1
|
Feng Y, Li T, Li Y, Lin Z, Han X, Pei X, Zhang Y, Li F, Yang J, Shao D, Li C. Glutaredoxin-1 promotes lymphangioleiomyomatosis progression through inhibiting Bim-mediated apoptosis via COX2/PGE2/ERK pathway. Clin Transl Med 2023; 13:e1333. [PMID: 37478294 PMCID: PMC10361546 DOI: 10.1002/ctm2.1333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Lymphangioleiomyomatosis (LAM) is a female-predominant interstitial lung disease, characterized by progressive cyst formation and respiratory failure. Clinical treatment with the mTORC1 inhibitor rapamycin could relieve partially the respiratory symptoms, but not curative. It is urgent to illustrate the fundamental mechanisms of TSC2 deficiency to the development of LAM, especially mTORC1-independent mechanisms. Glutaredoxin-1 (Glrx), an essential glutathione (GSH)-dependent thiol-oxidoreductase, maintains redox homeostasis and participates in various processes via controlling protein GSH adducts. Redox signalling through protein GSH adducts in LAM remains largely elusive. Here, we demonstrate the underlying mechanism of Glrx in the pathogenesis of LAM. METHODS 1. Abnormal Glrx expression in various kinds of human malignancies was identified by the GEPIA tumour database, and the expression of Glrx in LAM-derived cells was detected by real-time quantitative reverse transcription (RT-qPCR) and immunoblot. 2. Stable Glrx knockdown cell line was established to evaluate cellular impact. 3. Cell viability was determined by CCK8 assay. 4. Apoptotic cell number and intracellular reactive oxygen species (ROS) level were quantified by flow cytometry. 5. Cox2 expression and PGE2 production were detected to clarify the mechanism of Bim expression modulated by Glrx. 6. S-glutathionylated p65 was enriched and detected by immunoprecipitation and the direct regulation of Glrx on p65 was determined. 7. The xenograft animal model was established and photon flux was analyzed using IVIS Spectrum. RESULTS In LAM, TSC2 negatively regulated abnormal Glrx expression and activation in a mTORC1-independent manner. Knockdown of Glrx increased the expression of Bim and the accumulation of ROS, together with elevated S-glutathionylated proteins, contributing to the induction of apoptotic cell death and inhibited cell proliferation. Knockdown of Glrx in TSC2-deficient LAM cells increased GSH adducts on nuclear factor-kappa B p65, which contributed to a decrease in the expression of Cox2 and the biosynthesis of PGE2. Inhibition of PGE2 metabolism attenuated phosphorylation of ERK, which led to the accumulation of Bim, due to the imbalance of its phosphorylation and proteasome degradation. In xenograft tumour models, knockdown of Glrx in TSC2-deficient LAM cells inhibited tumour growth and increased tumour cell apoptosis. CONCLUSIONS Collectively, we provide a novel redox-dependent mechanism in the pathogenesis of LAM and propose that Glrx may be a beneficial strategy for the treatment of LAM or other TSC-related diseases.
Collapse
Affiliation(s)
- Ya Feng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, P. R. China
| | - Tianjiao Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, P. R. China
| | - Yin Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, P. R. China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, P. R. China
| | - Xiao Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, P. R. China
| | - Xiaolin Pei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, P. R. China
| | - Yupeng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, P. R. China
| | - Fei Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, P. R. China
| | - Juan Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, P. R. China
| | - Di Shao
- Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, P. R. China
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, P. R. China
| |
Collapse
|
2
|
Chen DY, Li BZ, Xu WB, Zhang YM, Li BW, Cheng YX, Xiao Y, Lin CY, Dong WR, Shu MA. The first identification of three AdIRAK2 genes from an evolutionarily important amphibian Andrias davidianus and their involvement in NF-κB activation and inflammatory responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104585. [PMID: 36368593 DOI: 10.1016/j.dci.2022.104585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Interleukin-1 receptor associated kinases (IRAK) is the most important downstream kinases of TLRs/IL-1R signaling pathway for signal transduction and activation of inflammatory response against pathogen infections. However, the molecular identification and function characterization of IRAK2 homologs in lower vertebrate remains obscure. In this study, three IRAK2 genes (AdIRAK2a, AdIRAKb and AdIRAK2c) and their respective transcripts were identified from the Chinese giant salamander Andrias davidianus. This is the first