylation network may identify key nodes that have controller role in the ageing process.
Collapse
Affiliation(s)
- Gergely Palla
- Health Services Management Training Centre, Semmelweis University, Budapest, Hungary
- MTA-ELTE Statistical and Biological Physics Research Group, Dept. of Biological Physics, Eötvös University, Budapest, Hungary
| | - Péter Pollner
- Health Services Management Training Centre, Semmelweis University, Budapest, Hungary
- MTA-ELTE Statistical and Biological Physics Research Group, Dept. of Biological Physics, Eötvös University, Budapest, Hungary
| | - Judit Börcsök
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - András Major
- Dept. of Physics of Complex Systems, ELTE Eötvös University, Budapest, Hungary
| | - Béla Molnár
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - István Csabai
- Dept. of Physics of Complex Systems, ELTE Eötvös University, Budapest, Hungary
| |
Collapse
|
15
|
Epigenetic age prediction in semen - marker selection and model development. Aging (Albany NY) 2021; 13:19145-19164. [PMID: 34375949 PMCID: PMC8386575 DOI: 10.18632/aging.203399] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022]
Abstract
DNA methylation analysis is becoming increasingly useful in biomedical research and forensic practice. The discovery of differentially methylated sites (DMSs) that continuously change over an individual's lifetime has led to breakthroughs in molecular age estimation. Although semen samples are often used in forensic DNA analysis, previous epigenetic age prediction studies mainly focused on somatic cell types. Here, Infinium MethylationEPIC BeadChip arrays were applied to semen-derived DNA samples, which identified numerous novel DMSs moderately correlated with age. Validation of the ten most age-correlated novel DMSs and three previously known sites in an independent set of semen-derived DNA samples using targeted bisulfite massively parallel sequencing, confirmed age-correlation for nine new and three previously known markers. Prediction modelling revealed the best model for semen, based on 6 CpGs from newly identified genes SH2B2, EXOC3, IFITM2, and GALR2 as well as the previously known FOLH1B gene, which predict age with a mean absolute error of 5.1 years in an independent test set. Further increases in the accuracy of age prediction from semen DNA will require technological progress to allow sensitive, simultaneous analysis of a much larger number of age correlated DMSs from the compromised DNA typical of forensic semen stains.
Collapse
|
16
|
Al-Ghanmy HS, Al-Rashedi NA, Ayied AY. Age estimation by DNA methylation levels in Iraqi subjects. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Validation of BMI genetic risk score and DNA methylation in a Korean population. Int J Legal Med 2021; 135:1201-1212. [PMID: 33594455 DOI: 10.1007/s00414-021-02517-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/27/2021] [Indexed: 12/19/2022]
Abstract
When DNA profiles obtained from biological evidence at a crime scene fail to match suspects or anyone in the database, forensic DNA phenotyping, which is the prediction of externally visible characteristics, can facilitate a traced search for an unknown suspect by limiting the search range. Therefore, age, trait, or lifestyle predictors, as well as the predictor for colorations, have been researched in the forensic field. In the present study, for the development of a prediction model for BMI or obesity, we investigated several previously reported BMI- or obesity-associated genetic and epigenetic markers that included four CpGs (cg06500161, cg00574958, cg12593793, and cg10505902 of the ABCG1, CPT1A, LMNA, and PDE4DIP genes, respectively), and eight SNPs (rs12463617, rs1558902, rs591166, rs11030104, rs11671664, rs6545814, rs16858082, and rs574367 near the TMEM18, FTO, MC4R, BDNF, GIPR/QPCTL, ADCY3/RBJ, GNPDA2, and SEC16B genes, respectively) in 700 Koreans within the BMI ranging from 16.1 to 40.6 (27.6 ± 4.5) kg/m2. Linear regression analysis showed that DNA methylation of the four CpG sites explained 10.9% total variance in BMI, and the model constructed using age information, genetic score from eight SNPs, and DNA methylation at four CpG sites could account for 17.4% of BMI variance. Using data mining techniques, i.e., decision tree (Entropy and Gini), random forest, and bagging, a total of eight models with BMI 31 or 32 as a cutoff value were also constructed based on the data obtained from 490 training samples with age and sex as a covariate. Among them, a random forest model with a cutoff value of 31 showed the best performance with 63.3% accuracy and the AUC value of 0.682 in 210 test set samples. In the present study, we could replicate the previous finding that DNA methylation contributes more to BMI than do genetic factors. In addition, although the accuracy for the prediction of BMI was not high, our study is meaningful in respect of the ability to use a small number of markers to achieve similar prediction accuracy to that obtained from a model composed of more than a thousand markers, which adds support to continued research to identify a small set of predictive markers for practical application in the forensic field.
