1
|
Velayati A, Vafa MR, Sani'ee N, Darabi Z. Therapeutic effects and mechanisms of action of ginger and its bioactive components on inflammatory response, oxidative stress, the immune system, and organ failure in sepsis: a comprehensive systematic review. Nutr Rev 2024; 82:1800-1819. [PMID: 38102801 DOI: 10.1093/nutrit/nuad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
CONTEXT Sepsis refers to a usually lethal medical condition that results from an extreme, uncontrolled, and multifaceted immune system response to infection. Ginger (Zingiber officinale Roscoe; Zingiberaceae) is 1 of the most popular spice. It is widely used as a traditional herb and as medicine in the treatment of some inflammatory conditions, such as vomiting, pain, cancer, diabetes, and cardiovascular diseases, because of its varied medical characteristics, including anti-inflammatory, antioxidant, antimicrobial, and antitumor effects. OBJECTIVE The aim of this study was to demonstrate the potential roles of ginger and its elements in sepsis. DATA SOURCES This systematic review article was conducted and reported by following the guideline of the Preferred Reporting for Systematic Reviews (PRISMA). Electronic databases, including Web of Sciences, Google Scholar, PubMed, Scopus, and ProQuest, were searched using related key words up to January 2023. DATA EXTRACTION Among 141 found articles, 48 eligible articles were included and reviewed for their details. Data were extracted, including the first author's name, year of publication, name of origin country, study design, number and type of subject, dosage and type of intervention, study duration, assay, and main results. DATA ANALYSIS The data from the included articles showed that ginger and its bioactive elements, such as gingerol (1-300 µg/mL or 1-100 mg/kg for 24 hours to 14 days), shogaol (0.2-100 µg/mL or 10-40 mg/kg body weight for 24 hours to 8 days), gingerdione (1-100 µg/mL for 20-48 hours), and zingerone (2-20 µM for 4 hours to 8 days), can be effective in sepsis via suppressing the gene expression and production of pro-inflammatory cytokines and oxidant agents, downregulating immune response, and protecting against sepsis-induced organ failures in experimental and animal models. CONCLUSION Ginger has potential therapeutic effects in sepsis. Human clinical trials are recommended. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023373613.
Collapse
Affiliation(s)
- Aynaz Velayati
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
| | - Mohamad Reza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Nadia Sani'ee
- Medical Library and Information Science, Asadabad School Medical Sciences, Asadabad, Iran
| | - Zahra Darabi
- Department of Nutrition, School of Public Health, Shahid Sadughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Park YJ, Heo JB, Choi YJ, Cho S, Lee T, Song GY, Bae JS. Antiseptic Functions of CGK012 against HMGB1-Mediated Septic Responses. Int J Mol Sci 2024; 25:2976. [PMID: 38474222 PMCID: PMC10931621 DOI: 10.3390/ijms25052976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
High mobility group box 1 (HMGB1), a protein with important functions, has been recognized as a potential therapeutic target for the treatment of sepsis. One possible mechanism for this is that inhibiting HMGB1 secretion can exert antiseptic effects, which can restore the integrity of the vascular barrier. (7S)-(+)-cyclopentyl carbamic acid 8,8-dimethyl-2-oxo-6,7-dihydro-2H,8H-pyrano[3,2-g]chromen-7-yl-ester (CGK012) is a newly synthesized pyranocoumarin compound that could function as a novel small-molecule inhibitor of the Wnt/β-catenin signaling pathway. However, no studies have yet determined the effects of CGK012 on sepsis. We investigated the potential of CGK012 to attenuate the excessive permeability induced by HMGB1 and enhance survival rates in a mouse model of sepsis with reduced HMGB1 levels following lipopolysaccharide (LPS) treatment. In both LPS-stimulated human endothelial cells and a mouse model exhibiting septic symptoms due to cecal ligation and puncture (CLP), we assessed proinflammatory protein levels and tissue damage biomarkers as indicators of reduced vascular permeability. CGK012 was applied after induction in human endothelial cells exposed to LPS and the CLP-induced mouse model of sepsis. CGK012 effectively mitigated excessive permeability and suppressed HMGB1 release, resulting in improved vascular stability, decreased mortality, and enhanced histological conditions in the mouse model of CLP-induced sepsis. In conclusion, our findings indicate that CGK012 treatment in mice with CLP-induced sepsis diminished HMGB1 release and increased the survival rate, suggesting its potential as a pharmaceutical intervention for sepsis.
Collapse
Affiliation(s)
- Yun Jin Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.P.); (S.C.); (T.L.)
| | - Jong Beom Heo
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea; (J.B.H.); (Y.-J.C.)
| | - Yoon-Jung Choi
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea; (J.B.H.); (Y.-J.C.)
| | - Sanghee Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.P.); (S.C.); (T.L.)
| | - Taeho Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.P.); (S.C.); (T.L.)
| | - Gyu Yong Song
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea; (J.B.H.); (Y.-J.C.)
- AREZ Co., Ltd., Daejeon 34036, Republic of Korea
| | - Jong-Sup Bae
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.P.); (S.C.); (T.L.)
| |
Collapse
|
3
|
BinMowyna MN. Zingerone attenuates intestinal injury and colitis caused by a high-fat diet through Nrf2 signaling regulation. Saudi J Biol Sci 2023; 30:103775. [PMID: 37766888 PMCID: PMC10519856 DOI: 10.1016/j.sjbs.2023.103775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 09/29/2023] Open
Abstract
This study examined the protective effect of Zingerone against a high-fat diet (HFD)-induced intestinal damage. Control and HFD rats were treated with the vehicle or Zingerone (100 mg/kg, orally) (n = 8 rats/groups). An extra group, HFD + Zingerone + brusatol (an Nrf2 inhibitor). This study treatment lasted four weeks. Zingerone reduced the nuclear levels of NF-B p65 in control and HFD-fed rats while increasing SOD, CAT, GSH, levels of mRNA, cytoplasmic levels, and Nrf2 nuclear levels. Zingerone treatment attenuated the duodenal epithelial damage and maintained the mucosal barrier by reducing plasma FITC-DX and serum LPS in rats fed with HFD. Concomitantly, it lowered the duodenal MDA, TNF-α, IL-6, and IL-1β levels. These impacts included changes in body weight, duodenal lipid levels, and Keap-1 expression, a natural Nrf2 inhibitor. We concluded that Zingerone reduces HFD-induced duodenal injury. These findings support Zingerone's clinical applicability against various inflammatory diseases of the intestine.
