1
|
Meng YW, Liu JY. Pathological and pharmacological functions of the metabolites of polyunsaturated fatty acids mediated by cyclooxygenases, lipoxygenases, and cytochrome P450s in cancers. Pharmacol Ther 2024; 256:108612. [PMID: 38369063 DOI: 10.1016/j.pharmthera.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Oxylipins have garnered increasing attention because they were consistently shown to play pathological and/or pharmacological roles in the development of multiple cancers. Oxylipins are the metabolites of polyunsaturated fatty acids via both enzymatic and nonenzymatic pathways. The enzymes mediating the metabolism of PUFAs include but not limited to lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P450s (CYPs) pathways, as well as the down-stream enzymes. Here, we systematically summarized the pleiotropic effects of oxylipins in different cancers through pathological and pharmacological aspects, with specific reference to the enzyme-mediated oxylipins. We discussed the specific roles of oxylipins on cancer onset, growth, invasion, and metastasis, as well as the expression changes in the associated metabolic enzymes and the associated underlying mechanisms. In addition, we also discussed the clinical application and potential of oxylipins and related metabolic enzymes as the targets for cancer prevention and treatment. We found the specific function of most oxylipins in cancers, especially the underlying mechanisms and clinic applications, deserves and needs further investigation. We believe that research on oxylipins will provide not only more therapeutic targets for various cancers but also dietary guidance for both cancer patients and healthy humans.
Collapse
Affiliation(s)
- Yi-Wen Meng
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China
| | - Jun-Yan Liu
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Kalinkin AI, Sigin VO, Kuznetsova EB, Ignatova EO, Vinogradov II, Vinogradov MI, Vinogradov IY, Zaletaev DV, Nemtsova MV, Kutsev SI, Tanas AS, Strelnikov VV. Epigenomic Profiling Advises Therapeutic Potential of Leukotriene Receptor Inhibitors for a Subset of Triple-Negative Breast Tumors. Int J Mol Sci 2023; 24:17343. [PMID: 38139172 PMCID: PMC10743620 DOI: 10.3390/ijms242417343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive molecular subtype, with a poor survival rate compared to others subtypes. For a long time, chemotherapy was the only systemic treatment for TNBC, and the identification of actionable molecular targets might ultimately improve the prognosis for TNBC patients. We performed a genome-wide analysis of DNA methylation at CpG islands on a collection of one hundred ten breast carcinoma samples and six normal breast tissue samples using reduced representation bisulfite sequencing with the XmaI restriction enzyme (XmaI-RRBS) and identified a subset of TNBC samples with significant hypomethylation at the LTB4R/LTB4R2 genes' CpG islands, including CpG dinucleotides covered with cg12853742 and cg21886367 HumanMethylation 450K microarray probes. Abnormal DNA hypomethylation of this region in TNBC compared to normal samples was confirmed by bisulfite Sanger sequencing. Gene expression generally anticorrelates with promoter methylation, and thus, the promoter hypomethylation detected and confirmed in our study might be revealed as an indirect marker of high LTB4R/LTB4R2 expression using a simple methylation-sensitive PCR test. Analysis of RNA-seq expression and DNA methylation data from the TCGA dataset demonstrates that the expression of the LTB4R and LTB4R2 genes significantly negatively correlates with DNA methylation at both CpG sites cg12853742 (R = -0.4, p = 2.6 × 10-6; R = -0.21, p = 0.015) and cg21886367 (R = -0.45, p = 7.3 × 10-8; R = -0.24, p = 0.005), suggesting the upregulation of these genes in tumors with abnormal hypomethylation of their CpG island. Kaplan-Meier analysis using the TCGA-BRCA gene expression and clinical data revealed poorer overall survival for TNBC patients with an upregulated LTB4R. To this day, only the leukotriene inhibitor LY255283 has been tested on an MCF-7/DOX cell line, which is a luminal A breast cancer molecular subtype. Other studies compare the effects of Montelukast and Zafirlukast (inhibitors of the cysteinyl leukotriene receptor, which is different from LTB4R/LTB4R2) on the MDA-MB-231 (TNBC) cell line, with high methylation and low expression levels of LTB4R. In our study, we assess the therapeutic effects of various drugs (including leukotriene receptor inhibitors) with the DepMap gene effect and drug sensitivity data for TNBC cell lines with hypomethylated and upregulated LTB4R/LTB4R2 genes. LY255283, Minocycline, Silibinin, Piceatannol, Mitiglinide, 1-Azakenpaullone, Carbetocin, and Pim-1-inhibitor-2 can be considered as candidates for the additional treatment of TNBC patients with tumors demonstrating LTB4R/LTB4R2 hypomethylation/upregulation. Finally, our results suggest that the epigenetic status of leukotriene B4 receptors is a novel, potential, predictive, and prognostic biomarker for TNBC. These findings might improve individualized therapy for TNBC patients by introducing new therapeutic adjuncts as anticancer agents.
