1
|
Yang D, Yang C, Huang L, Guan M, Song C. Role of ubiquitination-driven metabolisms in oncogenesis and cancer therapy. Semin Cancer Biol 2025; 110:17-35. [PMID: 39929409 DOI: 10.1016/j.semcancer.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
Ubiquitination represents one of the most critical post-translational modifications, comprising a multi-stage enzyme process that plays a pivotal role in a myriad of cellular biological activities. The deregulation of the processes of ubiquitination and deubiquitination is associated with the development of cancers and other diseases. This typescript reviews the impact of ubiquitination on metabolic processes, elucidating the regulatory functions of ubiquitination on pivotal enzymes within metabolic pathways in pathological contexts. It underscores the role of ubiquitination-driven metabolism disorders in the etiology of cancers, and oncogenesis, and highlights the potential therapeutic efficacy of targeting ubiquitination-driven enzymes in cancer metabolism, their combination with immune checkpoint inhibitors, and their clinical applications.
Collapse
Affiliation(s)
- Dongqin Yang
- Department of Laboratory Medicine of Huashan Hospital, Fudan University, Shanghai 200040, China; Central Laboratory, Huashan Hospital, Fudan University, 12 Middle Urumuqi Road, Shanghai 200040, China
| | - Can Yang
- Department of Laboratory Medicine of Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Linlin Huang
- Central Laboratory, Huashan Hospital, Fudan University, 12 Middle Urumuqi Road, Shanghai 200040, China
| | - Ming Guan
- Department of Laboratory Medicine of Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Chunhua Song
- Division of Hematology, The Ohio State University Wexner Medical Center, the James Cancer Hospital, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Villadangos L, Serrador JM. Subcellular Localization Guides eNOS Function. Int J Mol Sci 2024; 25:13402. [PMID: 39769167 PMCID: PMC11678294 DOI: 10.3390/ijms252413402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nitric oxide synthases (NOS) are enzymes responsible for the cellular production of nitric oxide (NO), a highly reactive signaling molecule involved in important physiological and pathological processes. Given its remarkable capacity to diffuse across membranes, NO cannot be stored inside cells and thus requires multiple controlling mechanisms to regulate its biological functions. In particular, the regulation of endothelial nitric oxide synthase (eNOS) activity has been shown to be crucial in vascular homeostasis, primarily affecting cardiovascular disease and other pathophysiological processes of importance for human health. Among other factors, the subcellular localization of eNOS plays an important role in regulating its enzymatic activity and the bioavailability of NO. The aim of this review is to summarize pioneering studies and more recent publications, unveiling some of the factors that influence the subcellular compartmentalization of eNOS and discussing their functional implications in health and disease.
Collapse
Affiliation(s)
| | - Juan M. Serrador
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
3
|
Tong J, Wang Z, Zhang J, Gao R, Liu X, Liao Y, Guo X, Wei Y. Advanced Applications of Nanomaterials in Atherosclerosis Diagnosis and Treatment: Challenges and Future Prospects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58072-58099. [PMID: 39432384 DOI: 10.1021/acsami.4c13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Atherosclerosis-induced coronary artery disease is a major cause of cardiovascular mortality. Clinically, conservative treatment strategies for atherosclerosis still focus on lifestyle interventions and the use of lipid-lowering and anticoagulant medications. Despite achieving some therapeutic effects, these approaches are limited by low bioavailability, long intervention periods, and significant side effects. With the advancement of nanotechnology, nanomaterials have demonstrated extraordinary potential in the biomedical field. Their excellent biocompatibility, surface modifiability, and high targeting capability not only enable efficient diagnosis of plaque progression but also allow precise drug delivery within atherosclerotic plaques, significantly enhancing drug bioavailability and reducing systemic side effects. Here, we systematically review the current research progress of nanomaterials in the field of atherosclerosis to summarize not only the types of nanomaterials but also their applications in both the diagnosis and treatment of atherosclerosis. Notably, in the context of plaque therapy, we provide a comprehensive overview of current nanomaterial applications based on their targeted therapeutic systems for different cell types within plaques. Additionally, we address the persistent challenge of clinical translation of nanomaterials by summarizing current issues and providing directions for innovation and improvement in nanomaterial design. Overall, we believe that this review systematically summarizes the applications and challenges of biomedical nanomaterials in atherosclerosis diagnosis and therapy, thereby offering insights and references for the development of therapeutic materials for atherosclerosis.
