1
|
Han J, Lee C, Jeong H, Jeon S, Lee M, Lee H, Choi YH, Jung Y. Tumor necrosis factor-inducible gene 6 protein and its derived peptide ameliorate liver fibrosis by repressing CD44 activation in mice with alcohol-related liver disease. J Biomed Sci 2024; 31:54. [PMID: 38790021 PMCID: PMC11127441 DOI: 10.1186/s12929-024-01042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Alcohol-related liver disease (ALD) is a major health concern worldwide, but effective therapeutics for ALD are still lacking. Tumor necrosis factor-inducible gene 6 protein (TSG-6), a cytokine released from mesenchymal stem cells, was shown to reduce liver fibrosis and promote successful liver repair in mice with chronically damaged livers. However, the effect of TSG-6 and the mechanism underlying its activity in ALD remain poorly understood. METHODS To investigate its function in ALD mice with fibrosis, male mice chronically fed an ethanol (EtOH)-containing diet for 9 weeks were treated with TSG-6 (EtOH + TSG-6) or PBS (EtOH + Veh) for an additional 3 weeks. RESULTS Severe hepatic injury in EtOH-treated mice was markedly decreased in TSG-6-treated mice fed EtOH. The EtOH + TSG-6 group had less fibrosis than the EtOH + Veh group. Activation of cluster of differentiation 44 (CD44) was reported to promote HSC activation. CD44 and nuclear CD44 intracellular domain (ICD), a CD44 activator which were upregulated in activated HSCs and ALD mice were significantly downregulated in TSG-6-exposed mice fed EtOH. TSG-6 interacted directly with the catalytic site of MMP14, a proteolytic enzyme that cleaves CD44, inhibited CD44 cleavage to CD44ICD, and reduced HSC activation and liver fibrosis in ALD mice. In addition, a novel peptide designed to include a region that binds to the catalytic site of MMP14 suppressed CD44 activation and attenuated alcohol-induced liver injury, including fibrosis, in mice. CONCLUSIONS These results demonstrate that TSG-6 attenuates alcohol-induced liver damage and fibrosis by blocking CD44 cleavage to CD44ICD and suggest that TSG-6 and TSG-6-mimicking peptide could be used as therapeutics for ALD with fibrosis.
Collapse
Affiliation(s)
- Jinsol Han
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Chanbin Lee
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
- Institute of Systems Biology, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Hayeong Jeong
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Seunghee Jeon
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Myunggyo Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Pusan, 46241, Republic of Korea
| | - Haeseung Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Pusan, 46241, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Pusan, 47227, Republic of Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea.
- Department of Biological Sciences, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea.
| |
Collapse
|
2
|
Han J, Lee C, Jung Y. Current Evidence and Perspectives of Cluster of Differentiation 44 in the Liver's Physiology and Pathology. Int J Mol Sci 2024; 25:4749. [PMID: 38731968 PMCID: PMC11084344 DOI: 10.3390/ijms25094749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Cluster of differentiation 44 (CD44), a multi-functional cell surface receptor, has several variants and is ubiquitously expressed in various cells and tissues. CD44 is well known for its function in cell adhesion and is also involved in diverse cellular responses, such as proliferation, migration, differentiation, and activation. To date, CD44 has been extensively studied in the field of cancer biology and has been proposed as a marker for cancer stem cells. Recently, growing evidence suggests that CD44 is also relevant in non-cancer diseases. In liver disease, it has been shown that CD44 expression is significantly elevated and associated with pathogenesis by impacting cellular responses, such as metabolism, proliferation, differentiation, and activation, in different cells. However, the mechanisms underlying CD44's function in liver diseases other than liver cancer are still poorly understood. Hence, to help to expand our knowledge of the role of CD44 in liver disease and highlight the need for further research, this review provides evidence of CD44's effects on liver physiology and its involvement in the pathogenesis of liver disease, excluding cancer. In addition, we discuss the potential role of CD44 as a key regulator of cell physiology.