Collapse
|
18
|
Soedarsono N, Hanafi MS, Auerkari E. Biological age estimation using DNA methylation analysis: A systematic review. SCIENTIFIC DENTAL JOURNAL 2021. [DOI: 10.4103/sdj.sdj_27_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
Kondo M, Aboshi H, Yoshikawa M, Ogata A, Murayama R, Takei M, Aizawa S. A newly developed age estimation method based on CpG methylation of teeth-derived DNA using real-time methylation-specific PCR. J Oral Sci 2020; 63:54-58. [PMID: 33281149 DOI: 10.2334/josnusd.20-0138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Age estimation of unidentified bodies is important in forensic medicine and crime scenes. There is accumulating evidence that DNA methylation in the human genome isolated from body fluids changes with age. Most of the data have been obtained by pyrosequencing. In the forensic field, a simple, quick, and economical method is required to evaluate the age of various types of samples. In this study, an age estimation method based on methylation levels of DNA extracted from teeth using real-time methylation-specific PCR (MSP) was developed. The CpG island in the upstream region of ELOVL2, which is known as a validated biomarker in blood samples, was selected as a target site. The CpG methylation levels highly correlated with age (r = 0.843, n = 29). Age-related increase in DNA methylation levels was not affected by sex differences. In addition, the simple regression model based on methylation status of the CpG island exhibited moderate accuracy with a mean absolute deviation between chronological age and predicted age of 8.94 years. The results imply that real-time MSP can be a new tool to perform age prediction of unidentified bodies in forensic scenes.
Collapse
Affiliation(s)
- Masahiro Kondo
- Department of Legal Medicine, Nihon University School of Dentistry
| | - Hirofumi Aboshi
- Department of Legal Medicine, Nihon University School of Dentistry
| | - Masaaki Yoshikawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine
| | - Ayano Ogata
- Department of Legal Medicine, Nihon University School of Dentistry
| | - Ryosuke Murayama
- Department of Legal Medicine, Nihon University School of Dentistry
| | - Masami Takei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine
| | - Shin Aizawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine
| |
Collapse
|
20
|
Kling T, Wenger A, Carén H. DNA methylation-based age estimation in pediatric healthy tissues and brain tumors. Aging (Albany NY) 2020; 12:21037-21056. [PMID: 33168783 PMCID: PMC7695434 DOI: 10.18632/aging.202145] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/03/2020] [Indexed: 12/20/2022]
Abstract
Several DNA methylation clocks have been developed to reflect chronological age of human tissues, but most clocks have been trained on adult samples. The rapid methylome changes in children and the role of epigenetics in pediatric tumors calls for tools accurately estimating methylation age in children. We aimed to evaluate seven methylation clocks in multiple tissues from healthy children to inform future studies on the optimal clock for pediatric cohorts, and analyzed the methylation age in brain tumors. We found that clocks trained on pediatric samples were the best in all tested tissues, highlighting the need for dedicated clocks. For blood samples, the Skin and blood clock had the best correlation with chronological age, while PedBE was the most accurate for saliva and buccal samples, and Horvath for brain tissue. Horvath methylation age was accelerated in pediatric brain tumors and the acceleration was subtype-specific for atypical teratoid rhabdoid tumor (ATRT), ependymoma, medulloblastoma and glioma. The subtypes with the highest acceleration corresponded to the worst prognostic categories in ATRT, ependymoma and glioma, whereas the relationship was reversed in medulloblastoma. This suggests that methylation age has potential as a prognostic biomarker in pediatric brain tumors and should be further explored.