Collapse
Affiliation(s)
- Junran Tong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahui Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ran Gao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangfei Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yuhan Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
4
|
Conde D, Garcia MA, Gomez M, Gurovich AN. Exercise-Induced Shear Stress Drives mRNA Translation In Vitro. Curr Issues Mol Biol 2024; 46:9895-9905. [PMID: 39329941 PMCID: PMC11430095 DOI: 10.3390/cimb46090589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
The vascular endothelium is the first line of defense to prevent cardiovascular disease. Its optimal functioning and health are maintained by the interaction of the proteins-endothelial nitric oxide synthase (eNOS), sirtuin 1 (SIRT1), and endothelin 1 (ET1)-and the genes that encode them-NOS3, SIRT1, and EDN1, respectively. Aerobic exercise improves endothelial function by allegedly increasing endothelial shear stress (ESS). However, there are no current data exploring the acute effects of specific exercise-induced ESS intensities on these regulatory proteins and genes that are associated with endothelial function. The purpose of this study was to assess the acute changes in endothelial proteins and gene expression after exposure to low-, moderate-, and high-intensity exercise-induced ESS. Human umbilical vein endothelial cells (HUVECs) were exposed to resting ESS (18 dynes/cm2, 60 pulses per minute (PPM)), low ESS (35 dynes/cm2, 100 PPM), moderate ESS (50 dynes/cm2, 120 PPM), and high ESS (70 dynes/cm2, 150 PPM). Protein and gene expression were quantified by fluorescent Western blot and RTqPCR, respectively. All exercise conditions showed an increase in eNOS and SIRT1 expression and a decrease in NOS3 and SIRT1 gene expression when compared to resting conditions. In addition, there was no expression of ET1 and an increase in EDN1 gene expression when compared to resting conditions. These results show that (1) exercise-induced ESS increases the expressions of vascular protective proteins and (2) there is an inverse relationship between the proteins and their encoding genes immediately after exercise-induced ESS, suggesting that exercise has a previously unexplored translational role catalyzing mRNA to proteins.
Collapse
Affiliation(s)
- Daniel Conde
- Clinical Applied Physiology (CAPh) Lab, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Physical Therapy and Movement Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Mario A Garcia
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60208, USA
| | - Manuel Gomez
- Clinical Applied Physiology (CAPh) Lab, The University of Texas at El Paso, El Paso, TX 79968, USA
- Interdisciplinary Health Sciences Ph.D. Program, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Alvaro N Gurovich
- Clinical Applied Physiology (CAPh) Lab, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Physical Therapy and Movement Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Interdisciplinary Health Sciences Ph.D. Program, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
5
|
Qian YW, Guo YQ, Li YL, Wang Y, Guo S, Niu QQ, Zhu ML, Li P. The antihypertensive effect of Alizarin is achieved by activating VEGFR2/eNOS pathway, attenuating oxidative stress-induced mitochondrial damage and premature senescence. Life Sci 2024; 351:122862. [PMID: 38917872 DOI: 10.1016/j.lfs.2024.122862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/10/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
The primary and initial manifestations of hypertension encompass arterial hypoelasticity and histiocyte senescence. Oxidative stress plays a pivotal role in the progression of senescence. Elevated intracellular oxidative stress levels will directly induce cell damage, disrupt normal physiological signal transduction, which can cause mitochondrial dysfunction to accelerate the process of senescence. Alizarin, an anthraquinone active ingredient isolated from Rubia cordifolia L., has a variety of pharmacological effects, including antioxidant, anti-inflammatory and anti-platelet. Nevertheless, its potential in lowering blood pressure (BP) and mitigating hypertension-induced vascular senescence remains uncertain. In this study, we used spontaneously hypertensive rats (SHR) and human umbilical vein endothelial cells (HUVECs) to establish a model of vascular senescence in hypertension. Our aim was to elucidate the mechanisms underpinning the vascular protective effects of Alizarin. By assessing systolic blood pressure (SBP) and diastolic blood pressure (DBP), H&E staining, SA-β-Gal staining, vascular function, oxidative stress levels, calcium ion concentration and mitochondrial membrane potential, we found that Alizarin not only restored SBP and increased endothelium-dependent relaxation (EDR) in SHR, but also inhibited oxidative stress-induced mitochondrial damage and significantly delayed the vascular senescence effect in hypertension, and the mechanism may be related to the activation of VEGFR2/eNOS signaling pathway.