evidence that three different IRAK2 genes exist in an ancient amphibian species, which has never been reported in other vertebrates. The complete open reading frames (ORFs) of AdIRAK2a, AdIRAK2b and AdIRAK2c were 2112 bp, 1917 bp and 816 bp encoding deduced proteins of 703 amino acids (aa), 628 aa and 271 aa, respectively. All three AdIRAK2 proteins contained two predicted conserved functional domains, including a death domain (DD) and a serine/threonine protein kinases domain (KD). Phylogenetic analysis showed that the three AdIRAK2s clustered together with other known IRAK2 of vertebrates. The three AdIRAK2s were ubiquitously expressed in all tested tissues with a similar tissues distribution pattern. After challenge of Aeromonas hydrophila (A. hydrophila), Staphylococcus aureus (S.aureus), giant salamander iridovirus (GSIV, belonging to the genus Ranavirus in the family Iridoviridae) and polyinosinic:polycytidylic acid (poly(I:C)), the expression levels of all AdIRAK2s in blood were significantly altered, however, they exhibited distinct response patterns. Moreover, the results of over-expression and RNAi of AdIRAK2s implied the involvement of AdIRAK2s in triggering NF-κB-mediated signaling pathways and inflammatory responses. This study might provide a better understanding of the presence and immune regulation function of IRAK2 in amphibians and even in vertebrates.
Collapse
Affiliation(s)
- Da-Yong Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bang-Ze Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bing-Wu Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan-Xin Cheng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Xiao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Choi YJ, Shin MJ, Youn GS, Park JH, Yeo HJ, Yeo EJ, Kwon HJ, Lee LR, Kim NY, Kwon SY, Jung HY, Cho YJ, Kim DW, Park J, Han KH, Lee KW, Park JK, Lee CH, Eum WS, Choi SY. Protective Effects of PEP-1-GSTA2 Protein in Hippocampal Neuronal Cell Damage Induced by Oxidative Stress. Int J Mol Sci 2023; 24:ijms24032767. [PMID: 36769090 PMCID: PMC9917430 DOI: 10.3390/ijms24032767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Glutathione S-transferase alpha 2 (GSTA2), a member of the glutathione S-transferase family, plays the role of cellular detoxification against oxidative stress. Although oxidative stress is related to ischemic injury, the role of GSTA2 against ischemia has not been elucidated. Thus, we studied whether GSTA2 prevents ischemic injury by using the PEP-1-GSTA2 protein which has a cell-permeable protein transduction domain. We revealed that cell-permeable PEP-1-GSTA2 transduced into HT-22 cells and markedly protected cell death via the inhibition of reactive oxygen species (ROS) production and DNA damage induced by oxidative stress. Additionally, transduced PEP-1-GSTA2 promoted mitogen-activated protein kinase (MAPK), and nuclear factor-kappaB (NF-κB) activation. Furthermore, PEP-1-GSTA2 regulated Bcl-2, Bax, cleaved Caspase-3 and -9 expression protein levels. An in vivo ischemic animal model, PEP-1-GSTA2, markedly prevented the loss of hippocampal neurons and reduced the activation of microglia and astrocytes. These findings indicate that PEP-1-GSTA2 suppresses hippocampal cell death by regulating the MAPK and apoptotic signaling pathways. Therefore, we suggest that PEP-1-GSTA2 will help to develop the therapies for oxidative-stress-induced ischemic injury.
Collapse
Affiliation(s)
- Yeon Joo Choi
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Min Jea Shin
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Gi Soo Youn
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jung Hwan Park
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Eun Ji Yeo
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyun Jung Kwon
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Lee Re Lee
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Na Yeon Kim
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Su Yeon Kwon
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyo Young Jung
- Department of Veterinary Medicine, Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University Medical Center, Chuncheon 24253, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyu Hyung Han
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Keun Wook Lee
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jong Kook Park
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Chan Hee Lee
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Won Sik Eum
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (W.S.E.); (S.Y.C.); Tel.: +82-33-248-2112 (W.S.E. & S.Y.C.); Fax: +82-33-248-3202 (W.S.E. & S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (W.S.E.); (S.Y.C.); Tel.: +82-33-248-2112 (W.S.E. & S.Y.C.); Fax: +82-33-248-3202 (W.S.E. & S.Y.C.)