Collapse
Affiliation(s)
- Mona N. BinMowyna
- College of Science and Humanities-Dawadmi, Shaqra University, Saudi Arabia
| |
Collapse
|
4
|
Shamsabadi S, Nazer Y, Ghasemi J, Mahzoon E, Baradaran Rahimi V, Ajiboye BO, Askari VR. Promising influences of zingerone against natural and chemical toxins: A comprehensive and mechanistic review. Toxicon 2023; 233:107247. [PMID: 37562703 DOI: 10.1016/j.toxicon.2023.107247] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/23/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Zingerone is a flavor phytochemical present in ginger, a flowering plant belonging to the Zingiberaceae family used as a condiment and herbal remedy. It possesses anti-inflammatory, antioxidant, and anti-apoptotic properties and also exhibits protective effects against radiation, chemicals, biological toxins, and oxidative stress. The current comprehensive literature review was performed in order to assess the therapeutical and protective properties of zingerone against various chemical and natural toxins by considering the mechanisms of action. Extensive searches were performed on Scopus, Web of Science, PubMed, and Google Scholar databases. Zingerone lessens oxidative stress, inflammation, apoptosis, and oxidative DNA damage by increasing the activities of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPX). It prevents alginate production, which increases the cell's susceptibility to macrophages, serum, and antibiotics and dramatically lowers the generation of proinflammatory cytokines brought on by lipopolysaccharide (LPS). Cytokine production, MAPK, and NF-κB activation are all inhibited dose-dependently by zingerone. Zingerone also reduces 8-OHdG over-expression in the liver tissue and the expression of NADPH oxidase 4 (NOX4), inflammatory cytokines (e.g., IFN-γ, IL-17, IL-6, COX-2, TNF-α, and iNOS mRNA level), decreases macrophage inflammatory protein cytokines and eliminates free radicals. It also suppresses matrix metalloproteinase-2 (MMP-2) and MMP-9 during tumor progression, showing its anti-angiogenic activity. Strong radioprotective properties of zingerone are demonstrated against radiation-induced toxicity. The authors hope this review gives researchers some insight into conducting novel clinical and preclinical studies on pharmaceutical applications and the efficiency of zingerone in cancer treatment, and drug adverse effects.
Collapse
Affiliation(s)
| | - Yazdan Nazer
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Ghasemi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Erfan Mahzoon
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Basiru O Ajiboye
- Institute of Drug Research and Development, S.E Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria; Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye Ekiti, Oye, Ekiti State, Nigeria.
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Lee IC, Bae JS. Inhibitory effects of aloin on lipopolysaccharide-induced severe inflammatory responses. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:987-999. [PMID: 35023793 DOI: 10.1080/10286020.2022.2026932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Aloin is the main anthraquinone glycoside from Aloe species. Here, the anti-inflammatory functions of aloin against lipopolysaccharide (LPS)-induced vascular inflammatory responses were tested in endothelial cells or mice such as permeability, expressions of cell adhesion molecule (CAM), migration of leukocytes and lethality. Aloin was found to inhibit LPS-induced barrier disruption, CAM expression, and neutrophil adhesion/transendothelial migration to endothelial cells. Furthermore, aloin inhibited LPS-induced hyperpermeability, leukocyte migration, lethality in vivo. These results suggest that aloin has anti-inflammatory activities against LPS, thereby supporting its usefulness as a treatment for vascular inflammatory.
Collapse
Affiliation(s)
- In-Chul Lee
- Department of Cosmetic Science and Technology, Seowon University, Cheongju 28674, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
He FF, Wang YM, Chen YY, Huang W, Li ZQ, Zhang C. Sepsis-induced AKI: From pathogenesis to therapeutic approaches. Front Pharmacol 2022; 13:981578. [PMID: 36188562 PMCID: PMC9522319 DOI: 10.3389/fphar.2022.981578] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a heterogenous and highly complex clinical syndrome, which is caused by infectious or noninfectious factors. Acute kidney injury (AKI) is one of the most common and severe complication of sepsis, and it is associated with high mortality and poor outcomes. Recent evidence has identified that autophagy participates in the pathophysiology of sepsis-associated AKI. Despite the use of antibiotics, the mortality rate is still at an extremely high level in patients with sepsis. Besides traditional treatments, many natural products, including phytochemicals and their derivatives, are proved to exert protective effects through multiple mechanisms, such as regulation of autophagy, inhibition of inflammation, fibrosis, and apoptosis, etc. Accumulating evidence has also shown that many pharmacological inhibitors might have potential therapeutic effects in sepsis-induced AKI. Hence, understanding the pathophysiology of sepsis-induced AKI may help to develop novel therapeutics to attenuate the complications of sepsis and lower the mortality rate. This review updates the recent progress of underlying pathophysiological mechanisms of sepsis-associated AKI, focuses specifically on autophagy, and summarizes the potential therapeutic effects of phytochemicals and pharmacological inhibitors.
Collapse
|
7
|
Upadhyaya K, Sharma PK, Akhtar A, Pilkhwal Sah S. Protective Effects of Zingerone Against Depression-Like Behavior and Biochemical Changes in Chronic Stressed Rats: Antioxidant Effects. J Med Food 2022; 25:576-587. [PMID: 35639359 DOI: 10.1089/jmf.2021.k.0141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ginger contains zingerone, an active constituent possessing antioxidant and neuroprotective properties. The present study was designed to explore the efficacy of the bioactive compound, zingerone, for treating behavioral and biochemical alterations in rats exposed to chronic restraint stress (CRS). Female Wistar rats were administered zingerone (25, 50, and 100 mg/kg p.o.) once daily for a period of 28 days while being exposed to CRS (6 h/day). Our results indicated that the stressed animals depicted depression-like behavior (reduced sucrose preference and increased immobility time) associated with increased lipid peroxidation (LPO) (cortex), decreased catalase (CAT) (hippocampus and cortex), and increased superoxide dismutase (SOD) (hippocampus and cortex). In addition, metabolic alterations were characterized by hyperglycemia and increased glycosylated hemoglobin in the CRS rats. However, no alterations were observed for learning and memory and in the levels of reduced glutathione. Repeated zingerone administration significantly reversed depression-like behavior elicited by CRS in rats. Furthermore, a significant antioxidant effect was exhibited by zingerone, as shown by decreased LPO and enhanced activity of SOD and CAT in chronically stressed rats. The findings of our study demonstrated that zingerone possesses protective actions against chronic stress-induced depressive-like behavioral, biochemical, and metabolic alterations and that its underlying mechanism may be attributed to its antioxidant properties. The results also signify its pharmacological and possible nutritional importance.