Collapse
Affiliation(s)
- Yi-Wen Qian
- Department of Pharmacy, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Ya-Qi Guo
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yin-Lan Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang 150040, China
| | - Yang Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Qian-Qian Niu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Mo-Li Zhu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
6
|
Deng X, Wang J, Yu S, Tan S, Yu T, Xu Q, Chen N, Zhang S, Zhang M, Hu K, Xiao Z. Advances in the treatment of atherosclerosis with ligand-modified nanocarriers. EXPLORATION (BEIJING, CHINA) 2024; 4:20230090. [PMID: 38939861 PMCID: PMC11189587 DOI: 10.1002/exp.20230090] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/08/2023] [Indexed: 06/29/2024]
Abstract
Atherosclerosis, a chronic disease associated with metabolism, poses a significant risk to human well-being. Currently, existing treatments for atherosclerosis lack sufficient efficiency, while the utilization of surface-modified nanoparticles holds the potential to deliver highly effective therapeutic outcomes. These nanoparticles can target and bind to specific receptors that are abnormally over-expressed in atherosclerotic conditions. This paper reviews recent research (2018-present) advances in various ligand-modified nanoparticle systems targeting atherosclerosis by specifically targeting signature molecules in the hope of precise treatment at the molecular level and concludes with a discussion of the challenges and prospects in this field. The intention of this review is to inspire novel concepts for the design and advancement of targeted nanomedicines tailored specifically for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiujiao Deng
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
- Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jinghao Wang
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Shanshan Yu
- Department of PharmacyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Suiyi Tan
- Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Tingting Yu
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Qiaxin Xu
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Nenghua Chen
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ming‐Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical, ScienceNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical, ScienceNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical TranslationJinan UniversityGuangzhouChina
| |
Collapse
|
7
|
Li H, Gao Y, Lin Y. Progress in molecular mechanisms of coronary microvascular dysfunction. Microcirculation 2023; 30:e12827. [PMID: 37608689 DOI: 10.1111/micc.12827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/23/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
Coronary microvascular dysfunction is a high-risk factor for many cardiovascular events. However, because of multiple risk factors and limited understanding about its underlying pathophysiological mechanisms, it was easily misdiagnosed. Therefore, its clinical diagnosis and treatment were greatly restricted. Coronary microcirculation refers to microvessels that play an important role in the physiological regulation of myocardial perfusion and regulating blood flow distribution, fulfilling myocardial metabolic needs and moderating peripheral vascular resistance. In coronary microvascular dysfunction, vascular endothelial celldamage is a critical link. The main feature of early coronary microvascular dysfunction is the impairment of endothelial cell proliferation, adhesion, migration, apoptosis, and secretion. Moreover, coronary microvascular dysfunction risk factors include hyperglycemia, lipid metabolism disorders, ischemia-reperfusion injury, aging, and hypertension, similar to coronary atherosclerosis. There are various mechanisms by which these risk factors harm endothelial function and cause microcirculatory disturbances. Therefore, we reviewed coronary microvascular dysfunction's risk factors and pathogenesis in this article.