Collapse
Affiliation(s)
- Alexey I. Kalinkin
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Vladimir O. Sigin
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Ekaterina B. Kuznetsova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | - Ekaterina O. Ignatova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
- Nikolay Nikolaevich Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Ilya I. Vinogradov
- Regional Clinical Oncology Dispensary, 390011 Ryazan, Russia;
- Department of Histology, Pathological Anatomy and Medical Genetics, Ryazan State Medical University, 390026 Ryazan, Russia; (M.I.V.); (I.Y.V.)
| | - Maxim I. Vinogradov
- Department of Histology, Pathological Anatomy and Medical Genetics, Ryazan State Medical University, 390026 Ryazan, Russia; (M.I.V.); (I.Y.V.)
| | - Igor Y. Vinogradov
- Department of Histology, Pathological Anatomy and Medical Genetics, Ryazan State Medical University, 390026 Ryazan, Russia; (M.I.V.); (I.Y.V.)
| | - Dmitry V. Zaletaev
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Marina V. Nemtsova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | - Sergey I. Kutsev
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Alexander S. Tanas
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Vladimir V. Strelnikov
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| |
Collapse
|
3
|
Wei JD, Kim JH. Two distinct forms of human BLT2: long-form and short-form BLT2. Front Cell Dev Biol 2023; 11:1288373. [PMID: 37954206 PMCID: PMC10637354 DOI: 10.3389/fcell.2023.1288373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
BLT2 is a low-affinity leukotriene B4 receptor that plays an essential role in the pathogenesis of various inflammatory diseases, including asthma and cancer. BLT2 is minimally expressed in a normal internal environment but is overexpressed in a stress-induced inflammatory environment. Recent research indicated that human BLT2 has two distinct forms. Although their functions are likely to be different, very few studies investigated these differences. Therefore, this paper will discuss about the two distinct forms of human BLT2; the short-form of BLT2 and the long-form of BLT2.
Collapse
Affiliation(s)
- Jun-Dong Wei
- Department of Basic Medical Science, Medical College, Taizhou University, Taizhou, China
| | - Jae-Hong Kim
- Division of Life Sciences, College of Life Sciences, Korea University, Seoul, Republic of Korea
| |
Collapse
|
4
|
The Role and Regulation of Thromboxane A2 Signaling in Cancer-Trojan Horses and Misdirection. Molecules 2022; 27:molecules27196234. [PMID: 36234768 PMCID: PMC9573598 DOI: 10.3390/molecules27196234] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Over the last two decades, there has been an increasing awareness of the role of eicosanoids in the development and progression of several types of cancer, including breast, prostate, lung, and colorectal cancers. Several processes involved in cancer development, such as cell growth, migration, and angiogenesis, are regulated by the arachidonic acid derivative thromboxane A2 (TXA2). Higher levels of circulating TXA2 are observed in patients with multiple cancers, and this is accompanied by overexpression of TXA2 synthase (TBXAS1, TXA2S) and/or TXA2 receptors (TBXA2R, TP). Overexpression of TXA2S or TP in tumor cells is generally associated with poor prognosis, reduced survival, and metastatic disease. However, the role of TXA2 signaling in the stroma during oncogenesis has been underappreciated. TXA2 signaling regulates the tumor microenvironment by modulating angiogenic potential, tumor ECM stiffness, and host immune response. Moreover, the by-products of TXA2S are highly mutagenic and oncogenic, adding to the overall phenotype where TXA2 synthesis promotes tumor formation at various levels. The stability of synthetic enzymes and receptors in this pathway in most cancers (with few mutations reported) suggests that TXA2 signaling is a viable target for adjunct therapy in various tumors to reduce immune evasion, primary tumor growth, and metastasis.