Collapse
Affiliation(s)
- Kumud Upadhyaya
- Department of Pharmaceutical Sciences, Kumaun University, Nainital, India
| | | | - Ansab Akhtar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, India
| | - Sangeeta Pilkhwal Sah
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, India
| |
Collapse
|
8
|
Kim N, Jeon C, Kim C, Ryu SH, Lee W, Bae JS. Inhibition of factor Xa activity, platelet aggregation, and experimentally induced thrombosis by Sparstolonin B. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153987. [PMID: 35183932 DOI: 10.1016/j.phymed.2022.153987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/26/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sparstolonin B (SsnB) is an isocumarin compound extracted from medicinal plants such as Sparganium stoloniferum and Scirpus yagara with well documented anti-inflammatory activity. Here we examined if SsnB also possesses antithrombotic activity and the underlying mechanisms. METHODS Anti-thrombotic effects of SsnB were determined by measuring in vitro/ex vivo/in vivo clotting times, platelet aggregation assay, production and activity of factor Xa, nitric oxide, and expressions of relative proteins. RESULTS Treatment with SsnB prolonged the clotting time of human platelet-poor serum at concentrations comparable to the clinical anticoagulant rivaroxaban (as a positive control) and inhibited human platelet aggregation induced by adenosine diphosphate (ADP) or the thromboxane A2 analog U46619. SsnB also inhibited U46619-induced and ADP-induced phosphorylation of phospholipase C (PLC)γ2/protein kinase C (PKC) and intracellular calcium mobilization, both of which are required for platelet aggregation. In addition, SsnB inhibited expression of the cell adhesion factors P-selectin and PAC-1. SsnB increased production of the vasodilator nitric oxide and suppressed secretion of the vasoconstrictor endothelin-1 from ADP- or U46619-treated human umbilical vein endothelial cells. Further, SsnB reduced coagulation factor Xa (FXa) catalytic activity and production by endothelial cells as well as FXa-induced platelet aggregation. CONCLUSION Finally, SsnB injection reduced thrombus formation time, number, size, and related mortality in mouse models of thromboembolism. SsnB is a promising antithrombotic agent targeting both FXa and platelet aggregation pathways, which can overcome the side effects of existing antithrombotic agents.
Collapse
Affiliation(s)
- Nayeon Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - CheLynn Jeon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Chaeyeong Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Soo Ho Ryu
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jong-Sup Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
9
|
Combinatorial Therapeutic Strategy of Biogenics Derived from Lactobacillus fermentum PUM and Zingerone Against Pseudomonas aeruginosa PAO1-Induced Surgical Site Infection: an Experimental Study. Probiotics Antimicrob Proteins 2022; 14:712-726. [PMID: 35482245 DOI: 10.1007/s12602-022-09944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2022] [Indexed: 10/18/2022]
Abstract
Pseudomonas aeruginosa, a WHO-prioritized multidrug-resistant Gram-negative bacteria, is one of the frequently implicated pathogen in surgical site infection (SSI) due to its virulence phenotypes and biofilm-forming ability. In the present study, cell-free supernatant (CFS) and biogenics (organic acids and precipitated protein fraction) of indigenous potential probiotic, Lactobacillus fermentum PUM both alone and in combination with zingerone were found to inhibit pyocyanin, pyochelin, protease, elastase, the virulence factors, and motility of P. aeruginosa PAO1. Furthermore, scanning electron microscopy indicated that biofilm formation was attenuated maximally by CFS of L. fermentum combined with zingerone. In vivo study revealed reduced P. aeruginosa burden, suppuration at surgical site vis-a-vis reduced levels of oxidants, pro-inflammatory cytokines, ameliorated anti-oxidants, and healed infected surgical site compared with counter controls. In totality, combination of L. fermentum PUM-derived biogenics and zingerone could be employed to treat P. aeruginosa-induced SSI that needs to be correlated clinically.
Collapse
|
10
|
Anti-Septic Functions of Cornuside against HMGB1-Mediated Severe Inflammatory Responses. Int J Mol Sci 2022; 23:ijms23042065. [PMID: 35216180 PMCID: PMC8874448 DOI: 10.3390/ijms23042065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
High mobility group box 1 (HMGB1) is acknowledged to have critical functions; therefore, targeting this protein may have therapeutic effects. One example is potential antiseptic activity obtained by suppressing HMGB1 secretion, leading to the recovery of vascular barrier integrity. Cornuside (CN), which is a product extracted from the fruit of Cornusofficinalis Seib, is a natural bis-iridoid glycoside with the therapeutic effects of suppressing inflammation and regulating immune responses. However, the mechanism of action of CN and impact on sepsis is still unclear. We examined if CN could suppress HMGB1-induced excessive permeability and if the reduction of HMGB1 in response to LPS treatment increased the survival rate in a mouse model of sepsis. In human endothelial cells stimulated by LPS and mice with septic symptoms of cecal ligation and puncture (CLP), we examined levels of proinflammatory proteins and biomarkers as an index of tissue damage, along with decreased vascular permeability. In both LPS-treated human umbilical vein endothelial cells (HUVECs) and the CLP-treated mouse model of sepsis, we applied CN after the induction processes were over. CN suppressed excessive permeability and inhibited HMGB1 release, leading to the amelioration of vascular instability, reduced mortality, and improved histological conditions in the CLP-induced septic mouse model. Overall, we conclude that the suppressed release of HMGB1 and the increased survival rate of mice with CLP-induced sepsis caused by CN may be an effective pharmaceutical treatment for sepsis.
Collapse
|
11
|
Lee W, Sim H, Choi YJ, Seo JY, Yun MY, Song GY, Bae JS. The Decursin Analog, CYJ-27, Suppresses Inflammation Via the Downregulation of NF- κB and STAT-1. J Med Food 2021; 24:852-859. [PMID: 34382871 DOI: 10.1089/jmf.2021.k.0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CYJ-27, a synthetic analog of decursin, prevents the generation of proinflammatory cytokines and oxidative stress. In this study, the effects of CYJ-27 on the regulation of inducible nitric oxide synthase (iNOS), heme oxygenase (HO)-1, and cyclooxygenase (COX-)2 were characterized in lipopolysaccharide (LPS)-treated human umbilical vein endothelial cells (HUVECs). In addition, the effects of CYJ-27 on the production of iNOS and representative proinflammatory cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, were tested in the lung tissues of LPS-treated mice. CYJ-27 promoted the expression of HO-1, suppressed NF-κB-luciferase activity, and reduced COX-2/PGE2 and iNOS/NO, resulting in a diminution in phosphorylated-STAT-1. Furthermore, CYJ-27 promoted the nuclear translocation of Nrf2, enhanced the combination of Nrf2 to antioxidant response elements, and diminished IL-1β production in LPS-activated HUVECs. CYJ-27-downregulated iNOS/NO expression was rescued after the RNAi suppression of HO-1. In LPS-treated mice, CYJ-27 significantly diminished iNOS production in the lung tissues and TNF-α expression in the bronchoalveolar lavage fluid. These findings indicate that CYJ-27 exerts anti-inflammatory activities by regulating iNOS through downregulation of both NF-κB activation and phosphorylated-STAT-1. Hence, it can act as a template for the development of novel substances to treat inflammatory diseases.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea.,Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Hyunchae Sim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - Yoon-Jung Choi
- College of Pharmacy, Chungnam National University, Daejon, Korea
| | - Ju Young Seo
- College of Pharmacy, Chungnam National University, Daejon, Korea
| | - Mi-Young Yun
- Department of Beauty Science, Kwangju Women' University, Gwangju, South Korea
| | - Gyu Yong Song
- College of Pharmacy, Chungnam National University, Daejon, Korea
| | - Jong-Sup Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| |
Collapse
|
12
|
|
13
|
Sim H, Lee W, Choo S, Park EK, Baek MC, Lee IK, Park DH, Bae JS. Sulforaphane Alleviates Particulate Matter-Induced Oxidative Stress in Human Retinal Pigment Epithelial Cells. Front Med (Lausanne) 2021; 8:685032. [PMID: 34222291 PMCID: PMC8247919 DOI: 10.3389/fmed.2021.685032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness in the elderly, and oxidative damage to retinal pigment epithelial (RPE) cells plays a major role in the pathogenesis of AMD. Exposure to high levels of atmospheric particulate matter (PM) with an aerodynamic diameter of <2.5 μm (PM2.5) causes respiratory injury, primarily due to oxidative stress. Recently, a large community-based cohort study in the UK reported a positive correlation between PM2.5 exposure and AMD. Sulforaphane (SFN), a natural isothiocyanate found in cruciferous vegetables, has known antioxidant effects. However, the protective effects of SNF in the eye, especially in the context of AMD, have not been evaluated. In the present study, we evaluated the effect of SFN against PM2.5-induced toxicity in human RPE cells (ARPE-19) and elucidated the molecular mechanism of action. Exposure to PM2.5 decreased cell viability in ARPE-19 cells in a time- and dose-dependent manner, potentially due to elevated intracellular reactive oxygen species (ROS). SFN treatment increased ARPE-19 cell viability and decreased PM2.5-induced oxidative stress in a dose-dependent manner. PM2.5-induced downregulation of serum- and glucocorticoid-inducible kinase 1 (SGK1), a cell survival factor, was recovered by SFN. PM2.5 treatment decreased the enzymatic activities of the antioxidant enzymes including superoxide dismutase and catalase, which were restored by SFN treatment. Taken together, these findings suggest that SFN effectively alleviates PM2.5-induced oxidative damage in human ARPE-19 cells via its antioxidant effects, and that SFN can potentially be used as a therapeutic agent for AMD, particularly in cases related to PM2.5 exposure.