Collapse
Affiliation(s)
- Teresia Kling
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Wenger
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
21
|
The Role of Nutri(epi)genomics in Achieving the Body's Full Potential in Physical Activity. Antioxidants (Basel) 2020; 9:antiox9060498. [PMID: 32517297 PMCID: PMC7346155 DOI: 10.3390/antiox9060498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Physical activity represents a powerful tool to achieve optimal health. The overall activation of several molecular pathways is associated with many beneficial effects, mainly converging towards a reduced systemic inflammation. Not surprisingly, regular activity can contribute to lowering the “epigenetic age”, acting as a modulator of risk toward several diseases and enhancing longevity. Behind this, there are complex molecular mechanisms induced by exercise, which modulate gene expression, also through epigenetic modifications. The exercise-induced epigenetic imprint can be transient or permanent and contributes to the muscle memory, which allows the skeletal muscle adaptation to environmental stimuli previously encountered. Nutrition, through key macro- and micronutrients with antioxidant properties, can play an important role in supporting skeletal muscle trophism and those molecular pathways triggering the beneficial effects of physical activity. Nutrients and antioxidant food components, reversibly altering the epigenetic imprint, have a big impact on the phenotype. This assigns a role of primary importance to nutri(epi)genomics, not only in optimizing physical performance, but also in promoting long term health. The crosstalk between physical activity and nutrition represents a major environmental pressure able to shape human genotypes and phenotypes, thus, choosing the right combination of lifestyle factors ensures health and longevity.
Collapse
|
22
|
|
23
|
Bell CG, Lowe R, Adams PD, Baccarelli AA, Beck S, Bell JT, Christensen BC, Gladyshev VN, Heijmans BT, Horvath S, Ideker T, Issa JPJ, Kelsey KT, Marioni RE, Reik W, Relton CL, Schalkwyk LC, Teschendorff AE, Wagner W, Zhang K, Rakyan VK. DNA methylation aging clocks: challenges and recommendations. Genome Biol 2019; 20:249. [PMID: 31767039 PMCID: PMC6876109 DOI: 10.1186/s13059-019-1824-y] [Citation(s) in RCA: 475] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022] Open
Abstract
Epigenetic clocks comprise a set of CpG sites whose DNA methylation levels measure subject age. These clocks are acknowledged as a highly accurate molecular correlate of chronological age in humans and other vertebrates. Also, extensive research is aimed at their potential to quantify biological aging rates and test longevity or rejuvenating interventions. Here, we discuss key challenges to understand clock mechanisms and biomarker utility. This requires dissecting the drivers and regulators of age-related changes in single-cell, tissue- and disease-specific models, as well as exploring other epigenomic marks, longitudinal and diverse population studies, and non-human models. We also highlight important ethical issues in forensic age determination and predicting the trajectory of biological aging in an individual.
Collapse
Affiliation(s)
- Christopher G Bell
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Robert Lowe
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
- Beatson Institute for Cancer Research and University of Glasgow, Glasgow, UK.
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Stephan Beck
- Medical Genomics, Paul O'Gorman Building, UCL Cancer Institute, University College London, London, UK.
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA.
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA.
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA.
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands.
| | - Steve Horvath
- Department of Human Genetics, Gonda Research Center, David Geffen School of Medicine, Los Angeles, CA, USA.
- Department of Biostatistics, School of Public Health, University of California-Los Angeles, Los Angeles, CA, USA.
| | - Trey Ideker
- San Diego Center for Systems Biology, University of California-San Diego, San Diego, CA, USA.
| | - Jean-Pierre J Issa
- Fels Institute for Cancer Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, RI, USA.
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge, UK.
- The Wellcome Trust Sanger Institute, Cambridge, UK.
| | - Caroline L Relton
- Medical Research Council Integrative Epidemiology Unit (MRC IEU), School of Social and Community Medicine, University of Bristol, Bristol, UK.
| | | | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen Faculty of Medicine, Aachen, Germany.
| | - Kang Zhang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau.
| | - Vardhman K Rakyan
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
24
|
Abstract
Identifying and validating molecular targets of interventions that extend the human health span and lifespan has been difficult, as most clinical biomarkers are not sufficiently representative of the fundamental mechanisms of ageing to serve as their indicators. In a recent breakthrough, biomarkers of ageing based on DNA methylation data have enabled accurate age estimates for any tissue across the entire life course. These 'epigenetic clocks' link developmental and maintenance processes to biological ageing, giving rise to a unified theory of life course. Epigenetic biomarkers may help to address long-standing questions in many fields, including the central question: why do we age?