| |
Collapse
|
4
|
Brücksken KA, Loreto Palacio P, Hanschmann EM. Thiol Modifications in the Extracellular Space-Key Proteins in Inflammation and Viral Infection. Front Immunol 2022; 13:932525. [PMID: 35833136 PMCID: PMC9271835 DOI: 10.3389/fimmu.2022.932525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Posttranslational modifications (PTMs) allow to control molecular and cellular functions in response to specific signals and changes in the microenvironment of cells. They regulate structure, localization, stability, and function of proteins in a spatial and temporal manner. Among them, specific thiol modifications of cysteine (Cys) residues facilitate rapid signal transduction. In fact, Cys is unique because it contains the highly reactive thiol group that can undergo different reversible and irreversible modifications. Upon inflammation and changes in the cellular microenvironment, many extracellular soluble and membrane proteins undergo thiol modifications, particularly dithiol-disulfide exchange, S-glutathionylation, and S-nitrosylation. Among others, these thiol switches are essential for inflammatory signaling, regulation of gene expression, cytokine release, immunoglobulin function and isoform variation, and antigen presentation. Interestingly, also the redox state of bacterial and viral proteins depends on host cell-mediated redox reactions that are critical for invasion and infection. Here, we highlight mechanistic thiol switches in inflammatory pathways and infections including cholera, diphtheria, hepatitis, human immunodeficiency virus (HIV), influenza, and coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
| | | | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
5
|
Sadeghian I, Heidari R, Raee MJ, Negahdaripour M. Cell-penetrating peptide-mediated delivery of therapeutic peptides/proteins to manage the diseases involving oxidative stress, inflammatory response and apoptosis. J Pharm Pharmacol 2022; 74:1085-1116. [PMID: 35728949 DOI: 10.1093/jpp/rgac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/22/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Peptides and proteins represent great potential for modulating various cellular processes including oxidative stress, inflammatory response, apoptosis and consequently the treatment of related diseases. However, their therapeutic effects are limited by their inability to cross cellular barriers. Cell-penetrating peptides (CPPs), which can transport cargoes into the cell, could resolve this issue, as would be discussed in this review. KEY FINDINGS CPPs have been successfully exploited in vitro and in vivo for peptide/protein delivery to treat a wide range of diseases involving oxidative stress, inflammatory processes and apoptosis. Their in vivo applications are still limited due to some fundamental issues of CPPs, including nonspecificity, proteolytic instability, potential toxicity and immunogenicity. SUMMARY Totally, CPPs could potentially help to manage the diseases involving oxidative stress, inflammatory response and apoptosis by delivering peptides/proteins that could selectively reach proper intracellular targets. More studies to overcome related CPP limitations and confirm the efficacy and safety of this strategy are needed before their clinical usage.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Yeo EJ, Shin MJ, Yeo HJ, Choi YJ, Sohn EJ, Lee LR, Kwon HJ, Cha HJ, Lee SH, Lee S, Yu YH, Kim DS, Kim DW, Park J, Han KH, Eum WS, Choi SY. Tat-thioredoxin 1 reduces inflammation by inhibiting pro-inflammatory cytokines and modulating MAPK signaling. Exp Ther Med 2021; 22:1395. [PMID: 34650643 DOI: 10.3892/etm.2021.10831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/29/2021] [Indexed: 10/20/2022] Open
Abstract
Thioredoxin 1 (Trx1) serves a central role in redox homeostasis. It is involved in numerous other processes, including oxidative stress and apoptosis. However, to the best of our knowledge, the role of Trx1 in inflammation remains to be explored. The present study investigated the function and mechanism of cell permeable fused Tat-Trx1 protein in macrophages and a mouse model. Transduction levels of Tat-Trx1 were determined via western blotting. Cellular distribution of transduced Tat-Trx1 was determined by fluorescence microscopy. 2',7'-Dichlorofluorescein diacetate and TUNEL staining were performed to determine the production of reactive oxygen species and DNA fragmentation. Protein and gene expression were measured by western blotting and reverse transcription-quantitative PCR (RT-qPCR), respectively. Effects of skin inflammation were determined using hematoxylin and eosin staining, changes in ear weight and ear thickness, and RT-qPCR in ear edema animal models. Transduced Tat-Trx1 inhibited lipopolysaccharide-induced cytotoxicity and activation of NF-κB, MAPK and Akt. Additionally, Tat-Trx1 markedly reduced the production of inducible nitric oxide synthase, cyclooxygenase-2, IL-1β, IL-6 and TNF-α in macrophages. In a 12-O-tetradecanoylphorbol-13-acetate-induced mouse model, Tat-Trx1 reduced inflammatory damage by inhibiting inflammatory mediator and cytokine production. Collectively, these results demonstrated that Tat-Trx1 could exert anti-inflammatory effects by inhibiting the production of pro-inflammatory mediators and cytokines and by modulating MAPK signaling. Therefore, Tat-Trx1 may be a useful therapeutic agent for diseases induced by inflammatory damage.