Collapse
Affiliation(s)
- Hao Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yuping Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yuanyuan Lin
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
8
|
Shin MJ, Eum WS, Youn GS, Park JH, Yeo HJ, Yeo EJ, Kwon HJ, Sohn EJ, Lee LR, Kim NY, Kwon SY, Kim SM, Jung HY, Kim DS, Cho SW, Kwon OS, Kim DW, Choi SY. Protective effects of cell permeable Tat-PIM2 protein on oxidative stress induced dopaminergic neuronal cell death. Heliyon 2023; 9:e15945. [PMID: 37223703 PMCID: PMC10200856 DOI: 10.1016/j.heliyon.2023.e15945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023] Open
Abstract
Background Oxidative stress is considered as one of the main causes of Parkinson's disease (PD), however the exact etiology of PD is still unknown. Although it is known that Proviral Integration Moloney-2 (PIM2) promotes cell survival by its ability to inhibit formation of reactive oxygen species (ROS) in the brain, the precise functional role of PIM2 in PD has not been fully studied yet. Objective We investigated the protective effect of PIM2 against apoptosis of dopaminergic neuronal cells caused by oxidative stress-induced ROS damage by using the cell permeable Tat-PIM2 fusion protein in vitro and in vivo. Methods Transduction of Tat-PIM2 into SH-SY5Y cells and apoptotic signaling pathways were determined by Western blot analysis. Intracellular ROS production and DNA damage was confirmed by DCF-DA and TUNEL staining. Cell viability was determined by MTT assay. PD animal model was induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and protective effects were examined using immunohistochemistry. Results Transduced Tat-PIM2 inhibited the apoptotic caspase signaling and reduced the production of ROS induced by 1-methyl-4-phenylpyridinium (MPP+) in SH-SY5Y cells. Furthermore, we confirmed that Tat-PIM2 transduced into the substantia nigra (SN) region through the blood-brain barrier and this protein protected the Tyrosine hydroxylase-positive cells by observation of immunohistostaining. Tat-PIM2 also regulated antioxidant biomolecules such as SOD1, catalase, 4-HNE, and 8-OHdG which reduce the formation of ROS in the MPTP-induced PD mouse model. Conclusion These results indicated that Tat-PIM2 markedly inhibited the loss of dopaminergic neurons by reducing ROS damage, suggesting that Tat-PIM2 might be a suitable therapeutic agent for PD.
Collapse
Affiliation(s)
- Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Gi Soo Youn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Hyun Jung Kwon
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Lee Re Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Na Yeon Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Su Yeon Kwon
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Su Min Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Hyo Young Jung
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Duk-Soo Kim
- Department of Anatomy and BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan-si 31538, South Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Oh-Shin Kwon
- School of Life Sciences, College of Natural Sciences Kyungpook National University, Taegu 41566, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| |
Collapse
|
9
|
Choi YJ, Yeo HJ, Shin MJ, Youn GS, Park JH, Yeo EJ, Kwon HJ, Lee LR, Kim NY, Kwon SY, Kim SM, Kim DW, Jung HY, Kwon OS, Lee CH, Park JK, Lee KW, Han KH, Park J, Eum WS, Choi SY. Tat-GSTpi Inhibits Dopaminergic Cells against MPP+-Induced Cellular Damage via the Reduction of Oxidative Stress and MAPK Activation. Biomedicines 2023; 11:biomedicines11030836. [PMID: 36979816 PMCID: PMC10045456 DOI: 10.3390/biomedicines11030836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Glutathione S-transferase pi (GSTpi) is a member of the GST family and plays many critical roles in cellular processes, including anti-oxidative and signal transduction. However, the role of anti-oxidant enzyme GSTpi against dopaminergic neuronal cell death has not been fully investigated. In the present study, we investigated the roles of cell permeable Tat-GSTpi fusion protein in a SH-SY5Y cell and a Parkinson’s disease (PD) mouse model. In the 1-methyl-4-phenylpyridinium (MPP+)-exposed cells, Tat-GSTpi protein decreased DNA damage and reactive oxygen species (ROS) generation. Furthermore, this fusion protein increased cell viability by regulating MAPKs, Bcl-2, and Bax signaling. In addition, Tat-GSTpi protein delivered into the substantia nigra (SN) of mice brains protected dopaminergic neuronal cell death in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD animal model. Our results indicate that the Tat-GSTpi protein inhibited cell death from MPP+- and MPTP-induced damage, suggesting that it plays a protective role during the loss of dopaminergic neurons in PD and that it could help to identify the mechanism responsible for neurodegenerative diseases, including PD.