Collapse
|
25
|
Evaluation of six blood-based age prediction models using DNA methylation analysis by pyrosequencing. Sci Rep 2019; 9:8862. [PMID: 31222117 PMCID: PMC6586942 DOI: 10.1038/s41598-019-45197-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/22/2019] [Indexed: 01/08/2023] Open
Abstract
DNA methylation has been identified as the most promising molecular biomarker for the prediction of age. Several DNA methylation-based models have been proposed for age prediction based on blood samples, using mainly pyrosequencing. These methods present different performances for age prediction and have rarely, if ever, been evaluated and intercompared in an independent validation study. Here, for the first time, we evaluate and compare six blood-based age prediction models (Bekaert1, Park2, Thong3, Weidner4, and the Zbiec-Piekarska 15 and Zbiec-Piekarska 26), using DNA methylation analysis by pyrosequencing on 100 blood samples from French individuals aged between 19–65 years. For each model, we perform correlation analysis and evaluate age-prediction performance (mean absolute deviation (MAD) and standard error of the estimate (SEE)). The best age-prediction performances were found with the Bekaert and Thong models (MAD of 4.5–5.2, SEE of 6.8–7.2), followed by the Zbiec-Piekarska 1 model (MAD of 6.8 and SEE of 9.2), while the Park, Weidner and Zbiec-Piekarska 2 models presented lower performances (MAD of 7.2–8.7 and SEE of 9.2–10.3). Given these results, we recommend performing systematic, independent evaluation of all age prediction models on a same cohort to validate the different models and compare their performance.
Collapse
|
26
|
Fransquet PD, Wrigglesworth J, Woods RL, Ernst ME, Ryan J. The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. Clin Epigenetics 2019; 11:62. [PMID: 30975202 PMCID: PMC6458841 DOI: 10.1186/s13148-019-0656-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/25/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ageing is one of the principal risk factors for many chronic diseases. However, there is considerable between-person variation in the rate of ageing and individual differences in their susceptibility to disease and death. Epigenetic mechanisms may play a role in human ageing, and DNA methylation age biomarkers may be good predictors of age-related diseases and mortality risk. The aims of this systematic review were to identify and synthesise the evidence for an association between peripherally measured DNA methylation age and longevity, age-related disease, and mortality risk. METHODS A systematic search was conducted in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Using relevant search terms, MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and PsychINFO databases were searched to identify articles meeting the inclusion criteria. Studies were assessed for bias using Joanna Briggs Institute critical appraisal checklists. Data was extracted from studies measuring age acceleration as a predictor of age-related diseases, mortality or longevity, and the findings for similar outcomes compared. Using Review Manager 5.3 software, two meta-analyses (one per epigenetic clock) were conducted on studies measuring all-cause mortality. RESULTS Twenty-three relevant articles were identified, including a total of 41,607 participants. Four studies focused on ageing and longevity, 11 on age-related disease (cancer, cardiovascular disease, and dementia), and 11 on mortality. There was some, although inconsistent, evidence for an association between increased DNA methylation age and risk of disease. Meta-analyses indicated that each 5-year increase in DNA methylation age was associated an 8 to 15% increased risk of mortality. CONCLUSION Due to the small number of studies and heterogeneity in study design and outcomes, the association between DNA methylation age and age-related disease and longevity is inconclusive. Increased epigenetic age was associated with mortality risk, but positive publication bias needs to be considered. Further research is needed to determine the extent to which DNA methylation age can be used as a clinical biomarker.
Collapse
Affiliation(s)
- Peter D Fransquet
- Department of Epidemiology and Preventive Medicine, Monash University, ASPREE, Level 5, The Alfred Centre, 99 Commercial Road, Melbourne, Victoria, 3004, Australia.,Disease Epigenetics, Murdoch Childrens Research Institute, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Jo Wrigglesworth
- Department of Epidemiology and Preventive Medicine, Monash University, ASPREE, Level 5, The Alfred Centre, 99 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Robyn L Woods
- Department of Epidemiology and Preventive Medicine, Monash University, ASPREE, Level 5, The Alfred Centre, 99 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Michael E Ernst
- Department of Pharmacy Practice and Science, College of Pharmacy, The University of Iowa, Iowa City, IA, USA.,Department of Family Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Joanne Ryan
- Department of Epidemiology and Preventive Medicine, Monash University, ASPREE, Level 5, The Alfred Centre, 99 Commercial Road, Melbourne, Victoria, 3004, Australia. .,Disease Epigenetics, Murdoch Childrens Research Institute, The University of Melbourne, Parkville, Victoria, 3052, Australia. .,INSERM, U1061, Neuropsychiatrie, Recherche Clinique et Epidémiologique, Neuropsychiatry: Research Epidemiological and Clinic, Université Montpellier, 34000, Montpellier, France.