Collapse
Affiliation(s)
- Hyunchae Sim
- College of Pharmacy, Kyungpook National University, Daegu, South Korea
| | - Wonhwa Lee
- College of Pharmacy, Kyungpook National University, Daegu, South Korea
| | - Samyeol Choo
- College of Pharmacy, Kyungpook National University, Daegu, South Korea
| | - Eui Kyun Park
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - In-Kyu Lee
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, South Korea
| | - Dong Ho Park
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Jong-Sup Bae
- College of Pharmacy, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
14
|
Lee W, Choo S, Sim H, Bae JS. Inhibitory Activities of Ononin on Particulate Matter-induced Oxidative Stress. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0294-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Lee W, Ku SK, Kim TI, Kim EN, Park EK, Jeong GS, Bae JS. Inhibitory effects of cudratricusxanthone O on particulate matter-induced pulmonary injury. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:271-284. [PMID: 31407590 DOI: 10.1080/09603123.2019.1652252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Particulate matter 2.5 (PM2.5), aerodynamic diameter ≤ 2.5 μm, is the primary air pollutant that plays the key role for lung injury resulted from the loss of vascular barrier integrity. Cudratricusxanthone O (CTXO) is a novel xanthone compound isolated from the root of Cudrania tricuspidata Bureau. Here, we investigated the beneficial effects of CTXO against PM-induced lung endothelial cell (EC) barrier disruption and pulmonary inflammation. Permeability, leukocyte migration, activation of proinflammatory proteins, generation of reactive oxygen species (ROS), and histology were examined in PM2.5-treated ECs and mice. CTXO significantly scavenged PM2.5-induced ROS and inhibited the ROS-induced activation of p38 mitogen-activated protein kinase (MAPK). Concurrently, CTXO activated Akt, which helped maintain endothelial integrity. Furthermore, CTXO reduced vascular protein leakage, leukocyte infiltration, and proinflammatory cytokine release in the bronchoalveolar lavage fluid in PM-induced lung tissues. These results indicated that CTXO may exhibit protective effects against PM-induced inflammatory lung injury and vascular hyperpermeability.
Collapse
Affiliation(s)
- Wonhwa Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Deajeon, Republic of Korea
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University , Daegu, Republic of Korea
| | - Sae-Kwang Ku
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University , Gyeongsan-si, Republic of Korea
| | - Tae In Kim
- College of Pharmacy, Keimyung University , Daegu, Republic of Korea
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine , Dong-gu, Daegu, Republic of Korea
| | - Eun-Nam Kim
- College of Pharmacy, Keimyung University , Daegu, Republic of Korea
| | - Eui Kyun Park
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University , Daegu, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University , Daegu, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University , Daegu, Republic of Korea
| |
Collapse
|
16
|
Lee IC, Bae JS. Inhibitory effects of aloin on TGFBIp-mediated septic responses. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:189-203. [PMID: 31979986 DOI: 10.1080/10286020.2019.1711066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Aloin is the major anthraquinone glycoside obtained from the Aloe species. Transforming growth factor β-induced protein (TGFBIp) is an extracellular matrix protein and released by primary human umbilical vein endothelial cells (HUVECs) and functions as a mediator of experimental sepsis. We hypothesized that aloin could reduce TGFBIp-mediated severe inflammatory responses in HUVECs and mice. Aloin effectively inhibited lipopolysaccharide (LPS)-induced release of TGFBIp and suppressed TGFBIp-mediated septic responses. Aloin suppressed TGFBIp-induced sepsis lethality and pulmonary injury. Therefore, aloin is a potential therapeutic agent for various severe vascular inflammatory diseases, with inhibition of the TGFBIp signaling pathway as the mechanism of action. [Formula: see text].
Collapse
Affiliation(s)
- In-Chul Lee
- Department of Cosmetic Science and Technology, Seowon University, Cheongju 28674, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
17
|
Biapenem reduces sepsis mortality via barrier protective pathways against HMGB1-mediated septic responses. Pharmacol Rep 2021; 73:786-795. [PMID: 33515401 DOI: 10.1007/s43440-020-00212-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND As a late mediator of sepsis, the role of high mobility group box 1 (HMGB1) has been recognized as important, and suppression of HMGB1 release and restoration of vascular barrier integrity are regarded as potentially promising therapeutic strategies for sepsis. For repositioning of previously FDA-approved drugs to develop new therapies for human diseases, screening of chemical compound libraries, biological active, is an efficient method. Our study illustrates an example of drug repositioning of Biapenem (BIPM), a carbapenem antibiotic, for the modulation of HMGB1-induced septic responses. METHODS We tested our hypothesis that BIPM inhibits HMGB1-induced vascular hyperpermeability and thereby increases the survival of septic mouse model from suppression of HMGB1 release upon lipopolysaccharide (LPS)-stimulation. In LPS-activated human umbilical vein endothelial cells (HUVECs) and a cecal ligation and puncture (CLP)-induced sepsis mouse model, antiseptic activity of BIPM was investigated from suppression of vascular permeability, pro-inflammatory proteins, and markers for tissue injury. RESULTS BIPM significantly suppressed release of HMGB1 both in LPS-activated HUVECs (upto 60%) and the CLP-induced sepsis mouse model (upto 54%). BIPM inhibited hyperpermeability (upto 59%) and reduced HMGB1-mediated vascular disruptions (upto 62%), mortality (upto 50%), and also tissue injury including lung, liver, and kidney in mice. CONCLUSION Reduction of HMGB1 release and septic mortality by BIPM (in vitro, from 5 to 15 μM for 6 h; in vivo, from 0.37 to 1.1 mg/kg, 24 h) indicate a possibility of successful repositioning of BIPM for the treatment of sepsis.