Collapse
|
5
|
Fang M, Tang X, Zhang J, Liao Z, Wang G, Cheng R, Zhang Z, Zhao H, Wang J, Tan Z, Kamau PM, Lu Q, Liu Q, Deng G, Lai R. An inhibitor of leukotriene-A 4 hydrolase from bat salivary glands facilitates virus infection. Proc Natl Acad Sci U S A 2022; 119:e2110647119. [PMID: 35238649 PMCID: PMC8915838 DOI: 10.1073/pnas.2110647119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022] Open
Abstract
SignificanceAn immunosuppressant protein (MTX), which facilitates virus infection by inhibiting leukotriene A4 hydrolase (LTA4H) to produce the lipid chemoattractant leukotriene B4 (LTB4), was identified and characterized from the submandibular salivary glands of the bat Myotis pilosus. To the best of our knowledge, this is a report of an endogenous LTA4H inhibitor in animals. MTX was highly concentrated in the bat salivary glands, suggesting a mechanism for the generation of immunological privilege and immune tolerance and providing evidence of viral shedding through oral secretions. Moreover, given that the immunosuppressant MTX selectively inhibited the proinflammatory activity of LTA4H, without affecting its antiinflammatory activity, MTX might be a potential candidate for the development of antiinflammatory drugs by targeting the LTA4-LTA4H-LTB4 inflammatory axis.
Collapse
Affiliation(s)
- Mingqian Fang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
| | - Xiaopeng Tang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
| | - Juan Zhang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhiyi Liao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Ruomei Cheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiye Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Hongwen Zhao
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jing Wang
- Department of Laboratory Diagnosis, Chongqing Public Health Medical Center, Public Health Hospital of Southwest University, Shapingba District, Chongqing 400038, China
| | - Zhaoxia Tan
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Qiumin Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Qi Liu
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guohong Deng
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Kunming 650107, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| |
Collapse
|
6
|
Hannan R, Mohamad O, Diaz de Leon A, Manna S, Pop LM, Zhang Z, Mannala S, Christie A, Christley S, Monson N, Ishihara D, Hsu EJ, Ahn C, Kapur P, Chen M, Arriaga Y, Courtney K, Cantarel B, Wakeland EK, Fu YX, Pedrosa I, Cowell L, Wang T, Margulis V, Choy H, Timmerman RD, Brugarolas J. Outcome and Immune Correlates of a Phase II Trial of High-Dose Interleukin-2 and Stereotactic Ablative Radiotherapy for Metastatic Renal Cell Carcinoma. Clin Cancer Res 2021; 27:6716-6725. [PMID: 34551906 PMCID: PMC9924935 DOI: 10.1158/1078-0432.ccr-21-2083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/13/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023]
Abstract
PURPOSE This phase II clinical trial evaluated whether the addition of stereotactic ablative radiotherapy (SAbR), which may promote tumor antigen presentation, improves the overall response rate (ORR) to high-dose IL2 (HD IL2) in metastatic renal cell carcinoma (mRCC). PATIENTS AND METHODS Patients with pathologic evidence of clear cell renal cell carcinoma (RCC) and radiographic evidence of metastasis were enrolled in this single-arm trial and were treated with SAbR, followed by HD IL2. ORR was assessed based on nonirradiated metastases. Secondary endpoints included overall survival (OS), progression-free survival (PFS), toxicity, and treatment-related tumor-specific immune response. Correlative studies involved whole-exome and transcriptome sequencing, T-cell receptor sequencing, cytokine analysis, and mass cytometry on patient samples. RESULTS Thirty ethnically diverse mRCC patients were enrolled. A median of two metastases were treated with SAbR. Among 25 patients evaluable by RECIST v1.1, ORR was 16% with 8% complete responses. Median OS was 37 months. Treatment-related adverse events (AE) included 22 grade ≥3 events that were not dissimilar from HD IL2 alone. There were no grade 5 AEs. A correlation was observed between SAbR to lung metastases and improved PFS (P = 0.0165). Clinical benefit correlated with frameshift mutational load, mast cell tumor infiltration, decreased circulating tumor-associated T-cell clones, and T-cell clonal expansion. Higher regulatory/CD8+ T-cell ratios at baseline in the tumor and periphery correlated with no clinical benefit. CONCLUSIONS Adding SAbR did not improve the response rate to HD IL2 in patients with mRCC in this study. Tissue analyses suggest a possible correlation between frameshift mutation load as well as tumor immune infiltrates and clinical outcomes.