| |
Collapse
|
27
|
Becker J, Mahlke NS, Reckert A, Eickhoff SB, Ritz-Timme S. Age estimation based on different molecular clocks in several tissues and a multivariate approach: an explorative study. Int J Legal Med 2019; 134:721-733. [DOI: 10.1007/s00414-019-02054-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/25/2019] [Indexed: 12/24/2022]
|
28
|
Salvoro C, Faccinetto C, Zucchelli L, Porto M, Marino A, Occhi G, de Los Campos G, Vazza G. Performance of four models for eye color prediction in an Italian population sample. Forensic Sci Int Genet 2019; 40:192-200. [PMID: 30884346 DOI: 10.1016/j.fsigen.2019.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/27/2019] [Accepted: 03/10/2019] [Indexed: 11/29/2022]
Abstract
Forensic DNA phenotyping (FDP) has recently provided important advancements in forensic investigations, by predicting the physical appearance of a subject from a biological sample, using SNP markers. The majority of operable prediction models have been developed for iris color; however, replication studies to understand their applicability on a worldwide scale are still limited for many of them. In this work, 4 models for eye color prediction (IrisPlex, Ruiz, Allwood and Hart models) were systematically evaluated in a sample of 296 subjects of Italian origin. Genotypes were determined by a custom NGS-based panel targeting all the predictive SNPs included in the 4 tested models. Overall, 60-69% of the Italian sample could be correctly predicted with the IrisPlex, Ruiz and Allwood models, applying the recommended threshold. The IrisPlex model showed the lowest frequency of errors (17%), but also the highest number of inconclusive results (18%). In the absence of the threshold, the highest proportion of correct predictions was again obtained with the IrisPlex model (76%), followed by the Allwood (73%) and the Ruiz (65%) models. Lastly, the Hart predictive algorithm had the lowest error rate (2%), but the majority of predictions (87%) were restricted to the less informative categories of "not-blue" and "not-brown", and correct color predictions were obtained only for 11% of the sample. As observed in previous studies, the majority of incorrect and undefined predictions were ascribable to the intermediate category, which represented 25% of the Italian sample. An adjustment of the IrisPlex (multinomial logistic regression) and Ruiz models (Snipper Bayesian classifier) with Italian allele frequencies gave only minor improvements in predicting intermediate eye color and no remarkable overall changes in performance. This suggests an incomplete knowledge underlying the intermediate colors. Considering the impact of this phenotype in the Italian sample as well as in other admixed populations, future improvements of eye color prediction methods should include a better genetic and phenotypic characterization of this category.
Collapse
Affiliation(s)
| | - Christian Faccinetto
- Reparto Carabinieri Investigazioni Scientifiche di Parma, Sezione Biologia, Parma, Italy.
| | - Luca Zucchelli
- Department of Biology, University of Padova, Padova, Italy
| | - Marika Porto
- Department of Biology, University of Padova, Padova, Italy
| | - Alberto Marino
- Reparto Carabinieri Investigazioni Scientifiche di Parma, Sezione Biologia, Parma, Italy
| | - Gianluca Occhi
- Department of Biology, University of Padova, Padova, Italy
| | - Gustavo de Los Campos
- Departments of Epidemiology & Biostatistics and Statistics & Probability, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan United States
| | - Giovanni Vazza
- Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
29
|
Lagacé F, Verna E, Adalian P, Baccino E, Martrille L. Testing the accuracy of a new histomorphometric method for age-at-death estimation. Forensic Sci Int 2019; 296:48-52. [DOI: 10.1016/j.forsciint.2019.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/14/2018] [Accepted: 01/09/2019] [Indexed: 11/27/2022]
|
30
|
Jung SE, Lim SM, Hong SR, Lee EH, Shin KJ, Lee HY. DNA methylation of the ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59 genes for age prediction from blood, saliva, and buccal swab samples. Forensic Sci Int Genet 2018; 38:1-8. [PMID: 30300865 DOI: 10.1016/j.fsigen.2018.09.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022]
Abstract
Many studies have reported age-associated DNA methylation changes and age-predictive models in various tissues and body fluids. Although age-associated DNA methylation changes can be tissue-specific, a multi-tissue age predictor that is applicable to various tissues and body fluids with considerable prediction accuracy might be valuable. In this study, DNA methylation at 5 CpG sites from the ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59 genes were investigated in 448 samples from blood, saliva, and buccal swabs. A multiplex methylation SNaPshot assay was developed to measure DNA methylation simultaneously at the 5 CpG sites. Among the 5 CpG sites, 3 CpG sites in the ELOVL2, KLF14 and TRIM59 genes demonstrated strong correlation between DNA methylation and age in all 3 sample types. Age prediction models built separately for each sample type using the DNA methylation values at the 5 CpG sites showed high prediction accuracy with a Mean Absolute Deviation from the chronological age (MAD) of 3.478 years in blood, 3.552 years in saliva and 4.293 years in buccal swab samples. A tissue-combined model constructed with 300 training samples including 100 samples from each blood, saliva and buccal swab samples demonstrated a very strong correlation between predicted and chronological ages (r = 0.937) and a high prediction accuracy with a MAD of 3.844 years in the 148 independent test set samples of 50 blood, 50 saliva and 48 buccal swab samples. Although more validation might be needed, the tissue-combined model's prediction accuracies in each sample type were very much similar to those obtained from each tissue-specific model. The multiplex methylation SNaPshot assay and the age prediction models in our study would be useful in forensic analysis, which frequently involves DNA from blood, saliva, and buccal swab samples.