Collapse
Affiliation(s)
- Jinsol Han
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea;
| | - Chanbin Lee
- Institute of Systems Biology, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea;
| | - Youngmi Jung
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
| |
Collapse
|
3
|
Sun YD, Zhang H, Li YM, Han JJ. Abnormal metabolism in hepatic stellate cells: Pandora's box of MAFLD related hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189086. [PMID: 38342420 DOI: 10.1016/j.bbcan.2024.189086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/25/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Metabolic associated fatty liver disease (MAFLD) is a significant risk factor for the development of hepatocellular carcinoma (HCC). Hepatic stellate cells (HSCs), as key mediators in liver injury response, are believed to play a crucial role in the repair process of liver injury. However, in MAFLD patients, the normal metabolic and immunoregulatory mechanisms of HSCs become disrupted, leading to disturbances in the local microenvironment. Abnormally activated HSCs are heavily involved in the initiation and progression of HCC. The metabolic disorders and abnormal activation of HSCs not only initiate liver fibrosis but also contribute to carcinogenesis. In this review, we provide an overview of recent research progress on the relationship between the abnormal metabolism of HSCs and the local immune system in the liver, elucidating the mechanisms of immune imbalance caused by abnormally activated HSCs in MAFLD patients. Based on this understanding, we discuss the potential and challenges of metabolic-based and immunology-based mechanisms in the treatment of MAFLD-related HCC, with a specific focus on the role of HSCs in HCC progression and their potential as targets for anti-cancer therapy. This review aims to enhance researchers' understanding of the importance of HSCs in maintaining normal liver function and highlights the significance of HSCs in the progression of MAFLD-related HCC.
Collapse
Affiliation(s)
- Yuan-Dong Sun
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Hao Zhang
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Yuan-Min Li
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, China
| | - Jian-Jun Han
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China.
| |
Collapse
|
4
|
Pinheiro-Machado E, Getova VE, Harmsen MC, Burgess JK, Smink AM. Towards standardization of human adipose-derived stromal cells secretomes. Stem Cell Rev Rep 2023; 19:2131-2140. [PMID: 37300663 PMCID: PMC10579120 DOI: 10.1007/s12015-023-10567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
The secretome of adipose-derived stromal cells (ASC) is a heterogeneous mixture of components with a beneficial influence on cellular microenvironments. As such, it represents a cell-free alternative in regenerative medicine therapies. Pathophysiological conditions increase the therapeutic capacity of ASC and, with this, the benefits of the secretome. Such conditions can be partially mimicked in vitro by adjusting culturing conditions. Secretomics, the unbiased analysis of a cell secretome by mass spectrometry, is a powerful tool to describe the composition of ASC secretomes. In this proteomics databases review, we compared ASC secretomic studies to retrieve persistently reported proteins resulting from the most explored types of culturing conditions used in research, i.e., exposure to normoxia, hypoxia, or cytokines. Our comparisons identified only eight common proteins within ASC normoxic secretomes, no commonalities within hypoxic ASC secretomes, and only nine within secretomes of ASC exposed to proinflammatory cytokines. Within these, and regardless of the culturing condition that stimulated secretion, a consistent presence of extracellular matrix-related pathways associated with such proteins was identified. Confounders such as donors' age, sex, body mass index, the anatomical area where ASC were harvested, secretome collection method, data description, and how the data is shared with the scientific community are discussed as factors that might explain our outcomes. We conclude that standardization is imperative as the currently available ASC secretomic studies do not facilitate solid conclusions on the therapeutic value of different ASC secretomes.
Collapse
Affiliation(s)
- Erika Pinheiro-Machado
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands
| | - Vasilena E Getova
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin C Harmsen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Janette K Burgess
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra M Smink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
5
|
Huai Q, Zhu C, Zhang X, Dai H, Li X, Wang H. Mesenchymal stromal/stem cells and their extracellular vesicles in liver diseases: insights on their immunomodulatory roles and clinical applications. Cell Biosci 2023; 13:162. [PMID: 37670393 PMCID: PMC10478279 DOI: 10.1186/s13578-023-01122-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023] Open
Abstract
Liver disease is a leading cause of mortality and morbidity that is rising globally. Liver dysfunctions are classified into acute and chronic diseases. Various insults, including viral infections, alcohol or drug abuse, and metabolic overload, may cause chronic inflammation and fibrosis, leading to irreversible liver dysfunction. Up to now, liver transplantation could be the last resort for patients with end-stage liver disease. However, liver transplantation still faces unavoidable difficulties. Mesenchymal stromal/stem cells (MSCs) with their broad ranging anti-inflammatory and immunomodulatory properties can be effectively used for treating liver diseases but without the limitation that are associated with liver transplantation. In this review, we summarize and discuss recent advances in the characteristics of MSCs and the potential action mechanisms of MSCs-based cell therapies for liver diseases. We also draw attention to strategies to potentiate the therapeutic properties of MSCs through pre-treatments or gene modifications. Finally, we discuss progress toward clinical application of MSCs or their extracellular vesicles in liver diseases.