Collapse
Affiliation(s)
- Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Lee Re Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Hyun Ju Cha
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Sung Ho Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea.,Genesen Inc., Seoul 06181, Republic of Korea
| | - Sunghou Lee
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, Chungcheongnam 31066, Republic of Korea
| | - Yeon Hee Yu
- Department of Anatomy and BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam 31538, Republic of Korea
| | - Duk-Soo Kim
- Department of Anatomy and BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam 31538, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| |
Collapse
|
7
|
How anthocyanin biosynthesis affects nutritional value and anti-inflammatory effect of black rice. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Kim D, Maharjan S, Kim J, Park S, Park JA, Park BK, Lee Y, Kwon HJ. MUC1-C influences cell survival in lung adenocarcinoma Calu-3 cells after SARS-CoV-2 infection. BMB Rep 2021. [PMID: 33832550 PMCID: PMC8411043 DOI: 10.5483/bmbrep.2021.54.8.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces coronavirus disease 2019 (COVID-19) and may increase the risk of adverse outcomes in lung cancer patients. In this study, we investigated the expression and function of mucin 1 (MUC1) after SARS-CoV-2 infection in the lung epithelial cancer cell line Calu-3. MUC1 is a major constituent of the mucus layer in the respiratory tract and contributes to pathogen defense. SARS-CoV-2 infection induced MUC1 C-terminal subunit (MUC1-C) expression in a STAT3 activation-dependent manner. Inhibition of MUC1-C signaling increased apoptosis-related protein levels and reduced proliferation-related protein levels; however, SARS-CoV-2 replication was not affected. Together, these results suggest that increased MUC1-C expression in response to SARS-CoV-2 infection may trigger the growth of lung cancer cells, and COVID-19 may be a risk factor for lung cancer patients.
Collapse
Affiliation(s)
- Dongbum Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Sony Maharjan
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jinsoo Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Jeong-A Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Byoung Kwon Park
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Hyung-Joo Kwon
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
9
|
Hao YF, Qin SW, Yang L, Jiang JG, Zhu W. Marmin from the blossoms of Citrus maxima (Burm.) Merr. exerts lipid-lowering effect via inducing 3T3-L1 preadipocyte apoptosis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
Feng JH, Kim HY, Sim SM, Zuo GL, Jung JS, Hwang SH, Kwak YG, Kim MJ, Jo JH, Kim SC, Lim SS, Suh HW. The Anti-Inflammatory and the Antinociceptive Effects of Mixed Agrimonia pilosa Ledeb. and Salvia miltiorrhiza Bunge Extract. PLANTS 2021; 10:plants10061234. [PMID: 34204404 PMCID: PMC8234973 DOI: 10.3390/plants10061234] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
Arthritis is a common condition that causes pain and inflammation in a joint. Previously, we reported that the mixture extract (ME) from Agrimonia pilosa Ledeb. (AP) and Salvia miltiorrhiza Bunge (SM) could ameliorate gout arthritis. In the present study, we aimed to investigate the potential anti-inflammatory and antinociceptive effects of ME and characterize the mechanism. We compared the anti-inflammatory and antinociceptive effects of a positive control, Perna canaliculus powder (PC). The results showed that one-off and one-week treatment of ME reduced the pain threshold in a dose-dependent manner (from 10 to 100 mg/kg) in the mono-iodoacetate (MIA)-induced osteoarthritis (OA) model. ME also reduced the plasma TNF-α, IL-6, and CRP levels. In LPS-stimulated RAW 264.7 cells, ME inhibited the release of NO, PGE2, LTB4, and IL-6, increased the phosphorylation of PPAR-γ protein, and downregulated TNF-α and MAPKs proteins expression in a concentration-dependent (from 1 to 100 µg/mL) manner. Furthermore, ME ameliorated the progression of ear edema in mice. In most of the experiments, ME-induced effects were almost equal to, or were higher than, PC-induced effects. Conclusions: The data presented here suggest that ME shows anti-inflammatory and antinociceptive activities, indicating ME may be a potential therapeutic for arthritis treatment.