Collapse
Affiliation(s)
- Sang-Eun Jung
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Seung Min Lim
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Sae Rom Hong
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Eun Hee Lee
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Kyoung-Jin Shin
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Hwan Young Lee
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea; Department of Forensic Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, South Korea.
| |
Collapse
|
31
|
Recent progress, methods and perspectives in forensic epigenetics. Forensic Sci Int Genet 2018; 37:180-195. [PMID: 30176440 DOI: 10.1016/j.fsigen.2018.08.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 01/19/2023]
Abstract
Forensic epigenetics, i.e., investigating epigenetics variation to resolve forensically relevant questions unanswerable with standard forensic DNA profiling has been gaining substantial ground over the last few years. Differential DNA methylation among tissues and individuals has been proposed as useful resource for three forensic applications i) determining the tissue type of a human biological trace, ii) estimating the age of an unknown trace donor, and iii) differentiating between monozygotic twins. Thus far, forensic epigenetic investigations have used a wide range of methods for CpG marker discovery, prediction modelling and targeted DNA methylation analysis, all coming with advantages and disadvantages when it comes to forensic trace analysis. In this review, we summarize the most recent literature on these three main topics of current forensic epigenetic investigations and discuss limitations and practical considerations in experimental design and data interpretation, such as technical and biological biases. Moreover, we provide future perspectives with regard to new research questions, new epigenetic markers and recent technological advances that - as we envision - will move the field towards forensic epigenomics in the near future.
Collapse
|
32
|
|
33
|
Park HC, Ahn ER, Jung JY, Park JH, Lee JW, Lim SK, Kim W. Enhanced sensitivity of CpG island search and primer design based on predicted CpG island position. Forensic Sci Int Genet 2018; 34:134-140. [PMID: 29477876 DOI: 10.1016/j.fsigen.2018.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 10/18/2022]
Abstract
DNA methylation has important biological roles, such as gene expression regulation, as well as practical applications in forensics, such as in body fluid identification and age estimation. DNA methylation often occurs in the CpG site, and methylation within the CpG islands affects various cellular functions and is related to tissue-specific identification. Several programs have been developed to identify CpG islands; however, the size, location, and number of predicted CpG islands are not identical due to different search algorithms. In addition, they only provide structural information for predicted CpG islands without experimental information, such as primer design. We developed an analysis pipeline package, CpGPNP, to integrate CpG island prediction and primer design. CpGPNP predicts CpG islands more accurately and sensitively than other programs, and designs primers easily based on the predicted CpG island locations. The primer design function included standard, bisulfite, and methylation-specific PCR to identify the methylation of particular CpG sites. In this study, we performed CpG island prediction on all chromosomes and compared CpG island search performance of CpGPNP with other CpG island prediction programs. In addition, we compared the position of primers designed for a specific region within the predicted CpG island using other bisulfite PCR primer programs. The primers designed by CpGPNP were used to experimentally verify the amplification of the target region of markers for body fluid identification and age estimation. CpGPNP is freely available at http://forensicdna.kr/cpgpnp/.