Collapse
Affiliation(s)
- Raquibul Hannan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas.
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Osama Mohamad
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Alberto Diaz de Leon
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Subrata Manna
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Laurentiu M Pop
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ze Zhang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Samantha Mannala
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alana Christie
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Scott Christley
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nancy Monson
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Dan Ishihara
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Eric J Hsu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chul Ahn
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Payal Kapur
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yull Arriaga
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kevin Courtney
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Brandi Cantarel
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ivan Pedrosa
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lindsay Cowell
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vitaly Margulis
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hak Choy
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Robert D Timmerman
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - James Brugarolas
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
7
|
Leukotriene B4 receptor-2 contributes to KRAS-driven lung tumor formation by promoting interleukin-6-mediated inflammation. Exp Mol Med 2021; 53:1559-1568. [PMID: 34635780 PMCID: PMC8569214 DOI: 10.1038/s12276-021-00682-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/17/2021] [Accepted: 08/08/2021] [Indexed: 12/13/2022] Open
Abstract
Although lung cancer is the leading cause of cancer-related deaths worldwide and KRAS is the most frequently mutated oncogene in lung cancer cases, the mechanism by which KRAS mutation drives lung cancer has not been fully elucidated. Here, we report that the expression levels of leukotriene B4 receptor-2 (BLT2) and its ligand-producing enzymes (5-LOX, 12-LOX) were highly increased by mutant KRAS and that BLT2 or 5-/12-LOX blockade attenuated KRAS-driven lung cell proliferation and production of interleukin-6 (IL-6), a principal proinflammatory mediator of lung cancer development. Next, we explored the roles of BLT2 and 5-/12-LOX in transgenic mice with lung-specific expression of mutant KRAS (KrasG12D) and observed that BLT2 or 5-/12-LOX inhibition decreased IL-6 production and tumor formation. To further determine whether BLT2 is involved in KRAS-driven lung tumor formation, we established a KrasG12D/BLT2-KO double-mutant mouse model. In the double-mutant mice, we observed significantly suppressed IL-6 production and lung tumor formation. Additionally, we observed high BLT2 expression in tissue samples from patients with KrasG12D-expressing lung adenocarcinoma, supporting the contributory role of BLT2 in KRAS-driven human lung cancer. Collectively, our results suggest that BLT2 is a potential contributor to KRAS-driven lung cancer and identify an attractive therapeutic target for KRAS-driven lung cancer.
Collapse
|
8
|
Kwon Y. Possible Beneficial Effects of N-Acetylcysteine for Treatment of Triple-Negative Breast Cancer. Antioxidants (Basel) 2021; 10:169. [PMID: 33498875 PMCID: PMC7911701 DOI: 10.3390/antiox10020169] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
N-acetylcysteine (NAC) is a widely used antioxidant with therapeutic potential. However, the cancer-promoting effect of NAC observed in some preclinical studies has raised concerns regarding its clinical use. Reactive oxygen species (ROS) can mediate signaling that results in both cancer-promoting and cancer-suppressing effects. The beneficial effect of NAC may depend on whether the type of cancer relies on ROS signaling for its survival and metastasis. Triple-negative breast cancer (TNBC) has aggressive phenotypes and is currently treated with standard chemotherapy as the main systemic treatment option. Particularly, basal-like TNBC cells characterized by inactivated BRCA1 and mutated TP53 produce high ROS levels and rely on ROS signaling for their survival and malignant progression. In addition, the high ROS levels in TNBC cells can mediate the interplay between cancer cells and the tissue microenvironment (TME) to trigger the recruitment and conversion of stromal cells and induce hypoxic responses, thus leading to the creation of cancer-supportive TMEs and increased cancer aggressiveness. However, NAC treatment effectively reduces the ROS production and ROS-mediated signaling that contribute to cell survival, metastasis, and drug resistance in TNBC cells. Therefore, the inclusion of NAC in standard chemotherapy could probably provide additional benefits for TNBC patients.