Collapse
Affiliation(s)
- Yeon Joo Choi
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Min Jea Shin
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Gi Soo Youn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jung Hwan Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Eun Ji Yeo
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyun Jung Kwon
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Lee Re Lee
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Na Yeon Kim
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Su Yeon Kwon
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Su Min Kim
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Hyo Young Jung
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Oh-Shin Kwon
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Chan Hee Lee
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jong Kook Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Keun Wook Lee
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyu Hyung Han
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Won Sik Eum
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (W.S.E.); (S.Y.C.); Tel.: +82-(33)-2483221 (W.S.E.); +82-(33)-2482112 (S.Y.C.); Fax: +82-(33)-2483202 (W.S.E. & S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (W.S.E.); (S.Y.C.); Tel.: +82-(33)-2483221 (W.S.E.); +82-(33)-2482112 (S.Y.C.); Fax: +82-(33)-2483202 (W.S.E. & S.Y.C.)
| |
Collapse
|
10
|
Wang S, Wang Y, Lai X, Sun J, Hu M, Chen M, Li C, Xu F, Fan C, Liu X, Song Y, Chen G, Deng Y. Minimalist Nanocomplex with Dual Regulation of Endothelial Function and Inflammation for Targeted Therapy of Inflammatory Vascular Diseases. ACS NANO 2023; 17:2761-2781. [PMID: 36719043 DOI: 10.1021/acsnano.2c11058] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Vascular disorders, characterized by vascular endothelial dysfunction combined with inflammation, are correlated with numerous fatal diseases, such as coronavirus disease-19 and atherosclerosis. Achieving vascular normalization is an urgent problem that must be solved when treating inflammatory vascular diseases. Inspired by the vascular regulatory versatility of nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) catalyzing l-arginine (l-Arg), the eNOS-activating effects of l-Arg, and the powerful anti-inflammatory and eNOS-replenishing effects of budesonide (BUD), we constructed a bi-prodrug minimalist nanoplatform co-loaded with BUD and l-Arg via polysialic acid (PSA) to form BUD-l-Arg@PSA. This promoted vascular normalization by simultaneously regulating vascular endothelial dysfunction and inflammation. Mediated by the special affinity between PSA and E-selectin, which is highly expressed on the surface of activated endothelial cells (ECs), BUD-l-Arg@PSA selectively accumulated in activated ECs, targeted eNOS expression and activation, and promoted NO production. Consequently, the binary synergistic regulation of the NO/eNOS signaling pathway occurred and improved vascular endothelial function. NO-induced nuclear factor-kappa B alpha inhibitor (IκBα) stabilization and BUD-induced nuclear factor-kappa B (NF-κB) response gene site occupancy achieved dual-site blockade of the NF-κB signaling pathway, thereby reducing the inflammatory response and inhibiting the infiltration of inflammation-related immune cells. In a renal ischemia-reperfusion injury mouse model, BUD-l-Arg@PSA reduced acute injury. In an atherosclerosis mouse model, BUD-l-Arg@PSA decreased atherosclerotic plaque burden and improved vasodilation. This represents a revolutionary therapeutic strategy for inflammatory vascular diseases.