Collapse
Affiliation(s)
- Jing-Hui Feng
- Department of Pharmacology, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea; (J.-H.F.); (S.-M.S.)
- Institute of Natural Medicine, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea;
| | - Hyun-Yong Kim
- Department of Food Science and Nutrition, College of Natural Science, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea; (H.-Y.K.); (G.-L.Z.); (S.-H.H.)
| | - Su-Min Sim
- Department of Pharmacology, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea; (J.-H.F.); (S.-M.S.)
- Institute of Natural Medicine, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea;
| | - Guang-Lei Zuo
- Department of Food Science and Nutrition, College of Natural Science, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea; (H.-Y.K.); (G.-L.Z.); (S.-H.H.)
| | - Jeon-Sub Jung
- Institute of Natural Medicine, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea;
| | - Seung-Hwan Hwang
- Department of Food Science and Nutrition, College of Natural Science, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea; (H.-Y.K.); (G.-L.Z.); (S.-H.H.)
- R&D Center, Huons Co., Ltd., 55 Hanyangdaehak-ro, Ansan 15588, Gyeonggi-do, Korea
| | - Youn-Gil Kwak
- Research Institute, Huons Nature, Geumsan 32742, Choong-cheong Nam-do, Korea; (Y.-G.K.); (M.-J.K.); (J.-H.J.)
| | - Min-Jung Kim
- Research Institute, Huons Nature, Geumsan 32742, Choong-cheong Nam-do, Korea; (Y.-G.K.); (M.-J.K.); (J.-H.J.)
| | - Jeong-Hun Jo
- Research Institute, Huons Nature, Geumsan 32742, Choong-cheong Nam-do, Korea; (Y.-G.K.); (M.-J.K.); (J.-H.J.)
| | - Sung-Chan Kim
- Department of Biochemistry, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea;
| | - Soon-Sung Lim
- Department of Food Science and Nutrition, College of Natural Science, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea; (H.-Y.K.); (G.-L.Z.); (S.-H.H.)
- Correspondence: (S.-S.L.); (H.-W.S.); Tel.: +82-33-248-2133 (S.-S.L.); +82-33-248-2614 (H.-W.S.)
| | - Hong-Won Suh
- Department of Pharmacology, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea; (J.-H.F.); (S.-M.S.)
- Institute of Natural Medicine, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Korea;
- Correspondence: (S.-S.L.); (H.-W.S.); Tel.: +82-33-248-2133 (S.-S.L.); +82-33-248-2614 (H.-W.S.)
| |
Collapse
|
11
|
PEP-1-GLRX1 Reduces Dopaminergic Neuronal Cell Loss by Modulating MAPK and Apoptosis Signaling in Parkinson's Disease. Molecules 2021; 26:molecules26113329. [PMID: 34206041 PMCID: PMC8198499 DOI: 10.3390/molecules26113329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/22/2022] Open
Abstract
Parkinson’s disease (PD) is characterized mainly by the loss of dopaminergic neurons in the substantia nigra (SN) mediated via oxidative stress. Although glutaredoxin-1 (GLRX1) is known as one of the antioxidants involved in cell survival, the effects of GLRX1 on PD are still unclear. In this study, we investigated whether cell-permeable PEP-1-GLRX1 inhibits dopaminergic neuronal cell death induced by 1-methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We showed that PEP-1-GLRX1 protects cell death and DNA damage in MPP+-exposed SH-SY5Y cells via the inhibition of MAPK, Akt, and NF-κB activation and the regulation of apoptosis-related protein expression. Furthermore, we found that PEP-1-GLRX1 was delivered to the SN via the blood–brain barrier (BBB) and reduced the loss of dopaminergic neurons in the MPTP-induced PD model. These results indicate that PEP-1-GLRX1 markedly inhibited the loss of dopaminergic neurons in MPP+- and MPTP-induced cytotoxicity, suggesting that this fusion protein may represent a novel therapeutic agent against PD.
Collapse
|