Collapse
Affiliation(s)
- Youngjoo Kwon
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
9
|
Lim S, Kim Y, Lee SB, Kang HG, Kim DH, Park JW, Chung D, Kong H, Yoo KH, Kim Y, Han W, Chun KH, Park JH. Inhibition of Chk1 by miR-320c increases oxaliplatin responsiveness in triple-negative breast cancer. Oncogenesis 2020; 9:91. [PMID: 33041328 PMCID: PMC7548284 DOI: 10.1038/s41389-020-00275-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Checkpoint kinase 1 (Chk1) expression is enhanced in most cancers owing to oncogenic activation and constant replicative stress. Chk1 inactivation is a promising cancer therapy, as its inactivation leads to genomic instability, chromosomal catastrophe, and cancer cell death. Herein, we observed that miR-320c, downregulated in triple-negative breast cancer (TNBC) patients, can target Chk1. In addition, downregulated miR-320c expression was associated with poor overall survival in TNBC patients. As Chk1 was associated with the DNA damage response (DDR), we investigated the effect of miR-320c on DDR in TNBC cells. To induce DNA damage, we used platinum-based drugs, especially oxaliplatin, which is most effective with miR-320c. We observed that overexpression of miR-320c in TNBC regulated the oxaliplatin responsiveness by mediating DNA damage repair through the negative regulation of Chk1 in vitro. Furthermore, using a xenograft model, a combination of miR-320c mimic and oxaliplatin effectively inhibited tumor progression. These investigations indicate the potential of miR-320c as a marker of oxaliplatin responsiveness and a therapeutic target to increase the efficacy of chemotherapy in TNBC.
Collapse
Affiliation(s)
- Sera Lim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Yesol Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Soo-Been Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Hyeok-Gu Kang
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Da-Hyun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee Won Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Daeun Chung
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Hyunkyung Kong
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Kyung Hyun Yoo
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Wonshik Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Jin Y, Huynh DTN, Kang KW, Myung CS, Heo KS. Inhibition of p90RSK activation sensitizes triple-negative breast cancer cells to cisplatin by inhibiting proliferation, migration and EMT. BMB Rep 2020. [PMID: 31818359 PMCID: PMC6941763 DOI: 10.5483/bmbrep.2019.52.12.234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cisplatin (Cis-DDP) is one of the most widely used anti-cancer drugs. It is applicable to many types of cancer, including lung, bladder, and breast cancer. However, its use is now limited because of drug resistance. p90 ribosomal S6 kinase (p90RSK) is one of the downstream effectors in the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) pathway and high expression of p90RSK is observed in human breast cancer tissues. Therefore, we investigated the role of p90RSK in the Cis-DDP resistance-related signaling pathway and epithelial-mesenchymal transition (EMT) in breast cancer cells. First, we discovered that MDA-MB-231 cells exhibited more Cis-DDP resistance than other breast cancer cells, including MCF-7 and BT549 cells. Cis-DDP increased p90RSK activation, whereas the inactivation of p90RSK using a small interfering RNA (siRNA) or dominant-negative kinase mutant plasmid overexpression significantly reduced Cis-DDP-induced cell proliferation and migration via the inhibition of matrix metallopeptidase (MMP)2 and MMP9 in MDA-MB-231 cells. In addition, p90RSK activation was involved in EMT via the upregulation of mRNA expression, including that of Snail, Twist, ZEB1, N-cadherin, and vimentin. We also investigated NF-κB, the upstream regulator of EMT markers, and discovered that Cis-DDP treatment led to NF-κB translocation in the nucleus as well as its promoter activity. Our results suggest that targeting p90RSK would be a good strategy to increase Cis-DDP sensitivity in triple-negative breast cancers.