Collapse
Affiliation(s)
- Hyun-Chul Park
- Forensic DNA Division, National Forensic Service, Wonju 26460, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Eu-Ree Ahn
- Forensic DNA Division, National Forensic Service, Wonju 26460, Republic of Korea.
| | - Ju Yeon Jung
- Forensic DNA Division, National Forensic Service, Wonju 26460, Republic of Korea.
| | - Ji-Hye Park
- Forensic DNA Division, National Forensic Service, Wonju 26460, Republic of Korea.
| | - Jee Won Lee
- Forensic DNA Division, National Forensic Service, Wonju 26460, Republic of Korea.
| | - Si-Keun Lim
- Forensic DNA Division, National Forensic Service, Wonju 26460, Republic of Korea.
| | - Won Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
34
|
A validation study of DNA methylation-based age prediction using semen in forensic casework samples. Leg Med (Tokyo) 2018; 31:74-77. [PMID: 29413993 DOI: 10.1016/j.legalmed.2018.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 11/24/2022]
Abstract
Previously, an age-predictive method based on DNA-methylation patterns in semen was developed, using three CpG sites (cg06304190 in the TTC7B gene, cg12837463, and cg06979108 in the NOX4 gene). Before considering the routine use of a new method in forensics, validation studies such as concordance and sensitivity tests are essential for obtaining expanded and more reliable forensic information. Here, we evaluated a previously described age-predictive method for semen for routine forensic use. Concordance testing showed a high correlation between the predicted and chronological age, with a mean absolute deviation from the chronological age of 4.8 years. Sensitivity testing suggested that age prediction with reliable accuracy and consistency was possible with >5 ng of bisulfite-converted DNA. We also confirmed the applicability of the age-predictive method in forensic casework, using forensic samples. Thus, the proposed method could serve as a very valuable forensics tool for accurate age prediction with semen samples.
Collapse
|
35
|
Márquez-Ruiz AB, González-Herrera L, Valenzuela A. Usefulness of telomere length in DNA from human teeth for age estimation. Int J Legal Med 2017; 132:353-359. [DOI: 10.1007/s00414-017-1595-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/19/2017] [Indexed: 01/03/2023]
|
36
|
Hong SR, Jung SE, Lee EH, Shin KJ, Yang WI, Lee HY. DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. Forensic Sci Int Genet 2017; 29:118-125. [PMID: 28419903 DOI: 10.1016/j.fsigen.2017.04.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/29/2017] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
Abstract
DNA methylation is currently one of the most promising age-predictive biomarkers. Many studies have reported DNA methylation-based age predictive models, but most of these are based on DNA methylation patterns from blood. Only a few studies have examined age-predictive DNA patterns in saliva, which is one of the most frequently-encountered body fluids at crime scenes. In this study, we generated genome-wide DNA methylation profiles of saliva from 54 individuals and identified CpG markers that showed a high correlation between methylation and age. Because the age-associated marker candidates from saliva differed from those of blood, we investigated DNA methylation patterns of 6 age-associated CpG marker candidates (cg00481951, cg19671120, cg14361627, cg08928145, cg12757011, and cg07547549 of the SST, CNGA3, KLF14, TSSK6, TBR1, and SLC12A5 genes, respectively) in addition to a cell type-specific CpG marker (cg18384097 of the PTPN7 gene) in an independent set of saliva samples obtained from 226 individuals aged 18 to 65 years. Multiplex methylation SNaPshot reactions were used to generate the data. We then generated a linear regression model with age information and the methylation profile from the 113 training samples. The model exhibited a 94.5% correlation between predicted and chronological age with a mean absolute deviation (MAD) from chronological age of 3.13 years. In subsequent validation using 113 test samples, we also observed a high correlation between predicted and chronological age (Spearman's rho=0.952, MAD from chronological age=3.15years). The model composed of 7 selected CpG sites enabled age prediction in saliva with high accuracy, which will be useful in saliva analysis for investigative leads.
Collapse
Affiliation(s)
- Sae Rom Hong
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Sang-Eun Jung
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Eun Hee Lee
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Kyoung-Jin Shin
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Woo Ick Yang
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Hwan Young Lee
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea.
| |
Collapse
|
37
|
De Vittori E, Barni F, Lewis SW, Antonini G, Rapone C, Berti A. Forensic application of a rapid one-step tetramethylbenzidine-based test for the presumptive trace detection of bloodstains at the crime scene and in the laboratory. Forensic Chem 2016. [DOI: 10.1016/j.forc.2016.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|