Collapse
|
18
|
Lee W, Choi HJ, Sim H, Choo S, Song GY, Bae JS. Barrier protective functions of hederacolchiside-E against HMGB1-mediated septic responses. Pharmacol Res 2021; 163:105318. [PMID: 33246171 DOI: 10.1016/j.phrs.2020.105318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022]
Abstract
The role of high mobility group box 1 (HMGB1) has been recognized as important, and suppression of HMGB1 release and restoration of vascular barrier integrity are regarded as potentially promising therapeutic strategies against sepsis. Hederacolchiside-E (HCE), namely 3-O-{α-L-rhamnopyranosyl (1→2)-[β-D-glucopyranosyl(1→4)]-α-L-arabinopyranosyl}-28-O-[α-L-rhamnopyranosyl (1→4)-β-D-glucopyranosyl(1→6)-β-D-glucopyranosyl ester, is a bidesmosidic oleanane saponin first isolated in 1970 from the leaves of Hedera colchica. We tested our hypothesis that HCE inhibits HMGB1-induced vascular hyperpermeability and thereby increases the survival of septic mouse model from suppression of HMGB1 release upon lipopolysaccharide (LPS)-stimulation. In LPS-activated human endothelial cells and a sepsis mouse model by cecal ligation and puncture (CLP), antiseptic activity of HCE was investigated from suppression of vascular permeability, pro-inflammatory proteins, and tissue injury markers. Post-treatment of HCE significantly suppressed HMGB1 release both in LPS-activated human endothelial cells and the CLP-induced sepsis mouse model. HCE inhibited hyperpermeability and alleviated HMGB1-mediated vascular disruptions, and reduced sepsis-related mortality and tissue injury in mice. Our results suggest that reduction of HMGB1 release and septic mortality by HCE may be useful for the drug candidate of sepsis, indicating a possibility of successful repositioning of HCE.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea; Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hui-Ji Choi
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea
| | - Hyunchae Sim
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Samyeol Choo
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gyu Yong Song
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea.
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
19
|
Jafari-Khataylou Y, Emami SJ, Mirzakhani N. Troxerutin attenuates inflammatory response in lipopolysaccharide-induced sepsis in mice. Res Vet Sci 2020; 135:469-478. [PMID: 33261826 DOI: 10.1016/j.rvsc.2020.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 12/16/2022]
Abstract
Troxerutin (Tx), known as vitamin P4 is a derivative of natural bioflavonoid rutin. Tx possesses different biological activities such as antioxidant, anticancer, and anti-inflammatory. The current study was conducted to determine potential therapeutic effect of Tx in lipopolysaccharides (LPS)-induced sepsis in mice. In LPS-induced sepsis, the mice were treated intraperitoneally (ip) with Tx twice daily. Therapeutic effect was assessed by measuring serum level of cytokines, alanine aminotransferase (ALT) and lactate dehydrogenase (LDH). Level of nitric oxide (NO), superoxide dismutase (SOD), catalase (CAT), Myeloperoxidase (MPO) and Malondialdehyde (MDA) was measured. Expression of CD40 receptor on leucocytes was measured using flowcytometry. Splenocyte proliferation was evaluated using MTT assay. The effect of Tx on survival rate during administration of lethal dose of LPS was investigated. The results showed that Tx inhibited LPS induced NO production. Inflammatory pathways were suppressed by reduction of inflammatory cytokines production. Further, elevated CD40 expression of leucocytes and proliferation of splenocytes markedly reduced in Tx treated group. Antioxidant defense system was enhanced by increased activity of SOD and CAT and decreased level of MDA. MPO, ALT and LDH activity. Additionally, treatment with Tx significantly increased the mean survival time of mice compared with the LPS treated group. Histologically, Tx treatment decreased inflammatory cells infiltration and histopathologicl changes in the liver. Our findings showed that reduced inflammatory parameters, improved antioxidant activity, reduced histological lesions and increased survival rate. These findings suggest that Tx is an effective anti-inflammatory agent for the treatment of LPS-induced sepsis.
Collapse
Affiliation(s)
- Yaser Jafari-Khataylou
- Assistant Professor of Immunology, Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Seyyed Jamal Emami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Navideh Mirzakhani
- Assistant Professor of Pathology, Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
20
|
Sim H, Choo S, Kim J, Baek MC, Bae JS. Fisetin Suppresses Pulmonary Inflammatory Responses Through Heme Oxygenase-1 Mediated Downregulation of Inducible Nitric Oxide Synthase. J Med Food 2020; 23:1163-1168. [PMID: 33052744 DOI: 10.1089/jmf.2020.4755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effects of a mixture of fisetin on cytokine-mediated pulmonary damages have not been studied, despite its known antiviral, neuroprotective, and anti-inflammatory activities. Using lipopolysaccharide (LPS)-activated human pulmonary artery endothelial cells (HPAECs), we determined the effects of fisetin on the induction of heme oxygenase-1 (HO-1), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). In the lung tissue of LPS-treated mice, fisetin was also evaluated for its effect on the regulation of iNOS and tumor necrosis factor (TNF)-α. In LPS-activated HPAECs, fisetin increased nuclear factor erythrocyte 2-related factor 2-antioxidant response element (Nrf2-ARE) reporter activity through the nuclear translocation of Nrf2, and the expression of HO-1, and decreased IL-1β and iNOS/NO production. In particular, the suppression of iNOS/NO expression by the administration of fisetin was dependent on HO-1. Current findings indicate that the anti-inflammatory activity of fisetin was due to its HO-1 dependent downregulation of p-STAT-1 and nuclear factor kappa B (NF-κB) and the resultant inhibition of iNOS, and also suggest TNF-α as a potential target for HO-1. We propose that administration of fisetin may be a novel approach, ideal for the treatment of inflammatory pulmonary disease.
Collapse
Affiliation(s)
- Hyunchae Sim
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu, Korea
| | - Samyeol Choo
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu, Korea
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu, Korea
| |
Collapse
|
21
|
Inhibitory functions of cardamonin against particulate matter-induced lung injury through TLR2,4-mTOR-autophagy pathways. Fitoterapia 2020; 146:104724. [PMID: 32946945 DOI: 10.1016/j.fitote.2020.104724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Particulate matter with an aerodynamic diameter equal to or less than 2.5 μm (PM2.5) is a form of air pollutant that causes significant lung damage when inhaled. Cardamonin, a flavone found in Alpinia katsumadai Heyata seeds, has been reported to have anti-inflammatory and anticoagulative activity. The aim of this study was to determine the protective effects of cardamonin on PM2.5-induced lung injury. Mice were treated with cardamonin via tail-vein injection 30 min after the intratracheal instillation of PM2.5. The results showed that cardamonin markedly reduced the pathological lung injury, lung wet/dry weight ratio, and hyperpermeability caused by PM2.5. Cardamonin also significantly inhibited PM2.5-induced myeloperoxidase (MPO) activity in lung tissue, decreased the levels of PM2.5-induced inflammatory cytokines and effectively attenuated PM2.5-induced increases in the number of lymphocytes in the bronchoalveolar lavage fluid (BALF). And, cardamonin increased the phosphorylation of mammalian target of rapamycin (mTOR) and dramatically suppressed the PM2.5-stimulated expression of toll-like receptor 2 and 4 (TLR 2,4), MyD88, and the autophagy-related proteins LC3 II and Beclin 1. In conclusion, these findings indicate that cardamonin has a critical anti-inflammatory effect due to its ability to regulate both the TLR2,4-MyD88 and mTOR-autophagy pathways and may thus be a potential therapeutic agent against PM2.5-induced lung injury.