Collapse
Affiliation(s)
- Yujin Jin
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea
| | - Diem Thi Ngoc Huynh
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Chang-Seon Myung
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea
| | - Kyung-Sun Heo
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
11
|
Jo-Watanabe A, Okuno T, Yokomizo T. The Role of Leukotrienes as Potential Therapeutic Targets in Allergic Disorders. Int J Mol Sci 2019; 20:ijms20143580. [PMID: 31336653 PMCID: PMC6679143 DOI: 10.3390/ijms20143580] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022] Open
Abstract
Leukotrienes (LTs) are lipid mediators that play pivotal roles in acute and chronic inflammation and allergic diseases. They exert their biological effects by binding to specific G-protein-coupled receptors. Each LT receptor subtype exhibits unique functions and expression patterns. LTs play roles in various allergic diseases, including asthma (neutrophilic asthma and aspirin-sensitive asthma), allergic rhinitis, atopic dermatitis, allergic conjunctivitis, and anaphylaxis. This review summarizes the biology of LTs and their receptors, recent developments in the area of anti-LT strategies (in settings such as ongoing clinical studies), and prospects for future therapeutic applications.
Collapse
Affiliation(s)
- Airi Jo-Watanabe
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan.
| |
Collapse
|
12
|
Ryu TY, Kim K, Kim SK, Oh JH, Min JK, Jung CR, Son MY, Kim DS, Cho HS. SETDB1 regulates SMAD7 expression for breast cancer metastasis. BMB Rep 2019. [PMID: 30545440 PMCID: PMC6443319 DOI: 10.5483/bmbrep.2019.52.2.235] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Breast cancer (BRC) is the most invasive cancer in women. Although the survival rate of BRC is gradually increasing due to improved screening systems, development of novel therapeutic targets for inhibition of BRC proliferation, metastasis and recurrence have been constantly needed. Thus, in this study, we identified overexpression of SETDB1 (SET Domain Bifurcated 1), a histone methyltransferase, in RNA-seq data of BRC derived from TCGA portal. In Gene Ontology (GO) analysis, cell migration-related GO terms were enriched, and we confirmed down-regulation of cell migration/invasion and alteration of EMT/MET markers after knockdown of SETDB1. Moreover, gene network analysis showed that SMAD7 expression is regulated by SETDB1 levels, indicating that up-regulation of SMAD7 by SETDB1 knockdown inhibited BRC metastasis. Therefore, development of SETDB1 inhibitors and functional studies may help develop more effective clinical guidelines for BRC treatment.
Collapse
Affiliation(s)
- Tae Young Ryu
- Korea Research Institute of Bioscience and Biotechnology, Korea University of Science and Technology, Daejeon 34141, Korea
| | - Kwangho Kim
- Korea Research Institute of Bioscience and Biotechnology, Korea University of Science and Technology, Daejeon 34141, Korea
| | - Seon-Kyu Kim
- Korea Research Institute of Bioscience and Biotechnology, Korea University of Science and Technology, Daejeon 34141, Korea
| | - Jung-Hwa Oh
- Korea Institute of Toxicology (KIT), Daejeon 34114, Korea
| | - Jeong-Ki Min
- Korea Research Institute of Bioscience and Biotechnology, and Department of Functional Genomics, Korea University of Science and Technology, Daejeon 34141, Korea
| | - Cho-Rok Jung
- Korea Research Institute of Bioscience and Biotechnology, and Department of Functional Genomics, Korea University of Science and Technology, Daejeon 34141, Korea
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology, and Department of Functional Genomics, Korea University of Science and Technology, Daejeon 34141, Korea
| | - Dae-Soo Kim
- Korea Research Institute of Bioscience and Biotechnology, and Department of Functional Genomics, Korea University of Science and Technology, Daejeon 34141, Korea
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology, and Department of Functional Genomics, Korea University of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
13
|
Role of Leukotriene B 4 Receptor-2 in Mast Cells in Allergic Airway Inflammation. Int J Mol Sci 2019; 20:ijms20122897. [PMID: 31197082 PMCID: PMC6627931 DOI: 10.3390/ijms20122897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/28/2022] Open
Abstract
Mast cells are effector cells in the immune system that play an important role in the allergic airway inflammation. Recently, it was reported that BLT2, a low-affinity leukotriene (LT) B4 receptor, plays a pivotal role in the pathogenesis of allergic airway inflammation through its action in mast cells. We observed that highly elevated expression levels of BLT2 are critical for the pathogenesis leading to allergic airway inflammation, and that if BLT2 expression is downregulated by siBLT2-mediated knockdown, allergic inflammation is dramatically alleviated. Furthermore, we demonstrated that BLT2 mediates the synthesis of vascular endothelial growth factor (VEGF) and Th2 cytokines, such as interleukin (IL)-13, in mast cells during allergic inflammation. Based on the critical roles of BLT2 in mast cells in allergic inflammation, anti-BLT2 strategies could contribute to the development of new therapies for allergic airway inflammation.