Collapse
Affiliation(s)
- Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Xiaoxue Lai
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Jianwen Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Miao Hu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Meng Chen
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Cong Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Feng Xu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Chuizhong Fan
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| |
Collapse
|
11
|
Dzugkoev SG, Dzugkoeva FS, Margieva OI, Khubulova AE, Mozhaeva IV. EXPERIMENTAL PARTICIPATION OF PHARMACOLOGICAL SUBSTANCES IN MECHANISMS OF LEAD ACETATE TOXICITY. PHARMACY & PHARMACOLOGY 2023. [DOI: 10.19163/2307-9266-2022-10-6-589-600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The aim of the work is to study pharmacological substances that play a role of eNOS expression regulators in the modification of lead intoxication effects in the experiment.Materials and methods. In the experiment, linear male rats of the same age were used: intact and with lead intoxication (120 heads). The study design was the following: group 1 – control; group 2 – intoxication with a lead acetate solution; group 3 – intact + L-nitroarginine methyl ester; group 4 – lead acetate + L-nitroarginine methyl ester; group 5 – intact + L-arginine; group 6 – lead acetate + L-arginine. The research carried out the study state of the redox reactions, the content of nitric oxide (NOx) stable metabolites, a lipid profile, the level of NO-synthase (eNOS) expression in the vascular endothelium, the main processes of urination and the activity of Na+/K+-ATPase in the renal tissue layers, as well as in the liver. The results were subjected to statistical processing.Results. Saturnism caused the oxidative stress development, a decrease in the NOx content in blood plasma, a violation of the L-arginine for eNOS bioavailability, and an endothelial dysfunction. Indicators of the impaired renal function were a decrease in the glomerular filtration rate (GFR), the tubular reabsorption of water, sodium, and the Na+/K+-ATPase activity. The damage to hepatocytes was evidenced by changes in the activity of organ-specific enzymes in the blood and Na+/K+-ATPase. L-arginine exhibited antioxidant properties, increased the NOx content and the level of eNOS expression. The eNOS L-nitroarginine methyl ester inhibitor showed the effects opposite to L-arginine.Conclusion. Biochemical markers of damage to kidney and liver cells during saturnism are indicators of the oxidative stress, NOx deficiency and hemodynamic disturbances in them. These mechanisms involved the following pharmacological substances: an eNOS inhibitor, L-nitroarginine methyl ester, which caused a decrease in the expression level of the enzyme, and an eNOS inducer, L-arginine, which increased this indicator severity. The lead toxicity mechanisms have been implicated in the impaired cholesterol metabolism, contributing to the L-arginine reduced availability for eNOS and the NOx production. Therefore, the use of L-arginine can be recommended as a regulator of the oxidative stress and an NO-producing endothelial function in other pathologies.
Collapse
Affiliation(s)
- S. G. Dzugkoev
- Institute of Biomedical Research – branch of Vladikavkaz Scientific Center of the Russian Academy of Sciences
| | - F. S. Dzugkoeva
- Institute of Biomedical Research – branch of Vladikavkaz Scientific Center of the Russian Academy of Sciences
| | - O. I. Margieva
- Institute of Biomedical Research – branch of Vladikavkaz Scientific Center of the Russian Academy of Sciences
| | - A. E. Khubulova
- Institute of Biomedical Research – branch of Vladikavkaz Scientific Center of the Russian Academy of Sciences
| | - I. V. Mozhaeva
- Institute of Biomedical Research – branch of Vladikavkaz Scientific Center of the Russian Academy of Sciences
| |
Collapse
|
12
|
Choi YJ, Shin MJ, Youn GS, Park JH, Yeo HJ, Yeo EJ, Kwon HJ, Lee LR, Kim NY, Kwon SY, Jung HY, Cho YJ, Kim DW, Park J, Han KH, Lee KW, Park JK, Lee CH, Eum WS, Choi SY. Protective Effects of PEP-1-GSTA2 Protein in Hippocampal Neuronal Cell Damage Induced by Oxidative Stress. Int J Mol Sci 2023; 24:ijms24032767. [PMID: 36769090 PMCID: PMC9917430 DOI: 10.3390/ijms24032767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Glutathione S-transferase alpha 2 (GSTA2), a member of the glutathione S-transferase family, plays the role of cellular detoxification against oxidative stress. Although oxidative stress is related to ischemic injury, the role of GSTA2 against ischemia has not been elucidated. Thus, we studied whether GSTA2 prevents ischemic injury by using the PEP-1-GSTA2 protein which has a cell-permeable protein transduction domain. We revealed that cell-permeable PEP-1-GSTA2 transduced into HT-22 cells and markedly protected cell death via the inhibition of reactive oxygen species (ROS) production and DNA damage induced by oxidative stress. Additionally, transduced PEP-1-GSTA2 promoted mitogen-activated protein kinase (MAPK), and nuclear factor-kappaB (NF-κB) activation. Furthermore, PEP-1-GSTA2 regulated Bcl-2, Bax, cleaved Caspase-3 and -9 expression protein levels. An in vivo ischemic animal model, PEP-1-GSTA2, markedly prevented the loss of hippocampal neurons and reduced the activation of microglia and astrocytes. These findings indicate that PEP-1-GSTA2 suppresses hippocampal cell death by regulating the MAPK and apoptotic signaling pathways. Therefore, we suggest that PEP-1-GSTA2 will help to develop the therapies for oxidative-stress-induced ischemic injury.