Collapse
|
22
|
Kucukler S, Darendelioğlu E, Caglayan C, Ayna A, Yıldırım S, Kandemir FM. Zingerone attenuates vancomycin-induced hepatotoxicity in rats through regulation of oxidative stress, inflammation and apoptosis. Life Sci 2020; 259:118382. [PMID: 32898532 DOI: 10.1016/j.lfs.2020.118382] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/17/2020] [Accepted: 08/29/2020] [Indexed: 12/20/2022]
Abstract
AIM Vancomycin (VCM) is a glycopeptide antibiotic widely used to treat serious infections caused by methicillin-resistant Staphylococcus aureus and has been associated with some severe side effects such as hepatotoxicity and nephrotoxicity. However, the underlying mechanism of VCM-induced hepatotoxicity is not yet fully understood. Therefore, the current study was designed to evaluate the protective effects of zingerone (Zin) against VCM-induced hepatotoxicity in rats. MATERIALS AND METHODS VCM was intraperitoneally administered at a dose of 200 mg/kg body weight (b.w.) for 7 days alone and in combination with the orally administered Zin (25 and 50 mg/kg b.w). KEY FINDINGS Zin treatment significantly improved VCM-induced hepatic lipid peroxidation, glutathione depletion, reduced antioxidant enzyme (superoxide dismutase, catalase and glutathione peroxidase) activities and liver function markers (aspartate aminotransferase, alkaline phosphatase and alanine aminotransferase). Histopathological integrity and immunohistochemical expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the VCM-induced liver tissue were ameliorated after Zin administration. In addition, Zin reversed the changes in levels and/or activities of inflammatory and apoptotic parameters such as nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), p53, cysteine aspartate specific protease-3 (caspase-3), cysteine aspartate specific protease-8 (caspase-8), cytochrome c, Bcl-2 associated X protein (Bax) and B-cell lymphoma-2 (Bcl-2) in the VCM-induced hepatotoxicity. SIGNIFICANCE Collectively, these results reveal probable ameliorative role of Zin against VCM-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, 25240 Erzurum, Turkey.
| | - Ekrem Darendelioğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Bingol University, 12000 Bingol, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000 Bingol, Turkey.
| | - Adnan Ayna
- Department of Biochemistry, Faculty of Science and Literature, Bingol University, 12000 Bingol, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
23
|
Mehrzadi S, Khalili H, Fatemi I, Malayeri A, Siahpoosh A, Goudarzi M. Zingerone Mitigates Carrageenan-Induced Inflammation Through Antioxidant and Anti-inflammatory Activities. Inflammation 2020; 44:186-193. [PMID: 32803664 DOI: 10.1007/s10753-020-01320-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation is the body's response against various pathogens and has a critical role in numerous diseases. Zingerone (Zing), a bioactive substance derived from ginger root, has a variety of pharmacological properties, such as reducing inflammation, and antioxidant effects. We aimed to evaluate the beneficial effects of Zing in a carrageenan-induced inflammation model. Paw edema induced by carrageenan (100 μl of 1%) was used to induce acute inflammation in rats. Different doses of Zing (10, 20, and 40 mg/kg) were administered intraperitoneally. Paw tissue levels of MDA, NO, CAT, SOD, GPx, GSH, COX-2, PGE2, TNF-α, and IL-1β were estimated. Our results showed that Zing, especially at the highest dose of 40 mg/kg, significantly reduced paw swelling in carrageenan-injected animals. Zing significantly increased paw enzymatic and nonenzymatic antioxidants except CAT. It also decreased paw levels of MDA, NO, COX-2, PGE2, TNF-α, and IL-1β. The results of this study show that Zing may provide an alternative for the clinical control of inflammation through antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Khalili
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Malayeri
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nab'a Al-Hayat Health Research Center, Nab'a Al-Hayat Foundation for Medical Sciences and Health Care, Najaf, Iraq
| | - Amir Siahpoosh
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
24
|
Türk E, Güvenç M, Cellat M, Uyar A, Kuzu M, Ağgül AG, Kırbaş A. Zingerone protects liver and kidney tissues by preventing oxidative stress, inflammation, and apoptosis in methotrexate-treated rats. Drug Chem Toxicol 2020; 45:1054-1065. [PMID: 32781857 DOI: 10.1080/01480545.2020.1804397] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The clinical use of drugs used in the treatment of diseases is limited due to the toxic side effects, and many studies have been conducted to benefit from herbal adjuvant therapies recently to eliminate these effects. In this study, the protective effect of zingerone against liver and kidney damage generated in rats through methotrexate (MTX). Histopathological investigations were performed to determine tissue damage caused by MTX and the healing effect of zingone and liver function markers such as serum alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), and renal function markers such as urea, creatine, and aquaporin-1 (AQP-1) were measured. The effects of MTX and protective properties of zingerone on oxidative stress were investigated through the measurement of malondialdehyde and reduced glutathione (GSH) levels, catalase (CAT), and glutathione peroxidase (GPx) enzyme activities. The anti-inflammatory effect of zingerone was determined by measuring the cytokine levels causing inflammation such as nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), and its effects on apoptosis were determined by immunohistochemical analysis of caspase-3 and B-cell lymphoma-2 (Bcl-2) expression levels. According to the results obtained within the scope of the study, it was determined that zingerone treatment prevented the increase in MTX-induced liver and kidney function markers, showed healing effects on antioxidant parameters degraded in both tissues, and decreased the inflammation parameters. It was determined that it also prevented apoptosis and possessed a protective effect on disrupted tissue architecture by decreasing the increased caspase-3 expression and increasing the decreased Bcl-2 level.