Collapse
|
14
|
Quagliariello V, Passariello M, Coppola C, Rea D, Barbieri A, Scherillo M, Monti MG, Iaffaioli RV, De Laurentiis M, Ascierto PA, Botti G, De Lorenzo C, Maurea N. Cardiotoxicity and pro-inflammatory effects of the immune checkpoint inhibitor Pembrolizumab associated to Trastuzumab. Int J Cardiol 2019; 292:171-179. [PMID: 31160077 DOI: 10.1016/j.ijcard.2019.05.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/19/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The immunotherapy has revolutionized the world of oncology in the last decades with considerable advantages in terms of overall survival in cancer patients. The association of Pembrolizumab and Trastuzumab was recently proposed in clinical trials for the treatment of Trastuzumab-resistant advanced HER2-positive breast cancer. Although immunotherapies are frequently associated with a wide spectrum of immune-related adverse events, the cardiac toxicity has not been properly studied. PURPOSE We studied, for the first time, the putative cardiotoxic and pro-inflammatory effects of Pembrolizumab associated to Trastuzumab. METHODS Cell viability, intracellular calcium quantification and pro-inflammatory studies (analyses of the production of Interleukin 1β, 6 and 8, the expression of NF-kB and Leukotriene B4) were performed in human fetal cardiomyocytes. Preclinical studies were also performed in C57BL6 mice by analyzing fibrosis and inflammation in heart tissues. RESULTS The combination of Pembrolizumab and Trastuzumab leads to an increase of the intracellular calcium overload (of 3 times compared to untreated cells) and to a reduction of the cardiomyocytes viability (of 65 and 20-25%, compared to untreated and Pembrolizumab or Trastuzumab treated cells, respectively) indicating cardiotoxic effects. Notably, combination therapy increases the inflammation of cardiomyocytes by enhancing the expression of NF-kB and Interleukins. Moreover, in preclinical models, the association of Pembrolizumab and Trastuzumab increases the Interleukins expression of 40-50% compared to the single treatments; the expression of NF-kB and Leukotriene B4 was also increased. CONCLUSION Pembrolizumab associated to Trastuzumab leads to strong cardiac pro-inflammatory effects mediated by overexpression of NF-kB and Leukotriene B4 related pathways.
Collapse
Affiliation(s)
- V Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - M Passariello
- CEINGE - Biotecnologie Avanzate S.C.a.R.L., Naples, Italy
| | - C Coppola
- Division of Cardiology, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - D Rea
- Animal Facility, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - A Barbieri
- Animal Facility, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - M Scherillo
- Azienda ospedaliera San Pio, Cardiologia Interventistica ed UTIC, Azienda Ospedaliera "G.Rummo" di Benevento, Napoli, Italy
| | - M G Monti
- Department of Translational Medical Sciences, University Federico II, Naples, Italy
| | - R V Iaffaioli
- Association for Multidisciplinary Studies in Oncology and Mediterranean Diet, Piazza Nicola Amore, Naples, Italy
| | - M De Laurentiis
- Breast Unit, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - P A Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - G Botti
- Scientific Direction, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - C De Lorenzo
- CEINGE - Biotecnologie Avanzate S.C.a.R.L., Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Napoli, Italy.
| | - N Maurea
- Division of Cardiology, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, Napoli, Italy.
| |
Collapse
|