Collapse
Affiliation(s)
- Yeon Joo Choi
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Min Jea Shin
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Gi Soo Youn
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jung Hwan Park
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Eun Ji Yeo
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyun Jung Kwon
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Lee Re Lee
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Na Yeon Kim
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Su Yeon Kwon
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyo Young Jung
- Department of Veterinary Medicine, Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University Medical Center, Chuncheon 24253, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyu Hyung Han
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Keun Wook Lee
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jong Kook Park
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Chan Hee Lee
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Won Sik Eum
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (W.S.E.); (S.Y.C.); Tel.: +82-33-248-2112 (W.S.E. & S.Y.C.); Fax: +82-33-248-3202 (W.S.E. & S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (W.S.E.); (S.Y.C.); Tel.: +82-33-248-2112 (W.S.E. & S.Y.C.); Fax: +82-33-248-3202 (W.S.E. & S.Y.C.)
| |
Collapse
|
13
|
Spinelli S, Guida L, Vigliarolo T, Passalacqua M, Begani G, Magnone M, Sturla L, Benzi A, Ameri P, Lazzarini E, Bearzi C, Rizzi R, Zocchi E. The ABA-LANCL1/2 Hormone-Receptors System Protects H9c2 Cardiomyocytes from Hypoxia-Induced Mitochondrial Injury via an AMPK- and NO-Mediated Mechanism. Cells 2022; 11:cells11182888. [PMID: 36139463 PMCID: PMC9496903 DOI: 10.3390/cells11182888] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Abscisic acid (ABA) regulates plant responses to stress, partly via NO. In mammals, ABA stimulates NO production by innate immune cells and keratinocytes, glucose uptake and mitochondrial respiration by skeletal myocytes and improves blood glucose homeostasis through its receptors LANCL1 and LANCL2. We hypothesized a role for the ABA-LANCL1/2 system in cardiomyocyte protection from hypoxia via NO. The effect of ABA and of the silencing or overexpression of LANCL1 and LANCL2 were investigated in H9c2 rat cardiomyoblasts under normoxia or hypoxia/reoxygenation. In H9c2, hypoxia induced ABA release, and ABA stimulated NO production. ABA increased the survival of H9c2 to hypoxia, and L-NAME, an inhibitor of NO synthase (NOS), abrogated this effect. ABA also increased glucose uptake and NADPH levels and increased phosphorylation of Akt, AMPK and eNOS. Overexpression or silencing of LANCL1/2 significantly increased or decreased, respectively, transcription, expression and phosphorylation of AMPK, Akt and eNOS; transcription of NAMPT, Sirt1 and the arginine transporter. The mitochondrial proton gradient and cell vitality increased in LANCL1/2-overexpressing vs. -silenced cells after hypoxia/reoxygenation, and L-NAME abrogated this difference. These results implicate the ABA-LANCL1/2 hormone-receptor system in NO-mediated cardiomyocyte protection against hypoxia.
Collapse
Affiliation(s)
- Sonia Spinelli
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Lucrezia Guida
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Tiziana Vigliarolo
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Giulia Begani
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Mirko Magnone
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Laura Sturla
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Andrea Benzi
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Pietro Ameri
- Laboratory of Cardiovascular Biology, Department of Internal Medicine, University of Genova, Viale Benedetto XV 6, 16132 Genova, Italy
| | - Edoardo Lazzarini
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Via Tesserete 48, 6500 Bellinzona, Switzerland
| | - Claudia Bearzi
- Institute of Biomedical Technologies, National Research Council of Italy (ITB-CNR), Via Fratelli Cervi 93, 20054 Milan, Italy
- Fondazione Istituto Nazionale di Genetica Molecolare, Via F. Sforza 35, 20122 Milan, Italy
| | - Roberto Rizzi
- Fondazione Istituto Nazionale di Genetica Molecolare, Via F. Sforza 35, 20122 Milan, Italy
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Elena Zocchi
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
- Correspondence:
| |
Collapse
|