Collapse
Affiliation(s)
- Erdinç Türk
- Department of Pharmacology and Toxicology, Mustafa Kemal University, Hatay, Turkey
| | - Mehmet Güvenç
- Department of Physiology, Mustafa Kemal University, Hatay, Turkey
| | - Mustafa Cellat
- Department of Physiology, Mustafa Kemal University, Hatay, Turkey
| | - Ahmet Uyar
- Department of Pathology, Mustafa Kemal University, Hatay, Turkey
| | - Müslüm Kuzu
- Department of Nutrition and Dietetics, Karabuk University, Karabuk, Turkey
| | | | - Akın Kırbaş
- Department of Internal Medicine, Bozok University, Yozgat, Turkey
| |
Collapse
|
25
|
Jeong SY, Kim JE, Song GY, Bae JS. [Formula: see text], a Rare Protopanaxatriol-Type Ginsenoside Fraction from Black Ginseng, Suppresses Inflammatory Gene iNOS via the Iinhibition of p-STAT-1 and NF-[Formula: see text]B. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1091-1102. [PMID: 32668967 DOI: 10.1142/s0192415x20500536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Black ginseng (BG), which is ginseng that has been steamed and dried nine times, and its main protopanaxatriol-type ginsenosides Rg4, Rg6, Rh4, and Rg2 have been reported to exhibit various forms of biological activity, including antiseptic, antidiabetic, wound-healing, immune-stimulatory, and anti-oxidant activity. The aim of the this study was to examine the effects of [Formula: see text] (a rare protopanaxatriol-type ginsenoside fraction; Rg2, Rg4, Rg6, Rh1, and Rh4) on heme oxygenase-1 (HO-1) induction and on the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-)2 in lipopolysaccharide (LPS)-activated human pulmonary artery endothelial cells (HPAECs). [Formula: see text] was tested to determine its effect on iNOS protein expression and inflammatory markers (interleukin [IL]-1[Formula: see text] and tumor necrosis factor [TNF]-[Formula: see text] in the lung tissue of LPS-treated mice. The results showed that [Formula: see text] induced the expression of HO-1, reduced LPS-activated NF-[Formula: see text]B-luciferase activity, and inhibited iNOS/NO and COX-2/PGE2, which contributed to the inhibition of STAT-1 phosphorylation. In particular, [Formula: see text] induced the translocation of Nrf2 from the cytosol to the nucleus by increasing Nrf2-ARE activity and decreased IL-1[Formula: see text] production in LPS-activated HPAECs. This reduction in iNOS/NO expression due to [Formula: see text] was reversed by siHO-1 RNA transfection. In LPS-treated mice, [Formula: see text] significantly reduced lung tissue iNOS protein levels and TNF-[Formula: see text] levels in the bronchoalveolar lavage fluid. In conclusion, these findings indicate that [Formula: see text] has a critical anti-inflammatory effect due to its ability to regulate iNOS via the inhibition of p-STAT-1 and NF-[Formula: see text]B, and thus it may be suitable for the treatment of inflammatory disease.
Collapse
Affiliation(s)
- So Yeon Jeong
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Eun Kim
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea
| | - Gyu-Yong Song
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
26
|
Lee IC, Ryu CW, Bae JS. Novel Herbal Medicine C-KOK Suppresses the Inflammatory Gene iNOS via the Inhibition of p-STAT-1 and NF-κB. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0126-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Lee CH, Lee DH, Lee SM, Kim SY. Otoprotective Effects of Zingerone on Cisplatin-Induced Ototoxicity. Int J Mol Sci 2020; 21:ijms21103503. [PMID: 32429117 PMCID: PMC7278998 DOI: 10.3390/ijms21103503] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
Previous studies have described the effects of zingerone (ZO) on cisplatin (CXP)-induced injury to the kidneys, liver, and other organs but not to the cochlea. This study aimed to investigate the effects of ZO on CXP-induced ototoxicity. Eight-week-old Sprague-Dawley rats were used and divided into a control group, a CXP group, and a CXP + ZO group. Rats in the CXP group received 5 mg/kg/day CXP intraperitoneally for five days. Rats in the CXP + ZO group received 5 mg/kg/day CXP intraperitoneally for five days and 50 mg/kg/day ZO intraperitoneally for seven days. Auditory brainstem response thresholds (ABRTs) were measured before (day 0) and after (day 10) drug administration. Cochlear histology was examined using hematoxylin and eosin (H&E) staining and cochlear whole mounts. The expression levels of cytochrome P450 (CYP)1A1, CYP1B1, inducible nitric oxide synthase (iNOS), nuclear factor kappa B (NFκB), tumor necrosis factor alpha (TNFα), and interleukin 6 (IL6) were estimated using quantitative reverse transcription-polymerase chain reaction. The expression levels of heme oxygenase 1 (HO1) and caspase 3 were analyzed via Western blotting. The auditory thresholds at 4, 8, and 16 kHz were attenuated in the CXP + ZO group compared with the CXP group. The mRNA expression levels of CYP1A1, CYP1B1, iNOS, NFκB, TNFα, and IL6 were lower in the CXP + ZO group than in the CXP group. The protein expression levels of HO1 and caspase 3 were lower in the CXP + ZO group than in the CXP group. Cotreatment with ZO exerted otoprotective effects against CXP-induced cochlear injury via antioxidative and anti-inflammatory activities involving CYPs, iNOS, NFκB, and TNFα.
Collapse
Affiliation(s)
| | | | | | - So Young Kim
- Correspondence: ; Tel.: +82-31-870-5340; Fax: +82-31-870-5346
| |
Collapse
|
28
|
Kim KM, Kim J, Baek MC, Bae JS. Novel factor Xa inhibitor, maslinic acid, with antiplatelet aggregation activity. J Cell Physiol 2020; 235:9445-9456. [PMID: 32356316 DOI: 10.1002/jcp.29749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/01/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
As antithrombotic effects of maslinic acid (MA) have not yet been studied, MA-mediated downregulation of coagulation factor Xa (FXa) and platelet aggregation was studied. We show that MA inhibited the enzymatic activity of FXa and platelet aggregation, induced by adenosine diphosphate (ADP) and a thromboxane A2 (TXA2 ) analog, U46619 with a similar antithrombotic efficacy to rivaroxaban, a direct FXa inhibitor used as a positive control. Mechanistically, MA suppressed U46619- or ADP-induced phosphorylation of myristoylated alanine-rich C kinase substrate, and the expression of P-selectin, and activated PAC-1 in platelets. MA increased generation of nitric oxide, but downregulated excessive secretion of endothelin-1 in ADP- or U46619-treated human umbilical vein endothelial cells. In arterial and pulmonary thrombosis mouse model, MA showed prominent anticoagulant and antithrombotic effects. Our data suggest MA as a candidate molecule for a new class of drugs targeting anti-FXa and antiplatelet.