Collapse
Affiliation(s)
- Qian Huai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Cheng Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xu Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hanren Dai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaolei Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
6
|
Yuan M, Hu X, Yao L, Jiang Y, Li L. Mesenchymal stem cell homing to improve therapeutic efficacy in liver disease. Stem Cell Res Ther 2022; 13:179. [PMID: 35505419 PMCID: PMC9066724 DOI: 10.1186/s13287-022-02858-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation, as an alternative strategy to orthotopic liver transplantation, has been evaluated for treating end-stage liver disease. Although the therapeutic mechanism of MSC transplantation remains unclear, accumulating evidence has demonstrated that MSCs can regenerate tissues and self-renew to repair the liver through differentiation into hepatocyte-like cells, immune regulation, and anti-fibrotic mechanisms. Multiple clinical trials have confirmed that MSC transplantation restores liver function and alleviates liver damage. A sufficient number of MSCs must be home to the target tissues after administration for successful application. However, inefficient homing of MSCs after systemic administration is a major limitation in MSC therapy. Here, we review the mechanisms and clinical application status of MSCs in the treatment of liver disease and comprehensively summarize the molecular mechanisms of MSC homing, and various strategies for promoting MSC homing to improve the treatment of liver disease.
Collapse
Affiliation(s)
- Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China. .,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Osawa Y, Kawai H, Tsunoda T, Komatsu H, Okawara M, Tsutsui Y, Yoshida Y, Yoshikawa S, Mori T, Yamazoe T, Yoshio S, Oide T, Inui A, Kanto T. Cluster of Differentiation 44 Promotes Liver Fibrosis and Serves as a Biomarker in Congestive Hepatopathy. Hepatol Commun 2021; 5:1437-1447. [PMID: 34430787 PMCID: PMC8369942 DOI: 10.1002/hep4.1721] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 02/04/2023] Open
Abstract
Congestive hepatopathy (CH) with chronic passive congestion is characterized by the progression of liver fibrosis without prominent inflammation and hepatocellular damage. Currently, the lack of reliable biomarkers for liver fibrosis in CH often precludes the clinical management of patients with CH. To explore fibrosis biomarkers, we performed proteome analysis on serum exosomes isolated from patients with CH after the Fontan procedure. Exosomal cluster of differentiation (CD)44 levels were increased in patients with CH compared to healthy volunteers and was accompanied by increases in serum levels of soluble CD44 and CD44 expression in the liver. To address the roles of CD44 in CH, we established a mouse model of chronic liver congestion by partial inferior vena cava ligation (pIVCL) that mimics CH by fibrosis progression with less inflammation and cellular damage. In the pIVCL mice, enhanced CD44 expression in hepatic stellate cells (HSCs) and deposition of its ligand hyaluronan were observed in the liver. Blood levels of soluble CD44 were correlated with liver fibrosis. The blockade of CD44 with specific antibody inhibited liver fibrosis in pIVCL mice and was accompanied by a reduction in S100 calcium-binding protein A4 expression following activation of HSCs. Conclusion: Chronic liver congestion promotes fibrosis through CD44. This identifies CD44 as a novel biomarker and therapeutic target of liver fibrosis in patients with CH.
Collapse
Affiliation(s)
- Yosuke Osawa
- Department of GastroenterologyInternational University of Health and Welfare HospitalNasushiobaraJapan.,Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Hironari Kawai
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Tomoyuki Tsunoda
- Department of Pediatric Hepatology and GastroenterologySaiseikai Yokohamashi Tobu HospitalTsurumi, YokohamaJapan
| | - Haruki Komatsu
- Department of PediatricsToho University Medical CenterSakura HospitalSakuraJapan
| | - Miku Okawara
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Yuriko Tsutsui
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Yuichi Yoshida
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Shiori Yoshikawa
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Taizo Mori
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Taiji Yamazoe
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Sachiyo Yoshio
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| | - Takashi Oide
- Department of Pathology and Laboratory MedicineKohnodai HospitalNational Center for Global Health and MedicineIchikawaJapan
| | - Ayano Inui
- Department of Pediatric Hepatology and GastroenterologySaiseikai Yokohamashi Tobu HospitalTsurumi, YokohamaJapan
| | - Tatsuya Kanto
- Research Center for Hepatitis and ImmunologyNational Center for Global Health and MedicineIchikawaJapan
| |
Collapse
|