Collapse
Affiliation(s)
- Kyung-Min Kim
- Division of Plant Biosciences, School of Applied BioSciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, Republic of Korea
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jong-Sup Bae
- Department of Pharmacy, College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
29
|
Lee W, Lee H, Lee T, Park EK, Bae JS. Inhibitory functions of maslinic acid, a natural triterpene, on HMGB1-mediated septic responses. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:153200. [PMID: 32163831 DOI: 10.1016/j.phymed.2020.153200] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/22/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Maslinic acid (MA), a natural triterpenoid from Olea europaea, prevents oxidative stress and pro-inflammatory cytokine generation. High mobility group box 1 (HMGB1) has been recognized as a late mediator of sepsis, and the inhibition of the release of HMGB1 and the recovery of vascular barrier integrity have emerged as attractive therapeutic strategies for the management of sepsis. METHODS We tested the hypothesis that MA induces sirtuin 1 and heme oxygenase-1, which inhibit the release of HMGB1 in lipopolysaccharide (LPS)-stimulated cells, thus inhibiting HMGB1-induced hyperpermeability and increasing the survival of septic mice. MA was administered after LPS or HMGB1 challenge, and the antiseptic activity of MA was determined based on permeability, the activation of pro-inflammatory proteins, and the production of markers for tissue injury in HMGB1-activated human umbilical vein endothelial cells (HUVECs) and a cecal ligation and puncture (CLP)-induced sepsis mouse model. RESULTS MA significantly reduced the release of HMGB1 in LPS-activated HUVECs and attenuated the CLP-induced release of HMGB1. Additionally, MA alleviated HMGB1-mediated vascular disruption and inhibited hyperpermeability in mice, and in vivo analysis revealed that MA reduced sepsis-related mortality and tissue injury. CONCLUSION Taken together, the present results suggest that MA reduced HMGB1 release and septic mortality and thus may be useful in the treatment of sepsis.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hayeong Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Taeho Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Eui Kyun Park
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
30
|
Jeong SY, Kim J, Park EK, Baek MC, Bae JS. Inhibitory functions of maslinic acid on particulate matter-induced lung injury through TLR4-mTOR-autophagy pathways. ENVIRONMENTAL RESEARCH 2020; 183:109230. [PMID: 32058145 DOI: 10.1016/j.envres.2020.109230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Particulate matter (PM), the collection of all liquid and solid particles suspended in air, includes both organic and inorganic particles, many of which are health-hazards. PM particles with a diameter equal to or less than 2.5 μm (PM2.5) is a form of air pollutant that causes significant lung damage when inhaled. Maslinic acid (MA) prevents oxidative stress and pro-inflammatory cytokine generation, but there is little information available regarding its role in PM-induced lung injury. Therefore, the purpose of this study was to determine the protective activity of MA against PM2.5-induced lung injury. The mice were divided into seven groups (n = 10 each): a mock control group, an MA control (0.8 mg/kg mouse body weight) group, an opted PM2.5 produced from diesel (10 mg/kg mouse body weight) group, a diesel PM2.5+MA (0.2, 0.4, 0.6, and 0.8 mg/kg mouse body weight) groups. Mice were treated with MA via tail-vein injection 30 min after the intratracheal instillation of a diesel PM2.5. Changes in the wet/dry weight ratio of the lung tissue, total protein/total cell and lymphocyte counts, inflammatory cytokines in the bronchoalveolar lavage fluid (BALF), vascular permeability, and histology were monitored in diesel PM2.5-treated mice. The results showed that MA reduced pathological lung injury, the wet/dry weight ratio of the lung tissue, and hyperpermeability caused by diesel PM2.5. MA also inhibited diesel PM2.5-induced myeloperoxidase (MPO) activity in the lung tissue, decreased the levels of diesel PM2.5-induced inflammatory cytokines, including tumor necrosis factor (TNF)-α and interleukin (IL)-1β, reduced nitric oxide (NO) and total protein in the BALF, and effectively attenuated diesel PM2.5-induced increases in the number of lymphocytes in the BALF. In addition, MA increased the protein phosphorylation of the mammalian target of rapamycin (mTOR) and dramatically suppressed diesel PM2.5-stimulated expression of toll-like receptor 4 (TLR4), MyD88, and the autophagy-related proteins LC3 II and Beclin 1. In conclusion, these findings indicate that MA has a critical anti-inflammatory effect due to its ability to regulate both the TLR4-MyD88 and mTOR-autophagy pathways and may thus be a potential therapeutic agent against diesel PM2.5-induced lung injury.
Collapse
Affiliation(s)
- So Yeon Jeong
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Eui Kyun Park
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
31
|
Jeong SY, Kim M, Park EK, Kim JS, Hahn D, Bae JS. Inhibitory Functions of Novel Compounds from Dioscorea batatas Decne Peel on HMGB1-mediated Septic Responses. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0382-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Maslinic Acid Ameliorates Inflammation via the Downregulation of NF-κB and STAT-1. Antioxidants (Basel) 2020; 9:antiox9020106. [PMID: 31991739 PMCID: PMC7070941 DOI: 10.3390/antiox9020106] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 02/03/2023] Open
Abstract
Maslinic acid (MA), a natural compound of the triterpenoid group derived from olive, prevents the generation of pro-inflammatory cytokines and oxidative stress. In human umbilical vein endothelial cells (HUVECs) treated with lipopolysaccharide (LPS), we characterized the effects of MA on the regulation of heme oxygenase (HO)-1, cyclooxygenase (COX-)2, and inducible nitric oxide synthase (iNOS). MA was tested in the lung tissues of LPS-treated mice, to determine its effect on levels of iNOS expression and representative inflammatory mediators such as interleukin (IL)-1α and tumor necrosis factor (TNF)-α. We show that MA induced the expression of HO-1, reduced LPS-induced NF-κB-luciferase activity, and inhibited iNOS/NO and COX-2/PGE2, resulting in the downregulation of STAT-1 phosphorylation. Furthermore, our data show that MA induced the nuclear translocation of Nrf2, increased the binding of Nrf2 to ARE, and decreased IL-1α production in LPS-treated HUVECs. The MA-induced reduction in iNOS/NO expression was reversed by RNAi suppression of HO-1. In mice treated with LPS, MA significantly downregulated levels of iNOS in lung tissue and TNF-α in the bronchoalveolar lavage fluid. Taken together, our findings indicate that MA exerts a critical anti-inflammatory effect by modulating iNOS via the downregulation of NF-κB and p-STAT-1. Thus, we propose that MA may be an ideal substance to treat inflammatory diseases.
Collapse
|
33
|
Suppressive functions of collismycin C in TGFBIp-mediated septic responses. J Nat Med 2019; 74:387-398. [PMID: 31760555 DOI: 10.1007/s11418-019-01374-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023]
Abstract
Transforming growth factor β-induced protein (TGFBIp) is an extracellular matrix protein; its expression by several cell types is greatly increased by TGF-β. TGFBIp is released by primary human umbilical vein endothelial cells (HUVECs) and functions as a mediator of experimental sepsis. 2,2'-Bipyridine-containing natural products are generally accepted to have antimicrobial, cytotoxic and anti-inflammatory properties. We hypothesized that a 2,2'-bipyridine containing natural product, collismycin C, could reduce TGFBIp-mediated severe inflammatory responses in human endothelial cells and mice. Here we investigated the effects and underlying mechanisms of collismycin C against TGFBIp-mediated septic responses. Collismycin C effectively inhibited lipopolysaccharide-induced release of TGFBIp and suppressed TGFBIp-mediated septic responses. In addition, collismycin C suppressed TGFBIp-induced sepsis lethality and pulmonary injury. This suppression of TGFBIp-mediated and CLP-induced septic responses indicates that collismycin C is a potential therapeutic agent for various severe vascular inflammatory diseases, with inhibition of the TGFBIp signaling pathway as the mechanism of action.
Collapse
|